

Cite this: *Chem. Commun.*, 2019, **55**, 3302

DOI: 10.1039/c9cc90105a

rsc.li/chemcomm

Correction: *In situ* synthesis of a silicon flake/nitrogen-doped graphene-like carbon composite from organoclay for high-performance lithium-ion battery anodes

Qingze Chen,^{ab} Runliang Zhu,^{*a} Qiuwei He,^{ab} Shaohong Liu,^c Dingcai Wu,^{*c} Haoyang Fu,^{ab} Jing Du,^{ab} Jianxi Zhu^a and Hongping He^{ab}

Correction for 'In situ synthesis of a silicon flake/nitrogen-doped graphene-like carbon composite from organoclay for high-performance lithium-ion battery anodes' by Qingze Chen *et al.*, *Chem. Commun.*, 2019, **55**, 2644–2647.

This communication contains an incorrect version of Fig. 5 (a duplicate of Fig. 4) that was inadvertently introduced during the production process. The correct version of Fig. 5 appears below with an unchanged caption from the original.

Fig. 5 Electrochemical performance of the Si/NG electrodes. (a) Cyclic voltammetry curves at a scan rate of 0.1 mV s^{-1} in the voltage range of $0.001\text{--}1.5 \text{ V}$ (vs. Li/Li^+); (b) discharge-charge curves at a current density of 0.2 A g^{-1} between 0.001 and 1.5 V (vs. Li/Li^+); (c) rate capability at various current densities from 0.2 to 8.0 A g^{-1} ; (d) comparative cycling performance of the Si/NG and bare Si electrodes at current densities of 0.2 A g^{-1} for the initial three cycles and 1.0 A g^{-1} for the remaining cycles.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China. E-mail: zhurl@gig.ac.cn

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China. E-mail: wudc@mail.sysu.edu.cn