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Methods for estimating supersaturation in
antisolvent crystallization systems†

Jennifer M. Schall, Gerard Capellades and Allan S. Myerson *

The mole fraction and activity coefficient-dependent (MFAD) supersaturation expression is the least-as-

sumptive, practical choice for calculating supersaturation in solvent mixtures. This paper reviews the basic

thermodynamic derivation of the supersaturation expression, revisits common simplifying assumptions, and

discusses the shortcomings of those assumptions for the design of industrial crystallization processes. A

step-by-step methodology for estimating the activity-dependent supersaturation is provided with focus on

ternary systems. This method requires only solubility data and thermal property data from a single differen-

tial scanning calorimetry (DSC) experiment. Two case studies are presented, where common simplifications

to the MFAD supersaturation expression are evaluated: (1) for various levels of supersaturation of L-

asparagine monohydrate in water–isopropanol mixtures and (2) for the dynamic and steady-state mixed-

suspension, mixed-product removal (MSMPR) crystallization of a proprietary API in water–ethanol–tetrahy-

drofuran solvent mixtures. When compared to the MFAD supersaturation estimation, it becomes clear that

errors in excess of 190% may be introduced in the estimation of the crystallization driving force by making

unnecessary simplifications to the supersaturation expression. These errors can result in additional parame-

ter regression errors – sometimes by nearly an order of magnitude – for nucleation and growth kinetic pa-

rameters, limiting the accurate simulation of dynamic and steady-state crystallization systems.

1. Introduction

Crystallization is a rate-based process, so establishing accu-
rate estimates of crystal growth and nucleation rates governs
successful crystallization process design and optimization.1–3

Empirically, crystal growth and nucleation are related to
supersaturation through power law dependencies, with nucle-
ation generally exhibiting a higher power supersaturation de-
pendence than growth.4 Incorrect estimates of supersatura-
tion lead to incorrect estimates of crystallization kinetics,
which result in erroneous predictions of yield, crystal size dis-
tribution, and optimal crystallizer operating conditions.

By thermodynamic definition, the driving force for crystal-
lization or dissolution arises from a difference between the
partial molar Gibbs' free energy of a solute and the chemical
potential of the solute at equilibrium. At supersaturated con-
ditions, the solute has a chemical potential of

μ(T) = μ0(T) + RT ln(a) (1)

while at saturation, denoted by sat, the solute has chemical
potential of

μsat(T) = μ0(T) + RT ln(asat) (2)

Crystallization can occur when the chemical potential of a
species is higher than the chemical potential that species
would exert at equilibrium. The dimensionless thermody-
namic expression for supersaturation is calculated from the
difference in chemical potentials as4


  





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









sat

sat satRT
x
x

ln (3)

For the rest of this manuscript, this expression will be re-
ferred to as the mole fraction and activity coefficient-
dependent (MFAD) supersaturation expression. In this ex-
pression, four quantities are needed to calculate supersatura-
tion in the solution:

1. xsat, the mole fraction of the solute in the saturated
solution. This can be calculated from solubility data.

2. x, the mole fraction of the solute in the supersaturated
solution. This can be calculated from mother liquor
concentration data.
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3. γsat, the activity coefficient of the solute in the saturated
solution. This can be calculated from the generalized
solubility equation.4

4. γ, the activity coefficient of the solute in the supersatu-
rated solution.

Unfortunately, it is extremely challenging to measure the
solute activity coefficient at supersaturated conditions be-
cause the system is not at an equilibrium state.5 For this rea-
son, the thermodynamic expression for supersaturation is
not immediately useful in industrial settings. This has tradi-
tionally led to the use of simplifying assumptions to approxi-
mate the true supersaturation of a solution. For example, in
dilute systems, the ratio of the solute mole fraction in the
supersaturated and saturated phases is close to the ratio of
the solute molar concentrations in the supersaturated and
saturated phases. This allows to simplify the supersaturation
expression as

Simplification 1: sat sat













ln c

c
(4)

This simplification of using concentrations instead of
mole fractions is common practice, as it eliminates the need
to convert high performance liquid chromatography (HPLC)
or other mass-based concentration measurements to solute
mole fractions. If the system is also ideal, the activity coeffi-
cients are unity, and the supersaturation expression can be
simplified even further as

Simplification 2: sat  





ln c

c
(5)

This simplified expression is also acceptable near equilib-
rium when the ratio of the activity coefficient at supersatu-
rated and saturated conditions is close to unity. For special
cases where the supersaturation is also very low (σ ≪ 1) such
that ln(σ + 1) = σ, the dimensionless chemical potential dif-
ference can be approximated by a dimensionless concentra-
tion difference

Simplification 3:
sat

sat 
c c
c

(6)

This is generally a poor approximation at σ > 1,6 but it is
still normally used despite including the same variables as
eqn (5). This simplification brings unnecessary assumptions
and should never be used instead of eqn (5).

Simplifications 1–3 imply the assumption that the ratio
of solute molar or mass concentrations is equivalent to the
ratio of molar fractions between saturated and supersatu-
rated conditions. This assumption only avoids a unit con-
version, and it is often flawed when the density and molec-
ular weight of the solute differ from that of the solvent, or
when the solute concentrations are high. In those cases, the
saturated solution containing lower solute concentrations

will have a significantly different density and average molec-
ular weight than the supersaturated system, and the ratio of
concentrations will not be equivalent to the ratio of molar
fractions.

Simplifications 2 and 3 may also be flawed in highly
supersaturated systems. As the system further deviates from
ideality, the activity coefficient ratio deviates further from
one. This scenario is frequently encountered during batch
crystallization and many transient continuous systems. Thus,
accounting for the solute activities is often critical for a good
prediction of these processes, as well as for the calibration of
mathematical models that account for significant variations
in supersaturation between experiments. This limitation is
more restrictive for antisolvent crystallization, where the ac-
tivity coefficient ratio quickly deviates from unity even at low
supersaturations.

To circumvent the difficulties in measuring the activity co-
efficient at supersaturated conditions, an estimation method
was recently proposed by Valavi, Svärd, and Rasmuson.7 In
that method, the activity coefficient in the supersaturated bi-
nary solution is assumed to be the same as the activity coeffi-
cient in a saturated binary solution of the same composition,
allowing the activity coefficient to be approximated using
only solubility data and the generalized solubility equation.
For these cases, the underlying assumption is that the activity
coefficient is a strong function of composition but a weak
function of temperature.

In this manuscript, we first present a step-by-step proce-
dure, which builds on the method proposed by Valavi et al.,7

to estimate the MFAD supersaturation in ternary systems.
The presented method can also be used for binary systems,
although it is especially important for calculating supersatu-
ration during antisolvent crystallization, where both kinetics
and thermodynamics are strongly affected by solvent compo-
sition.8 With this method, activity-dependent supersaturation
estimates may be obtained by pairing solubility data with
thermodynamic data from a single differential scanning calo-
rimetry (DSC) experiment. In the second half of the manu-
script, we present two case studies to quantify the differences
amongst simplifications 1–3, and demonstrate the need for
using proper supersaturation estimates.

2. Methods
2.1 Method for estimating MFAD supersaturation in a solvent
mixture

The MFAD supersaturation of a solute in a solvent mixture
may be estimated using a four-step process. This method
works as a reasonable approximation for systems containing
a non-charged nonelectrolyte solute. The method is
presented for systems presenting a single crystal form. For
systems presenting polymorphism, the same steps would
have to be repeated for each form to calculate its effective
supersaturation. Each polymorph will present different solu-
bilities, melting points and enthalpies of fusion, giving differ-
ent supersaturation estimates.
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Theory

For a solute that presents a low vapor pressure in the solid
and subcooled liquid states, the generalized solubility equa-
tion can be obtained from the fugacity ratio between the
solid solute and that of the solute at the subcooled liquid
state.4 Assuming that pressure has a negligible effect on solu-
bility, the solubility equation takes the form of:

x
H
R T T

C
R

T
T

T
T

sat
sat

tp

tp

p tp tp











 


 











1 1 1 1


exp ln










(7)

Calculating the system solubility at a given temperature re-
quires knowledge of the activity coefficient at saturation, γsat,
the difference in heat capacity between the solid and the
subcooled liquid, ΔCp, the enthalpy of change at the triple
point, ΔHtp, and the triple point temperature, Ttp. For most
systems, ΔHtp and Ttp can be approximated as the enthalpy
of fusion and the melting point, respectively.4 Note that these
parameters are dependent on the crystal structure, so they
are polymorph dependent.

Due to the difficulty of experimentally measuring heat ca-
pacities of supercooled liquids, different approximations exist
for the estimation of the heat capacity term ΔCp.

9 The most
common approach is the van't Hoff approximation, where
this term is neglected altogether (ΔCp = 0):

x H
R T T

sat
sat

m

m



























1 1 1


exp (8)

For many systems, a better solution is to approximate the
heat capacity term as the entropy of fusion (ΔCp = ΔSm), and
assume that this parameter is independent of temperature.
At the melting point:

 
S H
Tm

m

m
(9)

And the general solubility equation reduces to:

x H
RT

T
T

sat
sat

m

m

m 










1


exp ln (10)

Currently, there is no consensus on which approximation
gives the highest accuracy in predicting solubilities, as the re-
sults are heavily system-dependent. Mathematically, the van't
Hoff approximation works well for systems with low ΔCp, and
for systems near their melting point. However, with common
organic pharmaceuticals exhibiting differential heat capaci-
ties near 100 J mol−1 K−1 and melting points above 400 K,10,11

the van't Hoff approximation would frequently lead to under-
estimation errors of over 50% for ideal, room temperature
solubility.11 Approximating the heat capacity term as the en-
tropy of fusion gives a more accurate approach than
neglecting this term altogether. Alternative approaches are

based on measuring the temperature-dependent heat capaci-
ties of the solute in the solid phase and in the melt, and
using extrapolation of the melt heat capacity to estimate
ΔCp.

10

The methods provided in this work approximate ΔCp as
the entropy of fusion, using eqn (10) as a simple expression
for estimating activity coefficients along the solubility curve.
This method was chosen because it is a simple alternative
for the calculation of activity coefficients using limited
amounts of data. Note that the estimated MFAD supersatura-
tions depend on a ratio of activities rather than their abso-
lute value. Consequently, estimations of supersaturation are
significantly less sensitive to errors in the heat capacity term
than estimations of ideal solubilities. A detailed error propa-
gation study is provided in ESI,† where the impact of estima-
tion errors in the heat capacity term are evaluated for four
common pharmaceuticals with significantly different thermal
properties.

Summary of assumptions:

1. Pressure has a negligible effect on solubility.
2. At the temperature range of interest, the solute presents

a negligible vapor pressure in both the solid and
subcooled liquid states.

3. The solute's triple point temperature and the enthalpy
of change for the liquid solute transformation at the triple
point can be approximated as the melting point and the
enthalpy of fusion, respectively.

4. The differential heat capacity between the solid solute
and its melt, ΔCp, has a negligible temperature
dependence, and it can be approximated as the solute's
entropy of fusion.

5. The incorporation of solvents and impurities in the
crystalline phase is negligible.

6. The activity coefficients exhibit a small dependence on
temperature over a moderate temperature range.12

Step 1. Data collection

1. Complete a DSC experiment on a crystallized solute
sample to determine the enthalpy of fusion, ΔHm, and
the melting point, Tm. Alternatively, these values may be
obtained from literature if available.

2. Determine the solute solubility as a function of tempera-
ture and solvent composition throughout the operating
range of interest. Convert the solubility data to a molar
basis.

3. Establish a relationship between API solubility, solvent
composition, and temperature. Any combination of
appropriate solubility models may be used when
regressing solubility parameters, as long as they accu-
rately capture the effects of temperature on solubility.
The examples provided in this work are based on a
modified Apelblat equation that takes into account
the effects of both temperature and solvent composi-
tion on solubility.8 For binary systems or antisolvent
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crystallization at fixed solvent fractions, only a solu-
bility curve as a function of temperature would be
needed.

At this point, the regressed solubility model can estimate
xsat as a function of temperature and solvent composition
throughout the operating range. Steps 2–4 describe how to
calculate the MFAD supersaturation for a given data point,
provided that the system temperature, solvent composition
and solute concentration are known.

Step 2. Calculating activity coefficient at saturation

1. Calculate the solubility at the operating temperature
and solvent composition, xsat, using the selected solu-
bility model.

2. Use the general form of the solubility equation to calcu-
late the activity coefficient at saturation:

 sat
sat

m

m

m 










1
x

H
RT

T
T

exp ln (11)

Step 3. Estimating activity coefficient at supersaturated
conditions

1. Solve the regressed solubility expression for tempera-
ture using the solute concentration and the solvent
fraction in the crystallizer.7 This calculated tempera-
ture, Te, will be referred to as the ‘effective’ solubility
temperature, and it is the saturation temperature for
the operating solute concentration.

2. Using the effective temperature, Te, and the solute con-
centration in the crystallizer, x, solve the general form
of the solubility equation to estimate the activity coeffi-
cient at supersaturated conditions:

  










1
x

H
RT

T
T

exp lnm

m

m

e

(12)

This approximation is based on the assumption that the
activity coefficients are a weak function of temperature and a
strong function of solute concentration, as previously demon-
strated by Valavi et al.7 Following this assumption, the activ-
ity coefficients at supersaturated conditions can be approxi-
mated as those in a saturated system at the same
composition.

Step 4. Calculating supersaturation

1. Calculate the MFAD supersaturation according to the
thermodynamic definition for supersaturation:















ln x

xsat sat (13)

At this point, we can now estimate thermodynamic super-
saturations at any point during the course of an experiment

from given crystallizer operating conditions, mother liquor
concentration, and solute physical property data.

2.2 System descriptions for case study compounds

To test the application of the proposed MFAD supersatura-
tion estimation method, we considered two systems as case
studies.

For both systems, a 12-parameter modified Apelblat model
was used to estimate solubility because neither system ex-
hibits solubility extrema in the operating range, and we previ-
ously determined the solubility parameters for one of the
case study compounds systems using this equation.13,14 By
using this expression, it is assumed that the enthalpy of the
solution is proportional to the solution temperature.15 The
equation for the modified Apelblat solubility model is:

ln lnx v
v

v
v

vsat
s

s
s

s
s       







 

  
 




   

11 12
13

14

21 22
23

224

31 32
33

34

ln

ln ln

v

T

v
v

v T

s

s
s

s

 

     







   




(14)

For the first case study, we studied L-asparagine mono-
hydrate (LAM) in isopropanol (IPA)/water mixtures, where wa-
ter is the solvent and IPA is the antisolvent. LAM solubility as
a function of temperature and solvent composition was
obtained from literature, along with thermal property data
for melting temperature and enthalpy of fusion.16 This com-
pound's enthalpy of fusion is on the higher end compared to
common organic crystallization solutes,10 presumably be-
cause LAM is decomposing near the melting point.17 How-
ever, because it is difficult to decouple melting from decom-
position in calorimetry studies, this is the most accurate
measurement that is currently available. The regressed solu-
bility parameters for the LAM system are provided in Table 1.

The purpose of using this system was to evaluate how the
proposed supersaturation estimation method compares with
common supersaturation approximations over a wide range
of supersaturations and solvent fractions. For these calcula-
tions, supersaturation estimations were made at a series of
temperature, solvent composition, and hypothetical operating
concentrations for LAM. The parameter space for these se-
lected conditions is provided in Table 2. In some cases, the
simulated solutions required an estimation of effective tem-
perature which lies outside of the range of temperatures
encompassed by the solubility model. At these conditions,
the supersaturation estimations were disregarded.

For the second case study, we considered a proprietary
compound produced by Novartis. This compound is crystal-
lized in ethanol (EtOH)/tetrahydrofuran (THF)/water mix-
tures, where a solution of 92 v% EtOH/8 v% THF serves as
the solvent and water serves as the antisolvent. Throughout
this paper, the proprietary compound will be referred to as
API. Thermal property data were provided by Novartis
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International AG, and the solubility measurements were de-
scribed elsewhere.8 The parameter values for this solubility
model are reproduced in Table 3. Instead of estimating
supersaturation and solubility at a variety of potential operat-
ing conditions, data from previous dynamic and steady-state,
continuous MSMPR experiments were used.8

For both model systems, the bulk of the calculations de-
scribed in section 2.1 was conducted using gPROMS Formu-
lated Products. Details on the process variables and parame-
ter values for both systems can be found in ESI.†

To quantitatively assess the errors of simplifications 1–3,
the percent difference between the MFAD expression and
each simplifying supersaturation expression was calculated
using the following formula:


 


% 


100 MFAD Simplification

MFAD

(15)

3. Results and discussion
3.1 Case study 1: LAM in water–IPA mixtures

Fig. 1 provides a comparison of each simplified supersatura-
tion expression with the proposed supersaturation evaluation
method. Immediately, it is apparent that simplifications 2
and 3 do not provide acceptable estimates of supersaturation,
as they experience strong deviations from the thermodynamic
estimation of the supersaturation driving force. These devia-
tions, quantified from eqn (15), show that simplification 2
has errors of between 19.3% and 62.1% when compared with
the method presented in this paper, and this deviation in-
creases with supersaturation. These deviations are attribut-
able to the non-ideality of the antisolvent system and will al-
ways be negative because the activity coefficient ratio is

greater than one for a supersaturated solution. Simplification
3 has a similar range of error, ranging from 0.08% to 59.3%.
Simplification 1, however, appears to provide an acceptable
estimate of supersaturation for this system, with errors rang-
ing from 0.03% to 3.4%. The close agreement between the
MFAD supersaturation expression and simplification 1 exists
because the concentration of LAM in the system is not sub-
stantially high (with an LAM mole fraction of less than 0.013
in all cases). However, note that the small error between the
MFAD supersaturation expression and simplification 1 is not
generalizable to every system. Considering that simplification
1 only avoids a unit conversion, we do not recommend using
this simplification as general practice.

3.2 Case study 2: application to proprietary API in ethanol/
THF/water solutions

In this case study, the supersaturation was calculated for
each simplified expression using concentration, temperature,
and solvent composition data from each of four continuous
MSMPR runs completed using a proprietary compound from
Novartis International AG.8 Similar estimation errors were ob-
served in each run, as summarized in Table 4.

As an example, the following discussion will be based on
run 3, where the MSMPR was operated at a solvent volume frac-
tion of 48 vol% and a residence time of 90 min. For the first
portion of run 3, the crystallizer temperature was controlled at
10 °C. A constant temperature and solvent composition was
sustained until the system reach steady state. Then, starting at

Table 1 LAM solubility model parameter (αjk) values

j↓/k→ 1 2 3 4

1 3539.6 −4110.5 660.4 3645.7
2 −174 415.1 197 949.6 −31 558.5 −17 4717.4
3 −520.4 605.9 −97.5 −537.5

Table 2 Simulated supersaturation conditions for LAM system

Variable Min value Max value Units

Temperature 25 55 °C
Solvent (water) volume fraction 20 100 v%
Supersaturated LAM mole fraction 0.0001 0.015 mol/mol

Table 3 API solubility model parameter (αjk) values

j↓/k→ 1 2 3 4

1 −7889.3 12 288.8 −4942.5 −16 439.8
2 331 574.5 −520 921.6 211 152.4 700 687.6
3 1190.5 −1854.0 744.8 2479.1

Fig. 1 Comparison of simplified supersaturation with MFAD
supersaturation calculations for LAM system.

Table 4 Summary of percent differences between simplified and MFAD
supersaturation calculations for continuous API MSMPR crystallization

Run

Simplification 1 Simplification 2 Simplification 3

Min Max Min Max Min Max

1 0.01% 0.35% 26.8% 36.6% 1.46% 82.8%
2 0.27% 1.61% 25.4% 35.4% 0.44% 69.2%
3 0.00% 1.23% 18.3% 50.1% 15.6% 192%
4 0.04% 1.04% 0.93% 41.4% 3.80% 113%
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900 minutes, the crystallizer temperature was changed to 30 °C
and a new steady state was reached at the same solvent compo-
sition. This run was chosen as it presented the broadest range
of supersaturations.

During the start-up phase, both low supersaturations and
high supersaturations are experienced as the system un-
dergoes rapid initial supersaturation development and transi-
tions to steady-state operation. Fig. 2 shows that the estima-
tion errors for supersaturation are a function of the system
concentration, with supersaturation spikes being heavily
overpredicted by simplification 3. This behavior not only
limits the ability to predict transient MSMPR kinetics, but
also increases the uncertainties during parameter estimation
(for both batch and MSMPR crystallization). Simplification 2
followed a similar trend as the MFAD supersaturation, with a
consistent underprediction of the crystallization driving force.

For comparison with the LAM case study in Fig. 1, the ex-
perimental API supersaturations have been plotted against
the MFAD supersaturation values in Fig. 3.

For the case of API, and as it occurred for the LAM system,
the agreement between the MFAD expression and simplifica-
tion 1 appears acceptable because, with typical mother liquor
concentrations of approximately 3 mg g−1 solution, API does
not comprise a substantial portion of the solution.

Simplification 2 consistently shows a substantial, negative
deviation from the MFAD supersaturation. Finally, simplifica-
tion 3 shows both positive and negative deviations from the
MFAD supersaturation, indicating that it is the most incon-
sistent method of estimating the crystallization driving force.

Especially during process design, where kinetic orders are
being regressed for significantly different supersaturations, a
wrong estimation of supersaturation will increase the uncer-
tainty of the regressed parameters. Semi-empirical power law
kinetic expressions for nucleation and crystal growth typically
take the form of:

G = kgσ
g (16)

B = kbσ
bMT

j (17)

so errors in the estimated supersaturation will propagate to
the regressed kinetic factors according to the supersaturation
orders for each rate:

k kg

g

g, ,Simplification
MFAD

Simplification
MFAD














(18)

k kb

b

b, ,Simplification
MFAD

Simplification
MFAD














(19)

For the data presented for run 3, and assuming values of g
= 1 and b = 2, the differences in estimated kinetic parameters
for each simplification are summarized in Table 5.

Note that kinetic parameter estimates for nucleation are
affected to a greater extent by incorrect estimations of super-
saturation due to the higher nucleation kinetic order b. The
higher errors are observed for estimating kb using simplifica-
tion 3. Here, the estimated parameter is only 12% of the real
value, leading to a prediction error of nearly an order of mag-
nitude. Carrying through these erroneous predictions of
supersaturation and kinetic parameters to crystallizer design,
optimization, and performance prediction will result in yield
and PSD calculation errors, as well.

Fig. 2 Supersaturation trajectories for dynamic MSMPR run 3, as
calculated using the MFAD and simplified supersaturation expressions.

Fig. 3 Comparison of supersaturations calculated using the MFAD and
simplified supersaturation expressions for MSMPR run 3.

Table 5 Errors in the estimated kinetic parameters for nucleation and
growth, depending to the chosen simplification of the supersaturation
expression

Simplification

kg,Simp/kg,MFAD kb,Simp/kb,MFAD

Min Max Min Max

1 0.99 1.00 0.98 1.00
2 1.22 2.00 1.50 4.01
3 0.34 1.91 0.12 3.66
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4. Conclusions

Supersaturation estimates are highly dependent on the un-
derlying supersaturation expression assumptions. Many of
the traditional assumptions regarding supersaturation calcu-
lations, such as having a low supersaturation or having an ac-
tivity coefficient ratio of one at supersaturated conditions, do
not apply to antisolvent or mixed-solvent systems. The least
restrictive set of assumptions regarding supersaturation cal-
culations involves calculating supersaturation as a function
of solute mole fraction and activity coefficient at supersatu-
rated and saturated conditions (eqn (3)).

Building on the method originally presented by Valavi et al.,7

supersaturated activity coefficients in mixed-solvent systems
were estimated using only solubility and DSC data by comput-
ing an effective temperature and using that temperature in the
generalized solubility equation to approximate the activity coef-
ficient at supersaturated conditions. The presented method is
especially recommended for crystallization from mixed solvent
systems or for processes dealing with large variations in super-
saturation (e.g. batch and some transient continuous crystal-
lizers). If simplifying assumptions are used, it is strongly
recommended to employ the logarithmic supersaturation ex-
pression using solute mole fractions for concentration, and not
molar concentrations or mass fractions. Other assumptions
only increase the complexity of supersaturation determination
by a small margin, but they can significantly increase the uncer-
tainties on the determination of the crystallization driving force.

Nomenclature

a Activity of solute at supersaturated conditions
asat Activity coefficient of solute at saturated conditions
B Nucleation rate
b Nucleation rate order for supersaturation
c Concentration of solute at supersaturated conditions, typically
expressed on total solution mass or on total solution volume basis
csat Solute solubility, typically expressed on total solution
mass or on total solution volume basis
G Growth rate
g Growth rate order for supersaturation
j Nucleation rate order for suspension density
kg Temperature-dependent growth rate factor
kb Temperature-dependent nucleation rate factor
MT Suspension density
R Ideal gas constant
T Temperature
Te Effective temperature
Tm Melting point temperature
Ttp Triple point temperature
vs Solvent volume fraction
x Mole fraction of solute at supersaturated conditions
xsat Mole fraction of solute at saturated conditions (mole
fraction solubility)
αjk Modified Apelblat solubility parameter
Δcp Differential heat capacity between the solid solute and
the hypothetical supercooled melt

ΔHm Solute's enthalpy of fusion
ΔHtp Solute's enthalpy of change at the triple point
ΔSm Solute's entropy of fusion
ε Estimation error
γ Activity coefficient of solute at supersaturated conditions
γsat Activity coefficient of solute at saturated conditions
μ Chemical potential of the solute
μsat Chemical potential of the solute at saturated conditions
μ0 Chemical potential of the solute at a reference state
σ Dimensionless supersaturation
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