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A new nine-coordinate, air-stable Dy(in) single-ion magnet has been
successfully isolated. Our in silico studies demonstrate that through
carefully modulating the ligand electronics, the axiality can be
boosted to generate U, barriers of over 600 K.

Single-Molecule Magnets (SMMs) are fascinating molecular
systems, which display the ability to block magnetisation via
an energy barrier, U, resulting in the appearance of magnetic
hysteresis of molecular origin." Importantly, the design of viable
SMMs strongly correlates with the control of the coordination
environment at the level of a single metal ion.> The use of Dy(u)
to generate a strong axial magnetic anisotropy,® a realisation
achieved through the vital combination of theory and experiment,
has led to a new generation of complexes with impressive energy
barriers* and high blocking temperatures® with coercivity up to
80 K (i.e. above the boiling point of liquid nitrogen).® Potential
applications will require not only the ability to function at
higher temperatures, but also to be chemically stable in air or
when exposed to heat.” However, finding an approach towards
coordination environments that promote strong magnetic behaviour
in 4f-SMMs and, at the same time, display robust chemical stability
under ambient conditions has only recently begun to be addressed.
In this regard, we recently reported two pentagonal bipyramidal
Dy(u) single-ion magnets (SMMs containing only one metal ion),
[Dy(H,0)5(HMPA),]Cl;-HMPA-H,0 and [Dy(H,0)s(HMPA),]I;- 2HMPA
(HMPA = hexamethylphosphoramide), with blocking temperatures
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of ~10 K, and we emphasized the important role of the second
coordination sphere in controlling the magnetisation reversal
barrier.® In fact, complexes with higher coordination numbers
(=9) that also possess high energy barriers are rare and tuning
such an environment in a way that promotes high axiality whilst
offering good stability to air, heat and moisture is a challenging
task. For this reason, we were intrigued by the complexes
[Ln™LF](CF;80;),-H,0 (L = 1,4,7,10-tetrakis(2-pyridylmethyl)-
1,4,7,10-tetraaza-cyclododecane) and, in particular, the notable
absence of the Dy(m) analogue along with the lack of magnetic
data on any of the reported complexes.’ The Dy ion geomettry is
extremely important in order to obtain higher blocking temperatures
and we reasoned that the combination of the pseudo D,4 {DyNg}
cage with a strong axial ligand should show interesting SMM
characteristics."® Herein, we report the synthesis, magnetic
characterisation and ab initio studies of [Dy™LF|(CF3SO5),-H,O (1).
Furthermore, we demonstrate an elegant strategy for improving the
magnetic behaviour of high-coordinate 4f complexes. By carefully
modulating the ligand environment in silico, we show how the
calculated energy barrier, U.,, can be increased, thus making 1
an extremely attractive system to probe the effects of the high-
coordinate ligand environment on the dynamics of the mag-
netisation. Compound 1 (Fig. 1 and Fig. S6, S7, ESIT) was isolated
under aerobic conditions from aqueous solution (see ESI})°
and the stability of 1 to ~350 °C is verified by TGA analysis
(Fig. S5, ESIY).

Fig. 1 The structure of 1. Dy, gold; N, blue; F, green; C, grey. Hydrogen atoms,
counter-ions and the co-crystallised water molecule are omitted for clarity.
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We also report the isostructural (but not isomorphous)
lanthanum analogue, [La™LF](CF;S05),-H,O (2) (Table S1 and
Fig. S1, S2, S11, ESIt) and the Dy-doped lanthanum analogue
(3) (Fig. S4, ESIt). The nine coordinate Dy(ur) centre sits on a C,
symmetry axis, coincident with the Dy-F bond. Continuous
shape measures analysis,"* which estimates the distortion from
the perfect polyhedron, gives a value of 1.429 (where 0 corresponds
to the ideal structure) for a muffin geometry (Fig. S8 and Tables S4,
S5, ESIt). The ninth coordination site is occupied by a strong
electronegative fluoride ion, with a relatively short Dy-F bond
length of 2.123(2) A (Table S3, ESIt). Intermolecular hydrogen
bonding between the triflate counter-ions and the water molecule
is present (Fig. S9, ESIT). In addition, the C-H: - -F intermolecular
interactions between neighbouring molecules of 1 create a 1D
columnar structure along the c-axis with the closest Dy---Dy
distance of 7.757 A (Fig. $10, ESI).

For 1, the eight Kramers Doublets (KDs), corresponding to
the ®H, 5/, ground state, span an energy range of 808 K (see ESI+
for computational details). The transverse components of the
ground state (m; = +15/2) are found to be negligible (g, = 0.006,
gy = 0.012, Table S7, ESIf), establishing a strong magnetic
anisotropy axis (g,, = 19.837), lying along the Dy-F bond (Fig. S28,
ESI). This can be explained using LoProp'* charges computed
using the CASSCF wavefunction. The charge on the axial F atom
is found to be nearly three times larger compared to the nitrogen
atoms of the cage ligand, (Fig. S28, ESIT) and this dictates the
direction of g,, axis. Similarly, the axial nature is also observed
for the first and second exited states (m; = £13/2, gy, = 0.212,
gy = 0.228, g, = 16.800 and m; = +11/2, g, = 0.468 g,, = 0.583,
g-, = 13.380, respectively, Table S7, ESIt), which are found to lie at
185 K and 381 K, respectively above the ground state. Notably, the
larger g,./g,, values obtained for the third-exited state (2 = £9/2;
+1/2, gy = 5.213 gy, = 5.565, g;; = 8.350) yield a larger magnetic
moment matrix element of 1.8 uy (Fig. 2) which is sufficient to
promote magnetic relaxation via this state, giving the maximum
calculated relaxation barrier (Ue,) of ~527 K. It is important to
note that a small transverse magnetic moment is calculated for
the first three KDs (3.1 x 107>, 7.3 x 107> and 1.7 x 10™" ug,
respectively), suggesting the presence of weak Quantum Tunnel-
ling of the Magnetisation (QTM) and again, relaxation via the third
exited state. The Orbach processes related to the m; and my + 1
excited states of opposite magnetization for the first four KDs are
found to be very small (<0.16, Fig. 2). Furthermore, thorough
analysis of the g-tensor (Table S7, ESIt) reveals axiality up to the
third excited state (KD4).

The dc magnetic susceptibility measurements for 1 (Fig. S13,
ESI) show that the experimental yyT value of 14.1 cm® mol * K
(at 300 K) is in close agreement with the theoretical value
(14.2 ecm® mol™" K) for a single Dy(m) ion (*Hysp, S = 5/2,
L=5,g=4/3). Upon cooling, ;T decreases steadily to a value of
11.1 cm® mol ! K at 20 K, due to thermal depopulation of the
my levels, before increasing to 12.0 cm® mol " K at 2.8 K. This
low temperature increase is consistent with the presence of
weak ferromagnetic intermolecular interactions. Furthermore,
the yvT data of the diluted sample 3 instead decreases between
50-2 K, which further supports the hypothesis of weak ferromagnetic
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Fig. 2 Ab initio calculated relaxation dynamics for complex 1. The arrows
show the connected energy states with the number representing the
matrix element of the transverse moment (see text for details). Here,
QTM = quantum tunnelling of the magnetisation, TA-QTM = thermally
assisted QTM, O/R = Orbach/Raman process. The numbers above each
arrow represent corresponding transverse matrix elements for the transi-
tion magnetic moments.

intermolecular interactions in 1 (Fig. S14, ESIt). Alternating
current (ac) susceptibility measurements between 0.6-800 Hz,
under zero external dc field, were performed in order to
investigate the dynamics of the magnetisation for 1 and the
Dy-doped lanthanum analogue, 3. Under zero external dc field,
the out-of-phase, y/” magnetic susceptibility data exhibit well-
defined maxima as a function of frequency (Fig. 3 and Fig. S17,
ESIt) and temperature with " peaks clearly observable up to
12 K for 1 (Fig. S15, ESIt) and up to 20 K for 3 (Fig. S16, ESIt).
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Fig. 3 Frequency dependent out-of-phase ac susceptibility signals for
complex 1 (upper) and 3 (lower) in zero dc field. The solid lines correspond
to the best fit.
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For 1, the plots of 7y and yy” vs. temperature show a rapid
increase in the low temperature region (Fig. S15, ESIT). Additionally,
the low temperature set of peaks in the y,"(v) curves exhibit little
temperature dependence (Fig. 3 upper), which could be attributed
to faster relaxation effects (QTM)." For the diluted sample 3,
the yv"(7) maxima under zero dc field, are shifted to higher
temperatures and the signal at lower temperatures is signifi-
cantly reduced, suggesting a slower relaxation of the magnetisation
(Fig. S16, ESIT). The relaxation times, 7, were extracted from the
fit of the Argand plots of ;" vs. yn' using the generalized Debye
model (Fig. $18, ESIt)."* The o parameters found are relatively
large in the range of 0.01-0.29 (2-13 K) for 1, and 0.01-0.41
(6-22 K) for 3, indicating a relatively wide distribution of relaxation
times." Thus, the Arrhenius plots are fitted considering more
than one possible relaxation process yielding an energy barrier
of Ut = ~110 K for 1 (Fig. S19 and Table S9, ESIf) and
Uetr = ~290 K for the diluted sample 3 (Fig. S20 and Table S9,
ESIT). Importantly, it should be noted that these values are
among the highest for high-coordinate lanthanide single-ion
magnets (see Table S6, ESIT). To explore the role of low-lying
vibrational levels that could enhance relaxation and lower the
U.a barrier, we analysed the N-Dy-F bending mode which lies at
115 em ™" (Fig. S29, ESIf). Calculations performed on selected
vibrational modes corresponding to this frequency reveal a signifi-
cant reduction in the estimated barrier height (see Fig. S29, ESIT).
To assess the strength of the intermolecular interactions,
further calculations were performed which yielded small dipo-
lar and intermolecular magnetic exchange couplings (0.02 cm ™"
and 0.08 cm™' respectively). These are expected to further
enhance relaxation (see Fig. 30, ESIT)."?

Magnetisation vs. field hysteresis loops were performed on 1
and 3 in light of the large energy barriers observed. Low-temperature
hysteresis studies were performed on a single crystal of 1 using an
array of micro-SQUIDs.'® The increase in coercivity with decreasing
temperature (Fig. 4) and increasing scan rate (Fig. S26, ESIY)
confirms 1 to be a SMM.

The M vs. H loops suggest the presence of QTM and have
steps that are somewhat smeared out at low temperatures, possibly
due to a distribution of local environments (e.g. disordered solvent
molecules, crystals defects) and/or intermolecular interactions.
For the diluted powder sample 3 more pronounced butterfly-like
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Fig. 4 Temperature dependence of single crystal magnetisation versus
field hysteresis loops for 1.
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loops are observed until 3 K (average sweep rate of ~10 mT s )
(Fig. S27, ESIt). The promising magnetic properties and the
high stability of 1, combined with the ability to modify either
the axial ligand or the polydentate cage ligand, led us to study
the effect on the magnetic dynamics of modulating the ligand
environment in silico (Fig. 5). To do this, we have created a
family of different model systems and used ab initio calculations to
show how the ligand electronics can be used to tune and improve
the relaxation properties (Fig. S31, S32 and Table S8, ESIt).

Substitution of the axial F~ ion by monodentate formate or
substituted carboxylates (models 2-4 Fig. 5) destroys the Uy
barrier. These weaker axial groups reduce the crystal field
splitting significantly, leading to smaller barrier heights
(Fig. 5 and Fig. S31, ESIt) and due to smaller charges compared
to the nitrogen atoms of the polydentate ligand, the g, direction
changes (Fig. S32, ESIT). Stronger ligands (T OR, models 1, 5 and
6 Fig. 5) maintain the g, direction, but with smaller U, values
than 1. This suggests that axial substitution is detrimental in 1
with the F~ ion being the most promising, as was recently
shown by Norel et al.'” We reasoned that if the coordination by
the ligand nitrogen atoms is weakened, this should further
enhance the barrier height, by moving towards a pseudo Dy-F
environment."® Hence, we have substituted the -ortho and -para
H atoms of the pyridinic ring with strong electron withdrawing
groups (models 7-9 Fig. 5). For these models, the computed
transverse anisotropy (see Table S8, model-7, model-8 and
model-9, ESIt) is found to be significantly reduced, causing an
impressive increase to give a U, energy barrier of 645 K (for X =
F,Z =F, Y = H, see Fig. 5).

=Y

0=x
=z
Y X Ucal (K)

1 H H F 527 (4t KD)
Model-1 H H OH- 371 (4t KD)
Model-2 H H HCO, 0.0 (1t KD)
Model-3 H H BuCO," 0.0 (15t KD)
Model-4 H H CF,CO," 0.0 (1% KD)
Model-5 H H CH,CH,CH,0" 361 (4t KD)
Model-6 H H  'BuCH,CH,O 372 (4th KD)
Model-7 F H F 645 (4 KD)
Model-8 CN H F 576 (4th KD)
Model-9 H NO, F 571 (4th KD)

Fig. 5 In silico models based on 1 showing how the U, barrier can be
increased by tuning the ligand electronics.

This journal is © The Royal Society of Chemistry 2019
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Furthermore, the transverse matrix elements for the transition
magnetic moments are reduced (see Fig. S31, ESIt) and hence the
probability of QTM/TA-QTM is decreased. This suggests a
promising route to realise higher barriers for magnetization
reversal. Importantly, the models investigated were designed taking
into consideration their likely future experimental realisation;
i.e. they do not show strong steric hindrance and/or have low
coordination numbers. To check further the effect of the
transverse field we have rotated the -N, plane by +£6 degrees
in a model complex (Fig. $33, ESIT) and in the presence of the
strong axial F ion, changes in the calculated U., values are
found to be negligible (Fig. S34, ESIt). Efforts are currently
underway to synthesise substituted analogues of the poly-
dentate cage ligand in our laboratory and as a proof-of-concept
we also report the crystal structure of a new ligand (Fig. S12 and
Table S2, ESIt) where the electron withdrawing CN group, has
been included in the ortho position of each pyridinic ring (Fig. 5
model-8, Fig. S31, S32 and Table S8, ESIt). Hence, future work
will focus on the realisation of the above exciting family of complexes
with high energy barriers along with good air and heat stability.
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