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The expression of mechanical chirality by a hydrogen bond templated
rotaxane, as detected by *H NMR spectroscopy, may be modulated by
affecting the co-conformational behaviour of the rotaxane through
varying solvent or by addition of acid and base.

The synthesis and functional application of chiral rotaxanes
and catenanes is a blossoming area of research within supra-
molecular chemistry." A mechanically interlocked molecule
(MIM) may be made chiral by inclusion of a classical chiral
element (e.g. a chiral centre, axis or plane).*® Alternatively, a
MIM may be chiral by virtue of the mechanical bond, so-called
mechanical chirality. Commonly encountered occurrences of
mechanical chirality in MIMs are [2]catenanes consisting of two
directional rings and [2]rotaxanes consisting of directional ring
and axle components (Fig. 1a).””

Noteworthy recent achievements with chiral MIMs include
the successful preparative scale preparation of enantiopure
mechanically chiral rotaxanes without resorting to chiral HPLC
for the separation of enantiomers;'®'! chiral MIMs being used
as enantioselective receptors and asymmetric catalysts;">™°
and induction of single-handed helicity of a polymer by use
of a mechanically chiral rotaxane as the source of chirality.>°

MIMs are perhaps most well-known for the possibilities of
controlled large amplitude motion of their interlocked components,
through either change of environment, or application of a
stimulus.>"*> Examples of such controlled motion in chiral MIMs
are rare. Leigh and co-workers have reported upon rotaxanes
where the expression of chirality (as detected by circular dichroism)
was modulated by solvent and temperature®® and light.** More
recently the same group, disclosed a pH switchable rotaxane catalyst
for controlled asymmetric Michael additions.>® Takata et al.
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Fig. 1 Schematic representations of: (a) the enantiomers of a mechani-
cally chiral [2]rotaxane consisting of directional ring and axle; (b) stimuli
controlled variation in co-conformational behaviour of a mechanically
chiral [2]rotaxane, that leads to modulation in expression of chirality as
detected by *H NMR spectroscopy.

have also demonstrated control of the handedness of a polyacetylene
helix by use of a pendant chiral rotaxane switch.”® In all these
rotaxanes, the chirality arose from inclusion of a classical chiral
element.

Here we present the preparation of a novel mechanically
chiral [2]rotaxane 1 whose detectable mechanical chirality may
be modulated by solvent as monitored by "H NMR spectroscopy.
Further it also demonstrated that the expression of chirality may
also be reversibly modulated by the addition of acid and then
base (Fig. 1b). By dissolving the rotaxane in a hydrogen bond
accepting solvent, or adding trifluoroacetic acid (TFA), the
templating hydrogen bond interactions between the macrocycle
and the amide of the axle are disrupted. The resulting changes
in co-conformational behaviour are reported by variation in the
appearance of a proton environment in the "H NMR spectrum of
the rotaxane.

Mechanically chiral [2]rotaxane 1 was prepared using our
recently reported hydrogen bond templated strategy (Scheme 1).%”
A novel rotationally asymmetric macrocycle 2 (for synthesis see
page S3, ESIt) was dissolved in dichloromethane in the presence of
1.5 equivalents of azide 3°” and 1.5 equivalents of alkyne 4.”®
Catalytic Cu(CH;CN),BF, and TBTA and 1.6 equivalents of DIPEA
were added and the reaction stirred overnight at room temperature
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Scheme 1 Synthesis of mechanically chiral rotaxane 1 (only one enantio-
mer is shown for clarity).

under an inert atmosphere. After aqueous work-up and careful silica
gel column chromatography, rotaxane 1 was isolated in 44% yield.

Rotaxane 1 was characterised by NMR and IR spectroscopy
and mass spectrometry (see Fig. 2 and pages S18-S26, ESIT).
Preliminary inspection of the "H NMR spectrum (in CDCI;)
reveals that the macrocyclic aromatic protons 10, 11, 19 and 20
are markedly downfield (6.10-6.75 ppm) of the typical aromatic
region, consistent with interlocked structure formation (Fig. 2).
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Fig. 2 'H NMR spectrum of rotaxane 1 (CDCls, 400 MHz, 298 K). Atom
labels are defined in Scheme 1.
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Fig. 3 Chiral HPLC trace of rotaxane 1 (CHIRAL-PAK AD-H 4.6 x 250 mm,
4:1 hexane:IPA. 1.5 mL min~%, s = 240 nm).

A peak attributable to the molecular ion peak at m/z = 1037.3949
is also observed in the positive-ion electrospray mass spectra
(see page S26, ESIt). An analytical sample of rotaxane 1 was
submitted to chiral HPLC, with almost complete resolution
of the two enantiomers achieved using a CHIRAL-PAK AD-H
column (see Fig. 3).

Like for the analogous achiral rotaxane previously reported,”
the "H NMR spectrum of rotaxane 1 has separate peaks for each
of the two protons in environments & and 17 (but interestingly
not 22), arising from the two faces of the macrocyclic ring being
inequivalent due to the directionality of the threaded axle.

In addition, it can clearly be seen that the two axle protons g
result in separate resonances, which was not observed in the
previously reported achiral example.>” This is attributed to the
two protons being diastereomeric, arising from the mechanical
chirality of rotaxane 1. Considering that the neighbouring
protons & are not split (to any significant extent), the close
proximity of the macrocyclic ring, appears to be essential to
observe diastereomeric behaviour. Evidence that the macro-
cycle is residing on the amide of the axle in chloroform (and
hence is in closer proximity to protons g rather than ) is
provided by the ROESY spectrum of rotaxane 1 in CDCl; (see
page S25, ESIT). This reveals through-space inter-component
correlations between macrocycle protons and axle protons d, g
and A, entirely consistent with the co-conformation depicted in
Scheme 1. In addition, DFT calculations (see Fig. 4 and pages
S44 and S45, ESIt) indicate that it is energetically favourable for

Fig. 4 Minimum energy DFT calculated structure of rotaxane 1. Hydrogen
bonds are represented by green dashed lines. For details of calculations,
see ESLT
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Fig. 5 Partial *H NMR spectra of rotaxane 1 in various solvents (2.5 mM,
400 MHz, 298 K). Solvent peaks marked with asterisks.

the macrocycle to reside on the axle amide, rather than the
triazole, which is the only other possible hydrogen bond donor/
acceptor on the axle.”

To test whether the co-conformational behaviour of 1 could
be affected by varying the solvent (which may induce motion of
the macrocycle by disruption of hydrogen bonding),*® a solvent
screen was carried out (Fig. 5). It can be seen clearly that only in
CDCl; are the two resonances for g and g’ fully resolved, while
in De-DMSO they have (almost) completely coalesced. For the
range of solvents tested here, there is at least a qualitative
correlation between decreasing separation of resonances for g
and g’ and ability of the solvent to compete as a hydrogen bond
acceptor, as reflected by increasing Gutmann donor number of
the solvent (chloroform (0) > acetonitrile (14) > acetone (17) >
methanol (19) > DMSO (30)).*"**

Our attention then turned to whether the co-conformational
behaviour of the rotaxane could be varied by the addition of
acid and base.** The addition of excess TFA to a sample of rotaxane
1 dissolved in CDCl; leads to a downfield shift and merging of g and
g’ in the "H NMR spectrum (see Fig. 6 and page S36, ESIT). This is
consistent with the macrocycle translating away from the axle
amide: the alkyl protons g and g’ will be less shielded and no
longer close enough to experience the rotational asymmetry of the
macrocycle. Addition of Ds-pyridine to neutralise the TFA reverses
the shift and restores the separate peaks for g and g’.

Further insight into the co-conformational behaviour of
rotaxane 1, upon the addition of TFA in CDCl;, was sought by
studying peaks other than g and g’ in the "H NMR spectrum
(see Fig. 7 and page S36, ESIT). Protons /4 and / move upfield
upon addition of TFA, ie. these protons are experiencing
greater shielding, implying greater residence within the macro-
cycle cavity. Meanwhile protons d move downfield suggesting
they are further away from the macrocycle cavity. Macrocycle
proton 2 moves upfield, consistent with a reduction in hydrogen
bonding to the carbonyl O of the axle amide.

Furthermore, a "H-'"H ROESY NMR spectrum was recorded
(see page S43, ESIT). The addition of an excess of TFA resulted
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Fig. 6 Partial *H NMR spectra of rotaxane 1 with: (a) 0 eq. of TFA, (b) 2 eq.

of TFA, (c) 5 eq. of TFA, (d) 10 eq. of TFA, (e) 20 eq. of TFA, (f) 30 eq. of TFA,

(g) 40 eq. of TFA, (h) 50 eq. of TFA, (i) 50 eq. of TFA + 50 eq. of Ds-pyridine

(CDCls, 400 MHz, 298 K. Spectra Fourier transformed with a line broadening

270 260 250 240

of 3 Hz).

ILO.J&U;A

. 5.0 40 30 20
Chemical Shift (ppm)

Fig. 7 H NMR spectra of rotaxane 1 with: (a) O eq. of TFA and (b) 40 eq. of
TFA (CDClz, 400 MHz, 298 K). Selected atom labels are defined in Scheme 1.
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in a poor signal/noise ratio, necessitating a large number of
scans to identify inter-component corrections, between macro-
cycle protons and those of axle protons d, g, 4 and [. Combining
this result, with the study of the 1D "H NMR spectra detailed
above, and the apparent lack of splitting of any resonance
arising from an axle proton environment, we suggest that in
the presence of TFA, rotaxane 1 is dynamically occupying multi-
ple co-conformations, rather than the single well-defined
co-conformation depicted in Scheme 1. Multiple O atoms (plus
the triazole N) may protonate possibly leading to a complicated set
of hydrogen bond templated co-conformations.** Undoubtedly,
there is a significant change in the co-conformational behaviour of
rotaxane 1 upon addition of TFA.>®

In conclusion, it is possible to modulate the detectable
chirality in the racemate of a mechanical chiral rotaxane by using
two sets of achiral parameters - solvent and addition of acid and
base - to affect the co-conformational behaviour of the rotaxane.
Notably, to observe the influence of mechanical chirality upon
the particular proton environment studied here, appears to
require strict adherence of the rotaxane to a specific hydrogen
bond supported co-conformation. In the future, we envisage that
controlled variation between co-conformations of mechanically

This journal is © The Royal Society of Chemistry 2019
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chiral rotaxanes could be used to create switchable molecular
devices for various chiral applications. Research on chiral
rotaxanes and their application is continuing in our laboratories
and will be reported in due course.
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