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N-Azidoacetyl-p-glucosamine (GIcNAz) is a particularly useful tool in
chemical biology as the azide is a metabolically stable yet accessible
handle within biological systems. Herein, we report a practical synthesis
of FmocAsn(N-AczGIlcNAz)OH, a building block for solid phase peptide
synthesis (SPPS). Protecting group manipulations are minimised by
taking advantage of the inherent chemoselectivity of phosphine-
mediated azide reduction, and the resulting glycosyl amine is employed
directly in the opening of Fmoc protected aspartic anhydride. We
show potential application of the building block by establishing it as
a substrate for enzymatic glycan extension using sugar oxazolines
of varying size and biological significance with several endo--N-
acetylglucosaminidases (ENGases). The added steric bulk resulting
from incorporation of the azide is shown to have no or a minor
impact on the yield of enzymatic glycan extension.

N-Azidoacetyl-p-glucosamine (GlcNAz (1), Scheme 14) is a carbo-
hydrate motif that has proven to be a particularly useful tool in
chemical biology; the azide is a metabolically stable’ yet acces-
sible handle within biological systems, allowing bioorthogonal
visualisation after metabolic labelling.>® In some recent exam-
ples, the GlcNAz motif has been demonstrated as a useful
component of synthetic probes used in chemical biology studies
of glycan biology. For example Vocadlo and co-workers synthe-
sised a GIcNAz derivative (2-azidoacetamido-2-deoxy-5-fluoro-p-o-
glucopyranosyl fluoride) and used it as an activity-based protein
probe for successful isolation of a bacterial N-acetyl-B-p-gluco-
saminidase.” In another study, Overkleeft and co-workers studied
proteasomal recognition of fully synthetic O-GlcNAc and O-GlcNAz
containing peptide inhibitors using activity-based protein
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profiling, showing minimal interference by the azide motif.
Several other studies have utilized the related GalNAz motif for
a variety of chemical biology studies.””

As part of ongoing investigations into the antigen presenta-
tion biology of dendritic cells using bioorthogonal antigens,®*°
we sought to access peptide probes containing N-linked GlcNAz
for a variety of chemical biology experiments. However, a litera-
ture survey revealed that such compounds had not been reported
previously. Accordingly, we sought to develop a reliable and
scalable synthetic approach to the suitably protected building
block FmocAsn(N-Ac;GleNAz)OH (2, Scheme 1B), which would
allow its use in the solid phase peptide synthesis (SPPS) of
glycopeptides and other biological probes. Herein, we report a
practical synthesis of glycosyl amino acid 2, and demonstrate its
usefulness by establishing it as a substrate for enzymatic glycan
extension using sugar oxazolines'" of varying size and biological
significance with several endo-p-N-acetylglucosaminidase enzymes
(ENGases).">

A key synthetic challenge in the production of FmocAsn-
(N-Ac3GlcNAZ)OH (2) is installation of the glycosyl amine for
subsequent coupling to a selectively protected aspartic acid
derivative in the presence of the 2-azidoacetamido group. Whilst
more convoluted and labour-intensive protecting group based
strategies might meet this challenge, we envisioned a synthetic
route in which a diazide 3 (Scheme 1B) was converted directly to
the corresponding glycosyl amine via selective azide reduction.
That such an approach may prove feasible was supported by the
work of Wong and co-workers, who have previously published
methodology for the chemoselective Staudinger-type reduction
of azides using Me;P in THF solution."® Accordingly, diazide 3
was prepared using a scalable approach from the hydrochloride
salt of glucosamine (4, Scheme 1B). The B-anomeric glycosyl
acetate 5 was prepared without chromatographic purification,
as reported by Bergmann and Zervas,'* and chloroacetylated to
give 6. TiCl, mediated glycosyl chloride formation®® followed by
double substitution with sodium azide in DMF afforded the
desired diazide 3 in 63% yield (Scheme 1B), corresponding to
57% yield overall from compound 5.
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Scheme 1

The Staudinger reduction of a glycosyl azide to afford the
corresponding glycosyl amine has only been reported sporadically,
mostly employing triphenylphosphine (or a resin bound version of
it)'® as the reductant."®° We have previously reported the use of
Me,PhP for reduction of a glycosyl azide.”" Other phosphines have
been used to obtain phosphinimides as targets,*” either for direct
transformation into other desired functionalities, e.g. via the
traceless Staudinger ligation,*** or for use in other reactions
in which the phosphinimides act as nucleophiles.”>>” Wong and
co-workers found that selective azide reduction to afford amines
was possible in some cases using Me;P. The selectivity seemed not
to follow expectations based on steric considerations, but was
instead predictable from the "H NMR chemical shifts of the ipso-
protons next to each individual azide.”* We found that, indeed,
upon addition of Me;P (1 eq., 1 M in THF), a crude '"H NMR
spectrum revealed almost instant and complete conversion of the
electron poor anomeric azide to give phosphinimide 7, whilst
leaving the azidoacetyl group unaffected. Subsequent addition of
10 equivalents of water to the crude reaction mixture and agitation
at room temperature led to fast hydrolysis whilst avoiding compe-
titive anomerisation, thus affording clean conversion to the
desired B-anomeric glycosyl amine 8.

We sought to maximise the practicality of the approach by
coupling glycosyl amine 8 with aspartic anhydride®® (9, Scheme 1B)
to afford glycosyl amino acid building block 2 for SPPS. Crude
glycosyl amine 8 was therefore dissolved in DMSO and Fmoc
aspartic anhydride (9) was added. Indeed, after only 1 hour at
room temperature all of the glycosyl amine had disappeared to
give the desired product. Purification by precipitation was most
practical on large scale, and a 5 mmol reaction afforded the
desired FmocAsn(N-Ac;GIcNAz)OH (2) in a 72% yield over three
steps without any column chromatography.

GlcNAc-asparagine conjugates, either as discrete glycosyl amino
acids or incorporated into larger peptides or proteins, act as
efficient handles for the enzymatic attachment of a variety of
N-glycan structures.>® Numerous examples®® of their applica-
tion for the production of a variety of biologically active
glycopeptides®' and glycoproteins®> exist. The utility of the
FmocAsn(N-Ac;GleNAz)OH amino acid 2 would therefore be
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(A) The chemical structure of GIcNAz; (B) synthetic route and intermediates towards the target compound FmocAsn(N-AczGlcNAz)OH (2).

significantly increased if the carbohydrate portion of this
building block could be elaborated into more extended
N-glycan structures for later applications as biological probes.

Previously we,> and others,** have reported on the tolerance
of ENGase enzymes"? to structural modifications of the acceptor
for ENGase-catalysed glycosylation reactions using N-glycan oxa-
zolines as donors.'>** However, these studies did not investigate
modification of the GlcNAc 2-acetamido group.

Although structural information is available on several of
the family GH85 ENGases,*® a particular concern was that the
incorporation of an azide might significantly impair the ability
of ENGases to attach N-glycan structures. Before application
of the GIcNAz building block for the construction of more
extended peptide structures, it was therefore deemed prudent
to examine the ability of the monomeric glycosyl amino acid to
act as an acceptor in a series of ENGase-mediated reactions.

The acetate protecting groups were removed from triacetate 2,
to give the acceptor FmocAsn(N-GlcNAz)OH (10) as a substrate for
ENGase-catalysed reactions (Scheme 2). Triol 10 was then sub-
jected to a series of glycosylation reactions using several ENGase
enzymes (WT Endo A,>** WT Endo M,*” and Endo M N175Q%),
and a variety of N-glycan oxazolines as donors (disaccharide
oxazoline 11,* tetrasaccharide oxazoline 12,*® and decasaccharide
oxazoline 13;'' Table 1 and Scheme 2). The yields of the
corresponding glycosylation reactions using FmocAsn(N-
GIcNAC)OH (i.e. the analogous acceptor without the azide) are
given for comparison where data is available.

Time course studies were also performed (see ESIt) revealing
that neither the trisaccharide (14) nor the pentasaccharide (15)
products were hydrolytic substrates for WT Endo A. Additionally,
unsurprisingly the Endo M N175Q glycosynthase mutant did not
hydrolyse any of the reaction products.

In all cases it can be seen that the azide-containing glycosyl
amino acid was an effective acceptor substrate; all of the glycosyla-
tion yields were comparable to the corresponding GlcNAc acceptor,
though slightly lower in two cases (entries 5 and 7). This series
of experiments confirms that the ENGase enzymes tested (WT
Endo A, WT Endo M, and the glycosynthase Endo M N175Q) are all
able to tolerate the increased steric bulk of the azido-substituted

This journal is © The Royal Society of Chemistry 2019
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Scheme 2 Deacetylation of FmocAsn(N-AczGIcNAz)OH 2, and oxazoline substrates and products of ENGase-catalysed glycosylation reactions.

Table 1 ENGase-catalysed glycosylation of FmocAsn(N-GlcNAz)OH 10
with a variety of N-glycan oxazolines

% Yield with

Oxazoline Yield® corresponding
Entry donor Product ENGase (%)  GleNAc acceptor”
1 11 14 WTEndoM 90 95°
2 11 14 N175Q EndoM 6 —
3 1 14 WT Endo A 94 >95”
4 12 15 WTEndoM 16  36°/17°
5 12 15 N175Q Endo M 60 69°
6 12 15 WT Endo A 63 67"
7 13 16 WT Endo M 20 30°
8 13 16 N175Q Endo M 78 78°

“ Determined by integration of product and acceptor HPLC peaks. b See
ref. 41. Note the acceptor was the methyl ester and not the free acid.
¢ See ref. 22.

acceptor within their active site. The excellent yield produced for
glycosylation using the complex bi-antennary decasaccharide
oxazoline 13 using the N175Q Endo M mutant to give 16 is
particularly noteworthy.

These positive preliminary results indicate that incorporation of
glycosyl amino acid 2 into larger peptide structures, and subse-
quent ENGase-mediated extension of glycan structure should
provide a reliable route to glycopeptide probes which incorporate
azide functionality as a biorthogonal handle suitable for a variety of
purposes (vide supra). The syntheses of such glycopeptides as tools
for investigation of antigen presentation processes are currently in
progress, and the results will be reported in due course.

This journal is © The Royal Society of Chemistry 2019
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