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Decomposition of molecular properties

Hans Ågren, *ab Ignat Harczuka and Olav Vahtras a

We review recent work on property decomposition techniques using quantum chemical methods and

discuss some topical applications in terms of quantum mechanics-molecular mechanics calculations

and the constructing of properties of large molecules and clusters. Starting out from the so-called

LoProp decomposition scheme [Gagliardi et al., J. Chem. Phys., 2004, 121, 4994] for extracting atomic

and inter-atomic contributions to molecular properties we show how this method can be generalized to

localized frequency-dependent polarizabilities, to localized hyperpolarizabilities and to localized dispersion

coefficients. Some applications of the generalized decomposition technique are reviewed – calculations

of frequency-dependent polarizabilities, Rayleigh scattering of large clusters, and calculations of hyper-

polarizabilities of proteins.

1 Introduction

The materials modelling community has during recent years
increasingly turned its attention to multi-scale modelling.
As time has passed, the replacement of the idea of one theory
covering everything by the concept of bridging theories (or models)
that each was limited to a certain scale in space and time, has
become progressively more accepted. The most important
variant of contemporary multi-scale modelling is given by the
combination of quantum mechanics and classical physics,
which in a sense gives the possibility to join the accuracy and
rigour of the former with the applicability of the latter and
which gives a possibility to find working approaches that effi-
ciently can address the nanoscale. Thus, the joining of quan-
tum mechanics (QM) with molecular mechanics (MM) with an
expedient classical force field description of atoms has become
a most important and popular area in contemporary in silico
research with a wide variety of applied research areas. In the
QM/MM approach the major types of intermolecular inter-
actions are in principle accounted for both within and in-between
the shells; electrostatic, polarization, van der Waals and short
range (often though a QM/MM potential) and are mostly atom-
ically decomposed. More recent development has concerned, in
addition to structure and dynamics, also the ‘‘3rd dimension’’,
namely general properties, thus including optical properties,
and also the development of QM/MM programs including multi
QM cores in homogeneous and heterogeneous environments.
Applications cover various types of spectroscopy and linear and

non-linear properties of molecules in solution, on surfaces, in
confined biological environments or in combinations of such
environments. A key formulation of the response theory in a
QM/MM setting is the work by Nielsen et al.,1 which has been
diversified to various linear and non-linear electric and mag-
netic properties,2,3 to QM/MM/PCM,4 where a third layer con-
stituting a dielectric continuum is added, and to resonant
convergent response property formulations.5 The QM/MM
response property theory has been implemented for different
types of QM cores, like multi-configurational self-consistent
field (MCSCF), coupled cluster and DFT. The various QM/MM
methods can also be distinguished from one another by the way
in which they describe the coupling between the QM and MM
regions. The mainstream implementations are of DFT/MM type
where originally the DFT to MM coupling has been limited to
the description of the electrostatic interaction between the
electron density of the QM region and point charges of the MM
region.6 A more sophisticated description of the interaction
between the MM and QM regions is achieved in the so-called
effective fragment potential (EFP) method in which the
coupling between the QM and MM regions includes electro-
static, polarization/induction, exchange repulsion, and a charge
transfer interaction terms.7–9 For general response properties,
the more recent research has focused on the DFT/MM response
formalism which is capable of computing arbitrary molecular
properties expressed via linear, quadratic and cubic response
functions and their residues,10 and which includes full electro-
static, polarization/induction and dispersion terms in the
description of the ground state interaction between a solute
and its environment and the polarization/induction interaction
in the generation of the response functions.1 It allows to
consider a ladder of sophistication for the coupling between
the QM and MM regions, referring to truncating the MM
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molecule or fragment electrostatic potential at different orders of
the multipole expansion11 and by selecting different forms of the
polarizability tensor for the MM molecule or the fragment.12–14

Various extensions from this outset have been made, for
instance, to spin Hamiltonian parameters and paramagnetic
open shell system,2,15 allowing for systematic studies of, elec-
tronic g tensors and hyperfine coupling constants of various
radicals and spin labels.15 One can here also mention the
recent extension of the QM/MM capacitance–polarization force
field for embedding metal surfaces and/or nanoparticles in the
metallic MM region in complex environments16—the so-called
quantum mechanics/capacitance molecular mechanics (QM/CMM)
model which provides a practical approach for theoretical
modelling of properties of physisorbed chromophores on metal
surfaces or nanoparticles. Here, the heterogeneous MM part is
split into metallic and non-metallic parts, assuming a capaci-
tance–polarization model for the electrostatics and polarization
of the metallic part and distributed charges for the non-metallic
part.17,18 The implementation of a heterogeneous MM region
captures the essential physical features of the composite con-
taining metal surfaces and/or nanoparticles and physisorbed
chromophores in vacuum or solutions.

Force fields, either used in the preceding classical MD simu-
lation or in the MM part of QM/MM, constitute crucial quan-
tities as they dictate the precision and the cost, and therefore
the limitations and applicability of the QM/MM calculations.
It follows that force fields have been the subject of ever ongoing
efforts of refinement and analysis where both the results of
more accurate models, i.e. quantum mechanics based, and of
fitting to experimental data are employed. Largely, such force
fields divide into electrostatic, polarizable and reactive force
fields regulating charge transfer in the molecular mechanics
medium. With the implementation of QM/MM models the
quality of force fields are also scrutinized in terms of the inter-
action between the quantum and classical parts. One has
during recent time witnessed new techniques to generate force
fields for QM/MM calculations and techniques for integrating
dynamics into the property calculations through QM/MM—the
so-called integrated approach.19 An ultimate aim is to use the
same QM/MM parameterization for the dynamics as for the pro-
perty calculations, a next level in ambition is to use the same
force field parameterization in classical molecular dynamics as
the one used in the MM part of the QM/MM property calcula-
tion. None of these two ambitions, are, however, fulfilled in
common calculations published in literature. In some sense the
requirement of the MM force field in QM/MM is higher than
for the force field in pure MD, especially the paramount role
of polarization and the need for a fine granulation of the force
field. Thus even for the water molecule there is need to
granulate the charges of the molecule as well as to granulate
the polarizabilities. This puts additional demands in that the
quality of the force fields that should balance the precision of
the quantum part for the evaluation of the structural dynamics
or properties. More recent implementations of properties and
spectroscopy in the QM/MM framework often demand full
granulation of such embeddings in terms of separate atomic

contributions, sometimes even covering atom–bond partition-
ing and multipole expansions of the charges. An often attended
vehicle to fulfil this demand is the LoProp method20 for
extracting atomic and interatomic contributions to molecular
properties. It was originally formulated as a sequence of trans-
formations of the atomic overlap matrix, giving a localized
orthonormal basis that depends only on molecular structure
and the initial atomic orbital basis set. The localized properties
are then obtained by forming partial traces over basis functions
associated with one chosen centre or a pair of centres. Thus by
means of LoProp several systematically connected models
for the solvent interaction can be formulated, ranging from a
simple molecular point charge to bond- and atom-centred
multipoles and polarizabilities. The precision needed, and thus
the level of decomposition, is to a large extent dictated by the
property that is to be calculated. This level also has a bearing on
the standard problem how to split the QM and MM parts of the
system in a QM/MM calculation, for instance, the need to bring
in water molecules in the QM part is often relieved by a careful
LoProp MM parameterization of water.3 To the known limita-
tions of the LoProp method one can mention the tendency to
‘‘overpolarize’’ the interaction, especially to the QM part close
to the QM/MM interface but also between closely encountering
MM molecules. The (ad hoc) introduction of distributed point
charges and polarizabilities by Gaussian broadenings remedies
the problem to some extent.16 These localized properties have
indeed been of much use as granulated force fields in QM/MM
calculations of properties, ranging from NMR, EPR over to
optical properties and X-ray spectroscopy.1,5,21–24

In a previous work25 we showed how a LoProp polarizable
force field can be derived quantum mechanically for extended
environments by using analytical response theory. The theory
was recently extended to construct the localized polarizable force
fields to be frequency dependent.26 The possibility to do so
follows from the fact that analytic response theory can determine
the first-order response for frequencies which directly match
those of the externally perturbing field. This effectively produces
polarizable force fields which include the quantum mechanical
density perturbation caused by an external field. This extension
of the MM region in typical QM/MM calculations allows for
a more physical description of properties in the QM region,
since the interaction between the MM and the QM regions now
includes the frequency dependence of the classical region.
Further development in terms of non-linear hyperpolarizable
force fields followed, which, e.g. can be used to reconstruct
hyperpolarizable tensors, and properties derived therefrom, in
large molecular clusters and proteins.27 Further recent develop-
ment has concerned the decomposition of obtain complex
frequency dependent polarizabilities and dispersion coefficients.
The centring of such polarizabilities to bonds is also possible,
and, more importantly, to higher order dispersion coefficients,
higher than C6, is doable if the underlying property integrals
are at hand. It could allow the development of chemically
dependent local dispersion interaction force fields to be intro-
duced in molecular dynamics. In addition to the use in QM/MM,
the LoProp technique has recently been shown to be powerful
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tool for building up ‘‘classical’’ properties of large molecular
clusters, like Rayleigh scattering of atmospheric nanoparticles,28

and hyperpolarizabilities (second harmonic generation) of
proteins.29 In the present work review recent development of
force field decomposition and local property calculations with
quantum chemical methods and discuss some topical applica-
tions both in terms of QM/MM and for building up properties
of large molecules and clusters.

2 Theory
2.1 The LoProp transformation

Gagliardi et al.20 introduced the LoProp method for extracting
atomic and interatomic contributions to molecular properties. It
was formulated as a sequence of transformations of the atomic
overlap matrix, giving a localized orthonormal basis that depends
only on molecular structure and the initial atomic orbital basis set.
The localized properties were obtained by forming partial traces
over basis functions associated with one chosen center or a
pair of centers. The aim was to obtain physically sound and
transferable local properties which sum up to the molecular
property and which are reasonably constant for a given atom in
chemically similar systems. The implications of this is that
these localized properties can be used as force fields in QM/MM
calculations.

The requirement on the initial basis set is that the atomic
orbitals can be grouped into occupied and virtual orbitals, e.g.
if they resemble the actual orbitals in atomic states. Given this
division, the sequence of transformations can be briefly sum-
marized as: for the combined atomic-orbital basis set of the
molecule, orthonormalize first within atomic subblocks, sec-
ond within the combined occupied AO space. Then project out
any occupied components in the virtual AO space, and finally
orthonormalize the virtual space. This leads to an orthonormal
localized basis set, the LoProp basis, where each orbital is
associated with an atomic center.

These steps generate a total matrix Tm
l describing a trans-

formation between the AO:s (xm) and the LoProp (fl) basis
functions

fl ¼
X
m

xmT
m
l (1)

For integral representations of one-electron operators

Omn ¼
ð
dVxmð~r ÞOð~r Þxnð~r Þ Olm ¼

ð
dVwlð~r ÞOð~r Þwmð~r Þ (2)

we thus have the transformation rule

Olm ¼
X
mn

OmnT
m
l T

n
m (3)

while for the density matrix we have the inverse transformation

Dmn ¼
X
lm

DlmTm
l T

n
m (4)

Next the atom and ‘‘bond’’ contributions are given by
grouping the summations involved in the trace operations

into partial traces over the atomic subsets, denoted by
A,B. . .

trðODÞ ¼
X
lm

OlmD
lm ¼

X
AB

X
l2A;m2B

OlmD
lm �

X
AB

OABD
AB (5)

The localized charges and isotropic polarizabilities are the
parameters which form the force fields for the QM/MM calcula-
tions in this work.

The decomposition of the total electronic charge according
to eqn (5) gives

Qel ¼ �
X
AB

X
l2Am;m2B

SlmD
lm (6)

where S is the overlap matrix. As the LoProp basis is ortho-
normal (Slm = dlm) as well as localized this becomes

Qel ¼ �
X
A

X
l2A

Dll (7)

i.e. there are no bond contributions to the total charge and the
localized charge associated with an atomic site A with nuclear
charge ZA, is

QA ¼ ZA �
X
l2A

Dll (8)

2.2 Analytical local polarizabilities

We present here an alternative formulation and implementation
of the LoProp approach. The original implementation was based
on finite field perturbation theory applied to localized dipole
moments. Here we apply analytical response theory where the
change of a wave function in an external field is represented by a
unitary transformation. The theory derives from the classical
work by Olsen and Jørgensen30 for MCSCF theory and later
generalized for DFT by Sałek et al.31 Following the notation of
the latter, we have that a wave function |0i is transformed by a
unitary operator as a result of the perturbation

|0̃i � e�k̂|0i (9)

The operator k has a real anti-symmetric matrix representation
which in second quantization is given by

k̂ = kpqa†
paq (10)

If we restrict to static perturbations, the Ehrenfest theorem
gives that the first-order properties can be derived from

dh0|[Q̂,ekHe�k]|0i = 0 (11)

for an arbitrary operator Q̂. By choosing the same excitation
operators that are used to expand k̂ we obtain a system of equations
for the unknowns, the matrix elements kpq. As the details of these
derivations are quite lengthy we refer the interested reader to ref. 31.

After solving the linear response eqn (11), some matrix algebra
allows us to express the first-order change of an expectation value
in terms of a trace of the product of the operator matrix and the
first-order density matrix

d ekAe�kh i ¼ h½dk;A�i ¼
X
pq

ApqdDpq (12)
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where the first-order change in the density matrix can be
expressed as

dDpq = [dkT,D]pq (13)

all in MO basis. It is now straightforward to transform the same
quantities to AO (with MO-coefficients Cm

p) or LoProp basis (with
LoProp transformation Tm

l )

dDmn ¼
X
pq

dDpqCm
pC

n
q ¼

X
lm

dDlmTm
l T

n
l (14)

With the first-order densities at hand we are now in a
position to proceed to evaluate the localized polarizabilities
in the LoProp approach. These were introduced in ref. 20 by
considering the electric field derivatives of the molecular dipole
moment with respect to an arbitrary gauge origin C

�~rCh i ¼ �
X
AB

~rABD
AB þ

X
A

QA
~RA � ~RC

� �
(15)

-
rAB is the electronic coordinate with respect to the midpoint
between atoms A and B, if A a B, or with respect to an atomic
site

-

RA if A = B. Considering at first a first-order variation of the
dipole moment

d �~rCh i ¼
X
AB

�~rABdDAB þ
X
A

dQA
~RA; (16)

it is seen that the last term in (15) containing C vanishes due to
charge conservation. The fact that the individual terms in (16)
are origin dependent were solved by Gagliardi by introducing
charge transfer between atomic sites – an anti-symmetric
charge transfer matrix DQAB satisfying

dQA ¼
X
B

DQAB (17)

where the charge shift on a site A is

dQA ¼ �
X
l2A

dDll (18)

This leads to a localized polarizability of the form

aAB = dh�-
riAB = �-

rABdDAB + DQAB(
-

RA �
-

RB) (19)

The charge transfer matrix is not uniquely defined but it solves
the problem with gauge-dependence and one gets a physically
reasonable interpretation of the local polarizability – as a
change of the local dipole moment and, in the case of bond
contributions, a charge shift between the two sites A and B. In
our calculations we redistribute the bond contributions to their
atomic sites and only consider local atomic polarizabilities.

To summarize, the main difference between this approach
and the original implementation is that it is based on calcula-
tions on analytical response theory rather than finite-field
perturbation theory. An advantage of the formulation is that
it is straightforward to generalize the LoProp concept to local
dynamical polarizabilities and to higher order polarizabilities.
The analytical LoProp code is a post-processing tool for Dalton32

written in the Python programming language.

2.3 A frequency-dependent LoProp approach

In a previous paper25 we demonstrated an alternative derivation
of the LoProp approach which was based on analytical response
theory. As response theory provides a formulation of perturbation
theory which handles time-independent and time-dependent
cases within the same formalism, we then investigated the effects
of projecting the dynamical polarizability onto atomic contribu-
tions. This can be expected to be meaningful provided that the
frequencies involved are well below the first resonance. To outline
the steps in single-determinant time-dependent response theory
(see e.g. Salek et al.33) we have a state |0̃i that evolves in time

|0̃i � e�k̂(t)|0i (20)

where the exponential operator is a parameterized time-evolution
operator, k̂ a real anti-hermitian operator

k̂ = kpq(t)a†
paq (21)

of which the matrix elements {kpq} form the parameters of the
theory. A time-dependent variational principle based on the
Ehrenfest theorem provides a solution to the time-independent
Schrödinger equation in this space of parameters {kpq}, i.e.
arbitrary static operators Ô that satisfy

d 0 Ô; ek̂ðtÞ H � i
@

@t

� �
e�k̂ðtÞ

� �����
����0

	 

¼ 0 (22)

A well-chosen set of operators {Ô} provides linear systems of
equations for the parameters {kpq} to various orders in the
perturbation. If we consider monochromatic perturbations of
frequency o we can extract the dynamical dipole polarizability
from the linear response function

d ek~re�k̂
� �

ðoÞ ¼ h½dk;~r�iðoÞ ¼
X
pq

~rpqdDpqðoÞ (23)

dDpq(o) = [dkT(o),D]pq (24)

The dipole moment is expanded in terms of atomic- and
bond contributions

�~rCh i ¼ �
X
AB

X
l2A
m2B

~rABð ÞlmDlm þ
X
A

QA
~RA � ~RC

� �
(25)

with the localized LoProp basis, where -
rAB is the electronic

coordinate with respect to the midpoint of the bond A–B and
the frequency-dependent variation can be written

d �~rCh iðoÞ¼
X
AB

X
l2A
m2B

� ~rABð ÞlmdDlmðoÞþ
X
AB

DQABðoÞ ~RA� ~RB

� �
;

(26)

where DQAB is a charge transfer matrix satisfyingX
B

DQABðoÞ ¼ dQAðoÞ (27)

and where the local charge response to the external perturba-
tion is

dQAðoÞ ¼ �
X
l2A

dDllðoÞ (28)
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This leads to a localized dynamical polarizability of the form

aAB(o) = dh�-riAB = �-rABdDAB(o) + DQAB(o)(
-

RA �
-

RB)
(29)

completely analogous to the dynamic case.
Most applications of classical models for the calculation of

polarizabilities and hyperpolarizabilities are semi-empirical in
nature, e.g. in the work of Applequist et al. the atomic polariz-
abilities are parameters which are optimized for a test set of
molecules. The approach reviewed above, on the other hand,
is fully ab initio in nature in that quantum mechanical values
for a monomer are used in the classical models for a cluster of
molecules. For clusters of moderate size the validity of the
model can be tested with a full quantum mechanical calcula-
tion for smaller oligomers. It can be expected that these models
hold for well separated systems, while breaking down at close
distances where the exchange interaction between the over-
lapping electron densities is non-negligible. After highlighting
the basic point dipole models, we derive the equations neces-
sary for the extraction of atomic hyperpolarizabilities.

2.4 Point dipole models

2.4.1 Polarizability: the Silberstein–Applequist model reviewed.
The point-dipole model associates with every particle i a dipole
moment pi, that consists of a static (permanent) part p0

i and an
induced part which for weak fields depends linearly on the local
electric field.

pi = p0
i + ai�Ei (30)

Ei = E(-ri) is the electric field experienced by particle i located at
-
ri due to external sources and other dipoles. Let the laboratory
field be F. Typically it will be uniform over the system, but as a
notation we may write Fi = F(-ri) to emphasize what particle we
are referring to. Then

Ei ¼ Fi þ
X
jai

Tij � pj (31)

where Tij is the dipole dyadic tensor coupling particles i and
j (i a j),

Tij ¼
3~rij~rij � rij

21

rij5
(32)

The components of -
rij in eqn (32) is for the vector pointing from

the dipole at j to the dipole at i. The change of an individual
dipole due to variations in the external field is

dpi ¼ ai � dFi þ
X
jai

Tij � dpj

 !
(33)

and gives a system of equations for the dipole shifts:

dpi � ai �
X
jai

Tij � dpj ¼ ai � dFi (34)

Defining Tkk = 0 we may writeX
j

dij1� ai � Tij

 �
� dpj ¼ ai � dFi (35)

a 3N-system of equations for the induced dipoles as a function
of the change in the external field. Inverting the coefficient
matrix of eqn (35) gives the individual dipole shifts

dpi ¼
X
j

Rij � dF (36)

where

Rij = (dij1 � aiTij)
�1�aj (37)

is a classical response function, often called relay matrix, as it
relays a field change at site j to a dipole shift at site i.34

Rij ¼
dpi
dFj

(38)

The total molecular dipole shift is obtained by summing
up the individual atomic dipole shifts, which for a uniform
external field gives

dP ¼
X
i

dpi ¼
X
ij

Rij � dFi ¼
X
ij

Rij

 !
� dF (39)

i.e. the total molecular polarizability of the system is

am ¼
X
ij

Rij (40)

It can be noted that for separated charges the elements of T
are small and the total polarizability is approximately the sum of
the individual polarizabilities. This is the Silberstein model35,36

generalized firstly by Applequist34,37,38 and later used by several
others.39–48

2.4.2 Extension: polarizability of a system of hyperpolariz-
able particles. Now we extend the Silberstein–Applequist model
to a system of particles with additional structure, with local
polarizabilities as well as hyperpolarizabilities. With a local
hyperpolarizability tensor bi the local dipole moments are

pi ¼ p0i þ ai � Ei þ
1

2
bi : EiEi (41)

and consequently the induced components are given by

dpi = ai�dEi + bi:EidEi (42)

The first question displays how this affects the definition of
the total polarizability a

dpi ¼ ai � dFi þ
X
jai

Tij � dpj

 !

þ bi : Ei dFi þ
X
jai

Tij � dpj

 ! (43)

As before, collecting induced dipoles to the left we obtainX
jai

dij1� ai þ bi � Eið Þ � Tij

 �
� dpj ¼ ai þ bi � Eið Þ � dFi (44)

We now note that the structure of this equation is the same
as eqn (35) with a corrected local polarizability

~ai = ai + bi�Ei (45)
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This equation is though different from eqn (35) in the
sense that it refers to the explicit value of the local electric
field at each site. As we are considering the effect of an
external electric field on the total system we assume these local
fields to be the stationary value in the absence of an external
field, i.e.

E0
i ¼

X
j

Tij � pi½F ¼ 0� (46)

Nevertheless, it is now not sufficient to invert a matrix –
we also have to solve for the local fields iteratively in order
to set up the linear systems of equations for the dipole
shifts. This gives an Applequist equation with corrected local
polarizabilities

dij1�
X
jai

~ai � Tij

 !
� dpj ¼ ~ai � dF (47)

or

dpi ¼
X
j

~Rij � dF (48)

where

R̃ij = (1dij � ~ai�Tij)
�1�~aj (49)

2.5 Hyperpolarizability of a system of hyperpolarizable
particles

The next question displays how an equivalent model can be
defined for at total hyperpolarizability. Taking the same argu-
ment from the beginning and considering the change in the
individual dipole moments we obtain

pi ¼ p0i þ ai � Ei þ
1

2
bi : EiEi

dpi ¼ ai � dEi þ bi : EidEi

d2pi ¼ ai � d2Ei þ bi : dEidEi þ bi : Eid2Ei

¼ ai þ b � Eið Þ � d2Ei þ bi : dEidEi

¼ ~ai � d2Ei þ bi : dEidEi

(50)

Now we are only looking for terms quadratic in the first-order
field so we can set d2F = 0. The second-order effect in the local
field is

d2Ei ¼
X
jai

Tij � d2pj (51)

giving

d2pi ¼ ~ai �
X
iaj

Tijd2pj þ bi : dEidEi (52)

The equation for the second-order dipole moments are thus

(dij1 � ~aiTij)�d2pj = bi:dEidEi (53)

From the linear problem we have

dEi ¼ dFi þ
X
j

Tij � dpj

¼ dFi þ
X
jk

Tij � ~Rjk � dFk

¼
X
k

dik1þ
X
j

Tij � ~Rjk

 !
� dFk

(54)

which in the case of a uniform external field simplifies to

dEi ¼ 1þ
X
jk

Tij � ~Rjk

 !
� dF (55)

Analogously to the Applequist relations, the molecular hyper-
polarizability is now the sum of local second-order dipole shifts

bm ¼
X
i

d2pi
dF2
¼
X
ij

~Rij � bj :
dEj

dF
dEj

dF

¼
X
ij

~Rij � bj : 1þ
X
kl

Tjk � ~Rkl

 !
1þ

X
kl

Tjk � ~Rkl

 !

(56)

2.6 LoProp hyperpolarizability

In a previous section we showed how the localized dynamic
polarizabilities of atoms can be extracted by analytical response
theory at static or dynamic frequencies for a molecule.26 We
now extend the formulation to include the contribution of a
higher-order perturbation to the electronic density, to obtain
localized hyperpolarizabilities.

As for the LoProp frequency dependent polarizability, see
Section 2.3, we start out from response theory for single-
determinant wave-functions,31 where the time-dependence of
an electronic state can be written as the time-evolution operator
acting on a stationary state

|0̃i � e�k(t)|0i (57)

where the exponential operator is a time-evolution operator and the
operator k(t) is the anti-hermitian operator with matrix elements

k(t) = kpq(t)a†
psaqs (58)

kqp = �kpq* (59)

The elements of k(t) forms the parameters of the theory.
Furthermore, a time-dependent variational theory based on the
Ehrenfest theorem can be expanded to give a solution to the
time-independent Schrödinger equation in terms of the para-
meters k(t)pq

d 0 Ô; ekðtÞ Ĥ0 þ VðtÞ � i
@

@t

� �
e�kðtÞ

� �����
����0

	 

¼ 0 (60)

where the operator Ô can be any time-independent property
operator. Choosing Ô as the non-redundant orbital-excitations
gives a linear system of equations that determines the para-
meters krs uniquely.30 Choosing Ô as well as the perturbation V
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to be dipole moment operators ~̂r, (the latter corresponding to
the dipole interaction between the molecule and an external
electric field with frequency o) we can extract the polarizability
as the linear response function

d ek~̂re�k
D E

ðoÞ ¼ dk̂;~̂r
h iD E

ðoÞ ¼
X
pq

~̂rpqdDpqðoÞ (61)

dDpq(o) = [dkT(o),dD]pq (62)

and the hyperpolarizability as the quadratic response function

d2 ek~̂re�k
D E

o1;o2ð Þ ¼ d2k̂;~̂r
h i

þ 1

2
dk̂; dk̂;~̂r
h ih i	 


o1;o2ð Þ

¼
X
pq

~̂rpqd2Dpq o1;o2ð Þ

(63)

where

d2Dpq o1;o2ð Þ ¼ d2kT o1;o2ð Þ;D
� �pq
þ 1

2
dkT o1ð Þ; dkT o2ð Þ;D

� �� �
þ dkT o2ð Þ; dkT o1ð Þ;D

� �� ��pq
(64)

To obtain localized properties, the LoProp transformation is
then applied to yield a localized orthonormal basis, where the
molecular dipole moment can be written as the sum of atom
and bond contributions

d �~rCh iðoÞ ¼
X
AB

X
l2A
m2B

�ð~rABÞlmdDlmðoÞ

þ
X
AB

DQABðoÞ ~RA � ~RB

� �

d2 �~rCh iðoÞ ¼
X
AB

X
l2A
m2B

�ð~rABÞlmd2Dlmðo1;o2Þ

þ
X
AB

D2QAB o1;o2ð Þ ~RA � ~RB

� �

where -
rAB is the electronic coordinate with respect to the

bond-center between the atoms A and B. The first two terms
are the contributions from the polarizability, and the last two
terms are from the hyperpolarizability. DQAB(o) and D2QAB(o)
are the atomic charge-transfer matrices, both individually
satisfying X

B

DQABðoÞ ¼ dQAðoÞ (65)

X
B

D2QAB o1;o2ð Þ ¼ d2QA o1;o2ð Þ (66)

where

dQAðoÞ ¼ �
X
l2A

dDllðoÞ (67)

d2QA o1;o2ð Þ ¼ �
X
l2A

d2Dll o1;o2ð Þ (68)

are the first, and second-order local response with respect to
the external field. Having the second-order electronic density
perturbation, the final form of the localized hyperpolarizabil-
ities reads

bAB o1;o2ð Þ ¼ �
X
l2A
m2B

~rlmd2Dlm o1;o2ð Þ

þ D2QAB o1;o2ð Þ ~RA � ~RB

� �
(69)

We emphasize that in the original work static hyperpolariz-
abilities (o1 = o2 = 0) were considered. These relations have
been implemented as a plugin for Dalton32 available in the
public domain.49

2.7 Dispersion interaction

We here summarize the relations between the linear response
functions and dispersion energies. The detailed derivations
are based on the work by Magnasco et al.50 and are available
in ref. 51.

Given the density operator in second quantization, the
density–density response function of a molecular system can
be written as

r̂ r1ð Þ; r̂ r1
0

� �D ED Eð1Þ
o
¼
X
n1 4 0

Cð1Þ0 r̂ r1ð Þj jCð1Þn1

D E
Cð1Þn1

r̂ r1
0 ��� ��Cð1Þ0

D E
�h o� oð1Þn1

� �

�
Cð1Þ0 r̂ r1

0 ��� ��Cð1Þn1

D E
Cð1Þn1

r̂ r1ð Þj jCð1Þ0

D E
�h oþ oð1Þn1

� �
(70)

It is well established that the dispersion energy can be
expressed as an integral over polarizabilities over imaginary
frequencies. This gives

Edisp ¼ �
�h

2p

ðð
dr1dr2

1

r12

ðð
dr1

0
dr2

0 1

r12
0

�
ð1
0

do r̂ r1ð Þ; r̂ r1
0

� �D ED Eð1Þ
io

r̂ r2ð Þ; r̂ r2
0

� �D ED Eð1Þ
io

(71)

A Taylor expansion with respect to intermolecular distance
yield to lowest order an interaction that decays as R�6

Edisp � �
�h

2p

ð1
0

do
X
ijkl

að1Þij ðioÞa
ð2Þ
kl ðioÞTikTjl (72)

where the dipolar coupling tensor is

Tik ¼
@2

@Xi
12@X

k
12

1

R12
¼ 3Xi

12X
k
12 � dikR2

12

R5
12

(73)

The isotropic expression is obtained by a rotational averaging
procedure52

Eiso
disp ��

�h

2p

ð1
0

do
X
ijkl

X
mnst

að1Þmn ðioÞað2Þst ðioÞCmiCnj

� CskCtlTikTjl

(74)
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which involves orientation averaging of coupling coefficients
between body-fix and space-fix coordinate axes:

CmiCnj ¼
1

3
dmndij (75)

Substituting with the isotropic polarizabilities

�a ¼ 1

3

X
k

akk (76)

we obtain the final expression

C
ij
6 ¼

3�h

p

ð1
0

�að1Þi ðioÞ�a
ð2Þ
j ðioÞdo (77)

The LoProp approach20 to obtain frequency dependent
polarizabilities is based on diagonalizing the atomic overlap
matrix S. This is done as described in Section 2.1 in sequential
orthonormalization steps which gives a transformation matrix
used to transform the property integrals and perturbed electro-
nic densities. By summing the transformed integrals over the
subspace of atom-pairs, the properties in the LoProp basis are
obtained. It was shown above how the frequency-dependent
polarizability and hyperpolarizability could be obtained from
linear response theory.26,27 Here, for the dispersion interaction,
the natural extension to the extraction of the response vectors
from the CPP code is made in order to obtain the distributed
real polarizabilities of atoms at imaginary frequencies.

2.8 Damping

Due to very large molecular polarizabilities caused by the
induced dipoles at short inter-atomic distances, the original
Applequist34,37 equations were modified by Thole.53 The main
difference in the Tholes model derives from the introduction of
the so-called damping parameters, which depend on the scaled
inter-atomic distances. The equation used to calculate the
damping reads

u ¼ ~rij

aisoi aisoj
� �1=6 (78)

which gives the following damping parameters for the potential,
field, and field-gradient, respectively

fV ¼ 1� 1

2
vþ 1

� �
e�v (79)

fE ¼ fV �
1

2
v2 þ 1

2
v

� �
e�v (80)

fT ¼ fE �
1

6
v3e�v (81)

where v = au, and a is an arbitrary damping parameter. The
parameter derived most accurately using the largest set of
data54 is a = 2.1304, and is the one also used in this review.

In the damped model, the dyadic tensor now reads

Tij ¼
3~rij~rijfT � fErij

21

rij5
(82)

As an illustration of the damped model, Fig. 1 shows the Ex and
Ey electric-field components in the xy-plane stemming from a
position in origo, with (left column) and without (right column)
damping.

3 Decomposition of frequency
dependent polarizabilities

The polarizability is an example of a property for which both
classical and quantum models have played important roles for
its calculation. In the original works by Applequist, Carl, and
Fung37 and Silberstein35,36 the concept of the polarizable point-
dipole model was introduced in which the molecular polariz-
ability is obtained as a result of atomic interactions governed
by the localized polarizability tensors of each point-dipole (see
Theory section for mathematical details). In that formulation,
the induced dipoles are determined solely by the atomic polariz-
abilities which in turn can be directly calculated by solving a
system of linear equations. The atomic polarizabilities were then
often fitted to yield molecular polarizabilities as closely as
possible to molecular polarizabilities obtained from experi-
mental refractive index measurements.55 As shown already in
the original works, short interatomic distances could give rise to
polarization catastrophes since the induced dipoles then would
increase indefinitely. Several models have subsequently been
put forward to fix the problems arising from short interatomic
distances, for example, Thole53 tested two modified dipole-
interaction models, based on charge distributions, also called
the linear- and exponential models, and re-parameterized the
atomic polarizabilities to fit the new interaction equations: Ren
and Ponder included higher-order multipole induction terms,
in order to study the intra- and intermolecular interactions56 of
molecules, with successful extensions to the polarizable atomic
multipole water model.57 Wang et al.58,59 further extended the

Fig. 1 The Ex and Ey components due to an ideal point charge at origo
with q = 1 a.u. The right column illustrates how Tholes exponential damping
gradually decreases the electric field near the charge source. From ref. 29.
Copyright ACS Publishing.
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point-dipole model with new sets of experimental data available
to molecules.60 Jensen et al.,39 and others, used quantum
mechanical calculated molecular polarizabilities to fit atomic
polarizabilities. Here a quantum approach was used to evaluate
frequency dependent molecular polarizabilities of amino acids
and proteins,40 and also later the second hyperpolarizability.41

Ref. 26 presented a way of incorporating quantum mechanical
granulation of a molecular mechanics environment through
the localization of frequency dependent polarizabilities. The
work was motivated by that such frequency dependent mole-
cular mechanics force fields allow for an instantaneous, optical,
polarization in the molecular mechanics part by the electronic
degrees of freedom in the quantum part of a quantum
mechanics/molecular mechanics (QM/MM) model and make
it possible to extend the QM/MM properties to cover the full
QM/MM simulation volume. This is a generalization of the
QM/MM technology where the embedding MM part acts as a
perturber of the property determined by the QM. Furthermore,
these force fields allow for calculations of frequency dependent
properties for very large clusters that are evaluated classically.
The construction of frequency dependent localized polarizable
force fields within analytic response theory, makes it possible,
in contrast to the finite field algorithm, to determine the first
order response for frequencies which directly match those of
the externally perturbing field. That includes the implementa-
tion of the modified Silberstein–Applequist mode, alluded to
above, for many interacting induced dipoles for the linear
frequency dependent polarizability. The performance and pre-
cision of the method was evaluated in ref. 26 through studying
a few selected cases. The purely classical intermolecular polar-
izability using ab initio derived properties was also studied, and,
specifically, the effect caused by frequency dependency in the
MM environment in a QM/MM study of water clusters, and the
effect of the dynamic local polarizability in a larger delocalized
aromatic system.

The performance of the frequency dependent LoProp
method was made in ref. 26 on the static and dynamic polariz-
ability of the TIP3P water model and within a study of the size
dependent behavior and convergence of the mean polarizability
for different ensembles of water clusters. Two different cases
were studied – the error in the mean polarizability using the
modified Silberstein–Applequist model for water in gas phase
was calculated by means of QM response theory, and the
QM/MM response method was then used to obtain the absolute
mean polarizability. That was done for the static, frequency
independent case, and for frequency dispersion. Also the role of
the actual decomposition scheme was explored, thus employing
different water models for the polarizability, as well as the para-
meterization of the underlying response theory for the numerical
outcome and convergence behavior of the polarizabilities. The
LoProp scheme was used for construction of decomposed force
fields with five main types typically used in QM/MM applica-
tions:61 (i) atom distributed charges; (ii) atom distributed charges
with a central polarizability; (iii) atom distributed charges
and polarizabilities; (iv) atom and bond distributed charges
and polarizabilities; (v) atom and bond distributed charges and

polarizabilities with multipoles expanded at each atomic site
(normally truncating at octopoles). These different MM models
have been particularly well tested in the case of the water
solvent. The precision of the more refined models is associated
with a computational cost, and is also directed by the type of
property considered in the QM/MM calculations. It has been
noted on several occasions that a good MM parameterization of
water (and possibly any other solvent), relieves the need to
include waters in the QM box, thereby making the QM/MM
partitioning remain well-defined over simulation time, and sub-
stantially reducing cost.62

It was found in ref. 26 for water that the variation in the
frequency dependent polarizabilities gives only a small pertur-
bation of the QM wave function in QM/MM calculations and,
indeed, that the distributed LoProp point dipoles outperform
the molecule-centered ones by 10%. Furthermore, it was shown
that the bulk frequency dependent a(o) prediction is 25%
better for properties obtained at the corresponding frequency
in comparison with the properties obtained in the static limit.

QM/MM results for the water clusters are summarized in
Fig. 2 and 3. It is seen that the effect of including frequency
dependent polarizabilities in the MM region does not affect the
�aCluster with any significance. If the amount of water molecules
in the MM region is small, then the mean polarizability for
one QM molecule is larger than for the gas phase, but as the
MM region is systematically expanded, the mean polarizability
approaches the gas-phase value for the oxygen-centered type,
and only a slight underestimation of the gas-phase value is seen.
For one water molecule in the QM region, the QM/MM inter-
action stagnates at about 30 molecules in the MM region, which
shows that the QM/MM interaction is only sensitive to the most
close-lying MM segments.

As an example of a bonded polymer the frequency depen-
dent mean polarizability for a tryptophan residue, embedded in
an MM polarizable environment, was investigated in ref. 26.
In Fig. 4 the frequency dependence of the isotropic aLoProp(o)
for all the atoms in tryptophan is summarized. The atom or
group contribution was given to the total polarizability over a
number of snapshots.

Fig. 2 �a(o) obtained by varying the size of the QM region (x-axis denotes
number of QM waters) for in total 100 water molecules. From ref. 26.
Copyright Royal Academy of Sciences.
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For larger systems, and especially polarizable systems, the
effect of frequency dependence in the MM environment is
expected to become non-negligible, especially if the frequence
close up to resonances. The decomposition can directly be imple-
mented with any quantum mechanical wave function and basis
set, an extension of the studies above for any kind of systems is in
principle possible and the frequency independent force fields in
QM/MM calculations can routinely be replaced by frequency
dependent ones. In a recent paper by Norby et al.63 it was shown
that the introduction of a frequency-dependent embedding
potential leads to further model complications upon solving
the central QM/MM equations defining specific molecular pro-
perties. It was also shown that from a numerical point of view
that the consequences of using such a frequency-dependent

embedding potential is in general small except in cases if the
absorption bands of the environment are close to that of the
region treated using quantum mechanics.

4 Decomposition of
hyperpolarizabilities

The LoProp transformation of charges, multipole moments and
multipole polarizabilities presented above, thus offers a way to
go beyond numerical fitting of parameters to physical observa-
bles—that holds also for non-linear properties, including the
first order hyperpolarizability. In the work of Harczuk et al.27

hyperpolarizabilities were obtained through combining the
LoProp transformation and the second-order Applequist form-
alism, in which the point dipoles are additionally described by
their non-linear polarization properties, i.e. also including the
first hyperpolarizability to the original Applequist equations
(for mathematical details see Theory section). The equations
for the LoProp hyperpolarizabilities were extracted from the
second order response of a molecule subjected to an external
field using analytical response theory, where the higher order
terms to the dipole moment induction thus were obtained from
the non-linear contribution of the first hyperpolarizability. The
theory builds on the afore mentioned original formulation of
Silberstein, later developed by Applequist et al., where the inter-
action of point dipoles is described by point polarizabilities.
The work presented in ref. 27 is the first known classical
formulation of non-linear induction of point dipoles and is as
such a natural extension of the earlier many-interacting polar-
izable point-dipoles models. As the formulation describes the
molecular and cluster polarizability and hyperpolarizability of
interacting molecules through their atomic site properties,
it can so be used to evaluate macroscopic first order hyper-
polarizabilities, something which is computationally expensive
and most often unfeasible for large systems using purely ab initio
methods.

For clusters of moderate size the validity of the model can be
tested with a full quantum mechanical calculation for smaller
oligomers. As for the corresponding polarizability, it can be
expected that these models hold for well separated systems,
while breaking down at close distances where the exchange
interaction between the overlapping electron densities is non-
negligible. In the work of Harczuk27 applications were made on
water clusters because of its anomalously varying first order
hyperpolarizability with respect to phase, originally observed by
Ward and Miller64 and by Levine and Bethea,65 and later calcu-
lated for the first solvation shell by Mikkelsen et al.66,67 The
water dimer and pentamer systems and clusters up to 25 water
molecules were used as a fist benchmark of the methodology.27

A large-scale calculation on a water cluster containing 500 water
molecules was finally performed, which demonstrated that the
proposed method can lead to opportunities in property predic-
tions of large, previously unattainable, systems. At small inter-
molecular distances, the overlap between the electronic wave
functions of the water molecules is non-negligible, and thus the

Fig. 3 �a(o) obtained by varying the size of the MM region for one QM
water molecule. From ref. 26. Copyright Royal Academy of Sciences.

Fig. 4 aLoProp(o) averaged over 10 snapshots for the residue TRP68. From
ref. 26. Copyright Royal Academy of Sciences.
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classical model breaks down, failing to describe response
properties in an accurate manner. However, at distances when
the classical model is expected to give large errors, r o 2.5 Å,
the oxygen in the water molecules, responsible for most of the
polarization due to an external field, rarely encounter each
other, which can be seen by the oxygen–oxygen radial distribu-
tion function obtained from X-ray diffraction68 of liquid water
at room temperature and pressure. It may thus indicate that it
is still valid to compute the optical response using a classical
formalism for liquid water.

In Fig. 5, the relative error of the total dipole moment for two
water molecules in the same plane at a variable separation is
plotted versus intermolecular distance. The relative error in the
total induced dipole moment, referring to properties situated at
the centre of the water molecules, is seen to be largest for the
simple model, while the LoProp model decreases the error signi-
ficantly. With the resolution given in the figure, the two LoProp
curves overlap and the two ‘‘Simple’’ curves overlap almost
complete. It is notable that the asymptotic behaviour is the
same for all models and approaches the QM result at large
distance. The zeroth model, which does not include any inter-
actions, perfectly aligns with the additive method, which is a
summation of the molecular dipole moments as defined by the
LoProp basis.

In Fig. 6 the absolute value of the isotropic b8 component,
calculated with the TDHF/TDDFT methods, is plotted against
the number of molecules in water clusters. The TDHF and the
TDDFT methods give quite different results for the QM part,
but share the characteristics that the value of b8 decreases for
N o 16 and then rapidly increases by a large magnitude. As the
water cluster configuration is taken from a random MD snap-
shot, the properties will depend on the unique geometry, but the
difference in QM methods is still quite noticeable. We see in
Fig. 6 that the LoProp model agrees better with TDDFT using the
B3LYP functional than with TDHF. The latter method greatly
underestimates the first hyperpolarizability in conjugated systems,

while TDDFT often yields too large hyperpolarizabilities due to
its underestimation of the excitation energy levels. These trends
are well known and refers in general to overestimation, respec-
tively, underestimation of the HOMO–LUMO gaps. As the
hyperpolarizability changes its sign for the small but non-zero
byyz component, it will affect the induced polarizabilities in
eqn (45) differently from the TDHF. The reverse sign of the byyz

component for TDDFT could thus be an additional reason why
TDDFT performs differently from TDHF in this case. Likewise,
since all the polarizability and hyperpolarizability components
increase in magnitude from TDHF to TDDFT, the quadratic
Applequist model yields larger values of the local fields, leading
to an increased hyperpolarizability b8.

In Fig. 7, results are shown for calculations of all properties
using the quadratic Applequist formalism for a cluster consist-
ing of 500 water molecules. It can be seen that the polarizability
is not so heavily affected by the long-range interactions in this
model, as it converges fairly quickly, dropping 2.9% from the
case where only the closest lying neighbours affect each other.
For the dipole moment, the situation is different, as including
the interaction of more distant lying particles can change the
value quite drastically. For the hyperpolarizability, the situation
is similar to the dipole moment but with the difference that it
oscillates more strongly in absolute value and even changes
its sign at intermediate values of the cut-off screening. This
phenomenon was previously confirmed by multi-configuration
self-consistent reaction field theory,66,67 where the observed
sign change was shown to occur for the water pentamer. In the
quadratic Applequist method, this intermediate sign change
occurs due to the lack of inclusion of long range fields for the
inducible point dipoles. At full interaction, we see that all
properties converge, and that the first hyperpolarizability takes
a negative value.

Fig. 5 The relative error of the total induced dipole moment for two
water molecules as a function of the intermolecular distance. The additive
method includes no polarization of the point-dipoles. From ref. 27. Copy-
right Royal Academy of Sciences.

Fig. 6 The absolute value of the parallel component of the first hyper-
polarizability calculated for clusters containing varying amounts of water
molecules. The basis set used is the 2s (H)/4s3p1d (O) ANO type. From
ref. 27. Copyright Royal Academy of Sciences.
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The first hyperpolarizability is enhanced in systems with
delocalised electrons, and in particular, push–pull conjugated
systems. The possibility to compute cluster hyperpolariz-
abilities is affected by a few factors, first of all by the compu-
tationally demanding quadratic response theory calculation,
which must be performed to provide LoProp hyperpolariz-
abilities. Also the convergence of the iterative calculations of
the induced dipole moments of all the point dipoles could be
demanding. This process scales approximately as O(N2) with
respect to the amount of interacting point dipoles. Finally
solving the linear system of equations may take time depending
on the scaling techniques applied.

5 Decomposition of dispersion
interaction

As shown in the previous sections the LoProp scheme can be
applied to different kinds of properties and intermolecular
forces that describe how molecules attract or repel each other.
One such force is the attractive long-range intermolecular dis-
persion force which in general is very subtle and weak at short
ranges compared to the electrostatic, polarization or short-range
terms, but which can dominate in systems which are non-polar
or even lack static multipole moments. Most of the additive force
fields used today69–71 include electrostatic interaction, some
include polarization but most neglect the dispersion, although
it is clearly essential in many circumstances, especially for
weakly bound systems.72 The long-range contributions to the
dispersion energy can be attributed to the vacuum fluctuation
of the quantized field, as predicted by the so-called by the
Casimir–Polder integral73,74 and can be viewed as ‘‘instantaneous
and mutual polarization’’ between two particles at a distance.
In practice it is almost always modelled by a Leonard-Jones
potential, where the sole distant dependent parameter often is
obtained by fitting to heats of vaporization or solvation energies
taken from experiments. The dispersion energy is inherently
included in most energy correlated ab initio electronic structure

methods and various types of many-body interaction schemes,
like Møller–Plesset perturbation theory and coupled cluster
theory. More recently, various density functional schemes have
been applied, notably the one of Stone and Misquitta that
implement intermolecular contributions including the disper-
sion energy by the means of the SAPT(DFT) (Symmetry Adapted
Perturbation Theory-Density Functional Theory). This method
gives energy contributions of monomer–monomer perturba-
tions to various degrees, including those of dispersion origin,
and has been applied for a large variety of systems.75–79

In ref. 51 a new way was described to compute the two-body
contribution to the dispersion energy using ab initio theory and
using the philosophy of the LoProp scheme. By combining the
complex polarization propagator method and the LoProp trans-
formation, local contributions to the Casimir–Polder inter-
action could be obtained. The anisotropic as well as isotropic
models of the dispersion energy could thereby be analyzed in
dimer systems using the decomposition scheme for the dipole–
dipole polarizability. We recapitulate that the linear dipole–dipole
term defines the well-known C6 coefficient for the dispersion
interaction:

Cn /
ð1
0

að1Þtt 0 ðioÞa
ð2Þ
uu0 ðioÞdo (83)

where að1Þtt 0 ðioÞ is the polarizability for site 1 calculated at an
imaginary frequency io. The lower indices of a are angular
momentum labels and the order n in the Cn coefficient is
defined as n = t + t0 + u + u0 + 2, giving the C6 term from the
linear dipole–dipole polarizability (t = t0 = u = u0 = 1). For the
derivation of this equation we refer to the Theory section. The
second ingredient in the scheme is the complex polarization
propagator (CPP) approach by Norman and coworkers80,81 which
implements analytical response theory to calculate the isotropic
C6 dispersion coefficient. In this approach the expression of the
polarizability is transformed as a function of real frequencies
only to generate the real and imaginary parts via the Cauchy
moments,80,82,83 which is possible because the general complex
polarizability is a function of complex frequencies. Harzcuk et al.
thus applied the CPP approach to calculate the Casimir–Polder
integral of the isotropic C6 coefficient where the response vectors
from the CPP code were used in order to obtain the distributed
real polarizabilities of atoms at imaginary frequencies. That made
it possible to decompose the molecular C6 coefficients into pairs
of atomic sites, giving rise to a total dispersion in a dimer system
at various relative orientations. The so obtained LoProp decom-
posed polarizabilities are additive and sum up to the molecular
polarizability, and the sum of all LoProp Cij6 elements is thus
equal to the molecular C6 coefficient. The LoProp dispersion
calculated that way could be compared to the dispersion calcu-
lated between the centers of mass of the dimers, and with high
level of theory, like the above mentioned SAPT(DFT) method.

Fig. 8 illustrates basis set convergence of LoProp decom-
posed atomic and total molecular C6 coefficients.

Results for dispersion interaction energies calculated with
the anisotropic models were presented and analyzed in ref. 51

Fig. 7 Convergence of the isotropic analogues of the dipole moment,
polarizability, and hyperpolarizability of a snapshot cluster with 500 water
molecules. The x-axis represents the range of the field that the inducible
point dipoles are affected by. Furthermost to the right corresponds to all
particles inducing each other. From ref. 27. Copyright Royal Academy of
Sciences.
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for different orientations of H2, N2, CO, methane, pyridine and
benzene dimers. For the diatomic dimers the LoProp results
agree well with the reference values—for some (unplausible)
orientations the interaction is notably underestimated. By stack-
ing the dimers the energy is higher than for the SAPT(DFT)
method but agree better at larger distances (Fig. 10 and 11).

The results indicate that the leading energy term calculated
from the dipole–dipole polarizability tends to underestimate
the reference data for the molecular dimers, and display scatter
for the methane and pyridine dimers. The convergence of the
isotropic atomic and summed molecular C6 coefficients as
a function of the basis is in general found satisfactory, see
Fig. 8. It can be seen in the figure that the augmentation is
also necessary for dispersion coefficients and consequently,
polarizabilities.

Some of the remaining discrepancies can probably be
assigned to higher order multipole interactions, providing C8

and C10 energy terms, the inclusion of which into the decom-
position scheme is a rather straightforward generalization that
would improve the performance. Also the selected interaction
points can be generalized to bond points. Corresponding
decomposition of charges and polarizabilities have shown in
some cases the importance of such a fine granulation of the
interaction. Since the contribution of the dispersion energy
contribution to the two-body potential is significant for large
systems, and since the LoProp transformation gives transferable
properties between similar groups between different systems,
these results could be useful for fitting of new accurate force
fields with applications to, e.g., biological DNA/protein systems.
In all, the LoProp decomposition procedure as applied to dis-
persion interaction in ref. 51 is a promising way to design new
force fields derived from ab initio reference data and to intro-
duce localized dispersion interaction into quantum-classical
hybrid methods like QM/MM methods. It may be argued that
the incorporation of atomic C6 coefficients in new atomic force
fields will have important ramifications in molecular dynamics
studies of biomolecular systems.

Fig. 8 Basis set convergence of LoProp decomposed atomic and total
molecular C6 coefficients. From ref. 51. Copyright Royal Academy of
Sciences.

Fig. 9 Schematic representation of the relative orientations for the N2–N2
dimer system. From ref. 51. Copyright Royal Academy of Sciences.

Fig. 10 Comparison of SAPT2+ results with the anisotropic dispersion
energy models computed for the nitrogen dimer. Fig. 9 defines the
structures. From ref. 51. Copyright Royal Academy of Sciences.
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6 Hyperpolarisability of collagen

The generalization of the decomposition technique to include
non-linear properties has a strong motivation in the fact that
non-linear optical properties of materials have progressively
become more accessible and attended during recent years. That
includes also biostructures and biomolecules like peptides
and proteins. For such systems the inherent requirement of
electron correlation in quantum mechanical methods still sets
limits on the size of the systems that can be investigated at high
levels of accuracy, thus promoting the need for coarser but
more large-scale applicable methods to be developed.85,86 An
example is the above mentioned point dipole model, originally
proposed by Silberstein,35,36 and later used by Applequist et al.,37

which has found applications in prediction of molecular polar-
isabilities, inter-molecular potentials,87 second order suscepti-
bilities w(2),88 and third order susceptibilities w(3),89 which are
examples of relevant development work. It has furthermore
recently been shown that the distribution of molecular proper-
ties based on the so-called ‘‘quantum theory of atoms in
molecules’’ (QTAIM) method90 could be used for the calculation
of w(2) in crystal packings.91 Recently, Harczuk et al. showed that
their derivation of decomposed non-linear polarisabilities with
the LoProp-Applequist method derived in ref. 27 provides a
vehicle to predict the non-linear optical characteristics of
large molecular peptides and proteins.29 The capability of the
method was demonstrated for the collagen triple helix, the
most abundant structural protein in the human body, which in
recent years has drawn attention due to its high first order

non-linear response and for which second harmonic generation
(SHG) imaging have been used for heart disease diagnostics
and other biosensor applications.92–96 A procedure with mole-
cular fractionation using conjugate caps in order to determine
the atomic and bond contributions to the net b tensor of the
collagen [(PPG)10]3 triple-helix was then employed from which
the intensity of the bHRS signal and the depolarization ratios
could be derived. By furthermore using Thole’s exponential
damping modification53,54,97 to the dyadic tensor in the Apple-
quist equations, the hyperpolarisability could be predicted and
compared with experiment. The LoProp transformation was
thus used for the atom and bond decomposition of the mole-
cular properties of each residue, in combination with the
so-called MFCC98,99 procedure for cutting at the peptide bonds,
which account for the properties of the helix without any long-
range interactions between the residues. The second order
quadratic point-dipole model is then used to calculate the inter,
and intra-chain hyperpolarisation, between and inside the
chains. The total scattering intensity and depolarization ratio,
which are rotationally invariant and measurable, were then
computed from the resulting bCollagen tensor and compared to
previous experiments and calculations. This provided, for the
first time, the non-linear extension of Applequist’s equations to
covalently bonded fragments.

Measurements of the hyper-Rayleigh scattering in collagen100

together with additive approximate models,101,102 and more
advanced models as the so-called ONIOM model,103 have related
the large value of b to the stacking of the peptide bonds between
the (hydroxy)-proline and glycine residues. The specific rigidness

Fig. 11 Dispersion energies for benzene dimers M1, S3, and S8, from left to right, respectively. SAPT(DFT) reference points were taken from ref. 84.
Other results from ref. 51. Copyright Royal Academy of Sciences.
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caused by the [PPG] subunit has been used to explain the build
up of the tensor component in the longitudinal direction of the
chains, something which could not be found when modelling
the [GGG] trimer. The results from an additive scheme was
included, in which all the components of the dipole coupling
tensor are set to zero, and the Applequist properties are the sums
of the localized atomic or bond polarisabilities, and hyperpolaris-
abilities, respectively.

In Fig. 12, the bHRS
N scattering intensity is plotted as a function of

the amount of residues of each chain. The model peptide [(PPG)10]3
is approximately obtained with 29 residues in each chain. This
collagen model has 87 residues in total, since the X-ray structure
has one glycine missing in the C terminal of each chain.

The first hyperpolarisability for the amino acid constituents
of the collagen triple helix was calculated employing time-
dependent Hartree–Fock and density functional theory. The
atomic decomposition stemming from TD-DFT/B3LYP using
Thole’s damping shows the best agreement with experiment.
The corresponding value is for TDHF, and TD-DFT/CAMB3LYP
lower, respectively, higher, see Fig. 12. The results thus show
that when damping is introduced the atom + bond polarisa-
bility scheme not necessarily is better than the pure atom
polarisability scheme for which the damping is parametrised.
Further reasons for this are given in ref. 29. Another trend seen
in Fig. 12 is that the scattering intensity grows in a slight
sigmoidal shape for all the models, whereas the additive
scattering, i.e. just taking the sum of the localized hyperpolar-
isabilities, grows linearly. Adding more residues would thus not
necessarily produce a growth in intensity, but might converge
with respect to the chain length. It is clear that when damping
is included, the intensity is not as sensitive to the computa-
tional method used to obtain the properties.

Fig. 13 shows all the methods tested and all the models used
for the depolarization ratio. It can be seen that the depolarization
oscillates more wildly than the scattering intensity. The experi-
mental value of 8.4 hints to the fact that the collagen helix is
highly dipolar, with no significant octupole character. The reason
why the quadratic Applequist model underestimates the dipolar
nature of this collagen model might be due to that some compo-
nents such as bxxx and byyy in the collagen tensor are over-induced.

It is notable that TD-B3LYP underperforms with respect to TDHF
and TD-CAMB3LYP which can be attributed to the long-range
exchange being important for the calculation of the non-diagonal
hyperpolarizability components using the quadratic Applequist
equations. Calculations in ref. 101 and 102 elucidated that
the successive stacking of the p-character peptide bonds was
the main reason behind the large second-order response in
collagen, something that also could be confirmed in the work of
Harczuk et al.29

A motivation for the collagen work29 can be found in the
general ambition to derive models to efficiently predict pro-
perties of large biostructures with an accuracy that allows to
optimize them for a particular property by structural modifica-
tions like substitutions or residual mutation.

7 Rayleigh scattering of atmospheric
nanoparticles

In paper28 yet another application of the atomic decomposition
scheme for polarisabilities was presented, namely for Rayleigh
scattering of naturally polarised light by systems with atmo-
spheric relevance, in particular by growing water clusters con-
taining foreign compounds. The Rayleigh scattering intensity
relates directly to the dynamical polarisability tensors of the
clusters and could so be obtained by the combined LoProp-
Applequist algorithm reviewed in the Theory section and in the
original work.26 The study found motivation in that various
particles act as cloud condensation nuclei in the atmosphere
with important climate implications, like green house effect
and earth’s albedo,104,105 where elastic scattering of light in the
atmosphere leads to cooling.

The Rayleigh scattering intensity can be obtained106 for
naturally polarised light as

Rn = 45(�a2) + 13(Da2) (84)

where the isotropic (�a) and anisotropic (Da) polarisabilities are
defined as

�a ¼ 1

3
aii (85)

Fig. 12 The total static scattering intensity bHRS for a growing collagen
triple helix. For 29 residues, the rat-tail collagen is obtained. From ref. 29.
Copyright ACS Publishing.

Fig. 13 The depolarization ratio r for the growing collagen triple helix. For
29 residues, the rat-tail collagen is obtained. From ref. 29. Copyright ACS
Publishing.
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Da ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3aijaij � aiiajj

2

r
(86)

For a spherical aerosol particle interacting with light of
wavelengths approximately equal to the radius of the particle,
Mie scattering constitutes the predominant scattering process,
while when light interacts with aerosol particles with charac-
teristic sizes of less than one tenth of the wavelength of the
light, Rayleigh scattering guides the predominant elastic scat-
tering effect. In Rayleigh theory, the scattering is proportional
to the frequency of the incident light to the fourth power,
manifesting the blue colour saturation of the sky. Thus the
frequency dependent polarisability of atmospheric clusters
relates to the Rayleigh scattering tensor, something that is
addressable directly with the LoProp-Applequist models. It could
form, as investigated in ref. 26, an excellent approach for
Rayleigh scattering of particles in the nanoscale covering the
scattering intensities of various incident light frequencies. Going
to the other limit, to very small clusters, quantum chemistry
methods can be used both for the scattering problem and for the
nucleation of the clusters, a recent example being the work of
Elm et al.106,107 who used quantum mechanical response theory
and a combinatorial sampling approach to study the Rayleigh
and hyper-Rayleigh scattering properties of some binary and
ternary water clusters containing sulfuric acid and ammonia.
The molecular Rayleigh, and hyper-Rayleigh, scattering inten-
sities were expressed from the total dipole polarisability a and
hyperpolarisability b tensors allowing for the exploration of the
effect of cluster morphology on the scattering properties. It was
found that the Rayleigh scattering intensity depends quadrati-
cally on the number of water molecules in the cluster and that a
single foreign molecule (ammonia) could generate high aniso-
tropy, which further increased the scattering intensity. The hyper
Rayleigh scattering activities were found to be extremely low.
That work thus gave a molecular level understanding of scatter-
ing properties of small clusters, and on the impact of foreign
constituents on water clusters on Rayleigh scattering properties.
As the atmosphere contains a large body of neutral molecular
clusters with sizes in the nanometre scale108–111 for which the
Rayleigh scattering is the dominating mechanism, it is desirable to
reach the nanoscale for Rayleigh scattering simulations as achiev-
able by the LoProp-Applequist approach.26,37 The choice in ref. 26
of atmospheric water droplets formed by adsorbed cis-pinonic acid
adsorption (CPA) was motivated by the atmospheric abundance of
this compound and that it is known to decrease the water droplet
surface tension, leading to smaller droplet formations, causing a
larger density of small droplet sizes in the clouds, which increase
the overall albedo and gives a net cooling of the Earth.112 Using the
LoProp-Applequist model it was then possible to scrutinise details
with respect to contributions of molecular interaction, cluster size,
mass constituent and dispersion on the total Rayleigh scattering.
Studies were made for cluster diameters up to 5 nm, and for
frequencies below the first resonance frequency, thus within
the eligibility of Rayleigh scattering theory.

In Fig. 14, the increase in scattering with respect to cluster size
given by the Applequist model is compared to the polarisability

obtained as a summation of the polarisability components
of each molecule, not taking interaction into account. All the
wavelengths follow the same growth pattern, with 400 nm
giving the largest increases. For the absolute magnitude of
the scattering intensity the total scattering intensity for the
different wavelengths depends on the cluster growth of water
molecules—here the scattering intensity for all the wavelengths
grow quadratically. The difference between the wavelengths
also increases quadratically with respect to the static frequency.
This shows that the dynamic polarisability contribution to
the total scattering grows quadratically with respect to the
frequency of the external field, but that the major contribution
is due to the static polarisability. As shown in Fig. 15, the
scattering exhibits a weak quadratic increase with respect to the
concentration of CPA in the water droplet. The weak increase

Fig. 14 The relative increase in scattering intensity from the Applequist
equations for a growing droplet with different amounts of water molecules
in the cluster. From ref. 28. Copyright ACS publications.

Fig. 15 Absolute Rayleigh-scattering intensity for different wavelengths
as a function of cis-pinonic acid mass content. From ref. 28. Copyright
ACS publications.
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could be attributed to CPA avoiding the water, something
which also causes it being pushed out of the water droplet
sphere, residing at the surface. Close-range interactions will
cause large induced polarisation, which could explain why the
change in scattering intensity is almost linear with the addition
of CPA to the water droplet.

In the Fig. 16, the isotropic and anisotropic contributions to
the net scattering are plotted for the water only cluster, and the
water cluster interacting with CPA molecules, respectively,
at static frequency. It can be seen that the major contribution
to the Rayleigh scattering of the pure water clusters is due to
the isotropic component, which is greatly enhanced in the
range of 1–1000 water molecular clusters. It is furthermore
gradually increased using the Applequist equations, as com-
pared to the non-interacting model. The anisotropic compo-
nent is rather stable for the water cluster growth, but increases
sharply for clusters of sizes larger than 700 water molecules. For
the clusters containing 1000 water molecules and adsorbed CPA
molecules, also the anisotropic component grows steadily. The
Rayleigh scattering of naturally polarised light was found to
increase smoothly with the increase of the overall cluster size,
with the increase of mass constituent of cis-pinonic acid mole-
cules, and with dispersion (increase of wavelength). The calcula-
tions predict that weakly adsorbed molecules may cause a
lowering of the net scattering intensities compared to strongly
adsorbed ones, overall affecting the albedo of clouds consisting
of these types of cloud condensation nuclei.

The Applequist interaction was found to yield scattering
intensities 20% larger for a cluster consisting of 1000 water
molecules compared to the method where all the polaris-
abilities of molecules are added without interactions. It was
confirmed that the scattering intensity depends quadratically
on the number of water molecules in the cluster, and that it also
increases quadratically with increase for the mass constituent of
the foreign substance. The adsorption of the cis-pinonic acid was
found to increase the contribution to the scattering intensity

stemming from the anisotropic polarisability, as compared to
the isotropic contribution. Paper26 indicates that large clusters
with organic molecules in water is a realistic proposition for
hundreds of molecules (organic and water) in the clusters and
the method is shown to be both sufficiently accurate and general
for any type of cluster of molecules up to size of 10 nm, which
transcends already the Rayleigh scattering region and goes into
Mie scattering region. That was probably the first time large
clusters can be reached by a molecular-level based calculation of
the Rayleigh scattering, well beyond the small ones reachable by
quantum chemistry.

8 Conclusion

In the present work we have reviewed recent development of local
decomposition schemes for localizing molecular properties, and
highlighted their use either in QM/MM (Quantum Mechanics
Molecular Mechanics) calculations or for the purpose of generat-
ing ‘‘classical’’ properties of large clusters. A few sample applica-
tions of such decomposition have been recapitulated and briefly
discussed. The highlighted LoProp procedure was originally
developed to obtain granulated solute–solvent interactions using
a scheme for decomposing the quantum chemical overlap matrix
and to use the resulting transformation matrix to localize a given
property into a predefined level of localization. Recent exten-
sions, highlighted in this review, of the technique comprise
locally decomposed hyperpolarisabilities,27 frequency dependent
polarisabilities,26 and locally decomposed frequency dependent
complex polarisabilities.51 The LoProp scheme has become
instrumental for many solvent interaction models, and in parti-
cular for implementations of QM/MM (quantum mechanics
molecular mechanics) methods. In addition, the LoProp techni-
que has recently been shown to be a powerful tool for building up
properties of large molecular clusters, like for Rayleigh scattering
of atmospheric nanoparticles28 and hyperpolarisabilities (second
harmonic generation) of proteins.29 The flexibility of the model to
address localized interactions with atomically decomposed
charges and polarisabilities has thus been critical for the accu-
racy of many structure and property calculations by means of
QM/MM. The flexibility not only concerns the position of the
interaction points but also the multipolar expansion of charges
and polarisabilities. By means of LoProp several systematically
connected models for the solvent interaction can be formulated,
ranging from simple molecular point charges to bond and atom
centred multipole expanded charges and polarisabilities. The
precision needed, and thus the level of decomposition, is to a
large extent dictated by the property that is to be calculated. The
level of decomposition also has a bearing on the standard
problem how to split up the QM and MM parts of the system
in a QM/MM calculation, for instance, the need to bring in water
molecules in the QM part is often relieved by a careful LoProp
MM parametrisation of water.3 To the known limitations of the
LoProp method one can mention the tendency to ‘‘overpolarise’’
the interaction, especially to the QM part close to the QM-MM
interface but also between closely encountering MM molecules.

Fig. 16 The static isotropic and anisotropic component of the polarisa-
bility at static external field. From ref. 28. Copyright ACS publications.
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The (ad hoc) introduction of distributed point charges and
polarisabilities by Gaussian broadenings remedies the problem
to some extent.16,53 It goes without saying that the LoProp model
does not handle charge transfer unless special parametrization
for that is derived (e.g. in terms of capacitance parameters as in
the QMCMM model mentioned above).

The flexibility of the LoProp method makes it open
ended for further fine-tuning of accuracy, thus to multipole
expand charges and polarisabilities, and include higher order
dispersion coefficients, which is straightforwardly doable if the
underlying property integrals are at hand. Such extensions would
be the most natural measure of development of the present
implementations in order to reach the ultimate precision of such
a decomposition scheme. These implementations are in princi-
ple possible to introduce into QM/MM, although, to our knowl-
edge, such a QM/MM has not yet been theoretically formulated
for localized dispersion. Importantly, the presented scheme
would allow to develop chemically dependent local dispersion
interaction force fields in molecular dynamics, improving the
commonly used force fields of atomically dependent Lennard-
Jones interactions. It is desirable to ‘‘homogenize’’ the force
fields utilized in the so-called integrated approach that combines
MD with QM/MM, thus that the force fields in the two types of
calculations are identical. Implementation of the schemes
reviewed here into general MD simulation software would
certainly not be straightforward ‘‘add-on’’ efforts, as current
MD programs often are heavily parametrised towards certain
reference data. The field of decomposition of molecular proper-
ties is thus wide open for further research, and important new
applications for cluster properties, QM/MM and molecular
dynamics can be envisaged.
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