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We report a novel metal-organic framework (MOF) based on a cobalt
arylphosphonate, namely, [Co,(H4-MTPPA)]-:3NMP-H,0 (1.3NMP-H,0),
which was prepared solvothermically from the tetrahedral linker
tetraphenylmethane tetrakis-4-phosphonic acid (Hg-MTPPA) and
Co0S0O4-7H,0 in N-methyl-2-pyrrolidone (NMP). Compound 1 has
the highest porosity (BET surface area of 1034 m? g %) ever reported
for a MOF based on an aryl phosphonic acid linker. The indigo
blue crystals of 1.3NMP-H,O are composed of edge-shared eight-
membered Co,P,0, rings, and are thermally very stable up to
500 °C.

The discovery of metal-organic frameworks (MOFs) was a great
advance in the field of porous solids." MOFs create ordered
pore sites with tailor-made surface areas that can perform
specific tasks such as sorption, catalysis, small molecule storage,
proton conduction, greenhouse gas sequestration etc.> MOFs
allow post-synthetic modifications to further optimize the
function of the pore sites after the initial synthesis.> One of
the drawbacks of common carboxylate-based MOFs is the poor
thermal stability and sensitivity towards hydrolysis that some-
what hampers their commercial application and their use
in industry.*® These drawbacks may be overcome by using
phosphonate-based MOFs, which are chemically and thermally
more robust due to the higher number of bonds between the
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linkers and the inorganic domains.®® Phosphonates have a
higher affinity for metal ions compared to the majority of the
other metal binding Lewis bases.”'® The linearly expanding
1,4-phenyldiphosphonic acid and 4,4’-biphenyldiphosphonic
acids are the most widely used arylphosphonate linkers to produce
metal organophosphonate compounds.''™"> Unlike their corres-
ponding carboxylate derivatives,'® the linear arylphosphonate
linkers usually produce lamellar and pillared-layered networks.
The close packing of hydrophobic linear organic components
has led to the formation of two-dimensional M-O-P-O-M
condensations, which are connected by the linear organic
linkers to form the pillared-layered structures.

One approach to eliminate the formation of metal oxide
layers and pillared-layered networks is the use of the trigonal or
tetrahedral expanding ligands where organophosphonate units
are well separated and three-dimensional geometry of the
organic linker core is not suitable for the formation of the
dense pillars. This hypothesis worked with the open-armed
tritopic trigonal planar ligands that produced the hexagonal,
honeycomb structured void channels connecting the trimeric
one-dimensional inorganic building units” and this approach
formed one of the most porous metal organophosphonate
frameworks with surface areas up to 647 m*> g ."'® In a
similar way, Shimizu, Zon and our group have reported novel
arylphosphonate linkers expanding in tetrahedral geometry,
which created the Cu-P-O cluster nodes and connected these
cluster nodes to form porous Cu-MOFs with BET surface areas
of up to 794 m?* g~ 1.19!

Herein, we report the single crystal structure of the first
porous cobalt complex [Co,(H,-MTPPA)]-:3NMP-H,0 (1-3NMP-H,0)
synthesized with the tetraphenylmethane tetrakis-4-phosphonic
acid (Hg-MTPPA) ligand (Scheme 1). The thermogravimetric
analysis (TGA) indicates that 1-3NMP-H,O has extraordinary
stability at high temperatures.

The crystallization is a difficult task to achieve in metal
organophosphonate chemistry as the transition metal ion affinity
for phosphonate is extremely high compared to carboxylate func-
tional groups.”'® Metal-organophosphonate structures are often
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Scheme 1 Synthesis of 1.

reported using powder diffraction or recently electron diffraction
methods. Stock recently reported beautiful tetraphosphonate-
MOFs using the planar porphyrine core using these methods,
where the surface areas were up to 700 m”> g~ *.**”** In order to
obtain the single crystals of metal organophosphonates, we
adopted a high throughput method using temperature and pH
as the variables to optimize the crystallization conditions.>® As a
result of this approach, 1-:3NMP-H,O was obtained as indigo blue
single crystals by the solvothermal synthesis of CoSO,-7H,0 with
Hg-MTPPA in NMP as a solvent at 165 °C. Although porous cobalt
organophosphonate solids are very rare in the literature,” cobalt
is an interesting element with respect to its spectroscopic and
magnetic properties.

The crystal structure of 1-3NMP-H,O revealed the three-
dimensional porous framework, which is composed of a metal-
oxide chain of edge-shared eight-membered Co,P,0, rings
(Fig. 1). These one-dimensional chains were connected by
H,-MTPPA*" linkers to form the void channels via the tetra-
hedral Co(u) in the chain structure. The tetrahedral structure of
Hg-MTPPA and mono deprotonated phosphonate arms dictated
the formation of tetrahedral Co(u) centers in 1-3NMP-H,0. The
whole network of 1.3NMP-H,O is composed of tetrahedral
R-PO;>", tetrahedral C atoms in MTPPA and tetrahedral Co(n),
which is reminiscent of the known zeolites. As seen in Fig. 1a and
¢, the one-dimensional chain pattern in 1 (Fig. 1a-c) was also
observed in previously reported Zn,H,-MTPPA and Zn,H,-STPPA
(Hg-STPPA = tetraphenylsilane tetrakis-4-phosphonic acid,
Scheme 1) structures, which also produced large BET surface
areas. As can be seen in Fig. 1, the previously reported Zn-MOFs
with Hg-STPPA and Hg-MTPPA linkers indicated that the con-
formational changes in the edge-sharing eight-membered rings in
the chain structure result in significant changes in the calculated
BET surface areas. Recently, ZrH,-STPPA was reported, which also
exhibited a similar one-dimensional chain structure composed of
edge-shared eight-membered rings with octahedral Zr centers.?®
The additional connectivity of the octahedral geometry increased
the linker/metal ratio creating a dense three-dimensional network
of ZrH,-STPPA.>¢

The BET surface area of 1 was derived from its simulated
N, adsorption isotherm at 77 K obtained by grand canonical
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Monte Carlo simulations (ESIt). Such calculations have been
widely used for characterizing the surface area of MOF materials.>”*®
The calculated BET surface area for 1, 1034 m* g™, is 107 m* g~
higher than that reported for its Zn analogue, Zn,H,-MTPPA,
which was 927 m* g~ '.'® However, it is significantly higher
compared to the isostructural zinc compound Zn,H,-STPPA
(565 m> g '). The same chain pattern was also observed in
structurally rigid naphthalene arylphosphonate linkers with
square pyramidal and octahedral metal atoms producing micro-
porous frameworks.?° The stability of such edge shared Zn,P,0,
chains is significant as robust inorganic building units for future
metal organophosphonate compounds, which could hypotheti-
cally produce isoreticularly expanding void channels with tetra-
topic, tritopic and ditopic ligands with expanding tether lengths.
As seen in the thermogravimetric analysis graphic (see ESIT), the
compound is an unusually stable MOF as organic compo-
nents from MTPPA start decomposing at ca. 525 °C, and 27%
(calculated 29.5%) of total weight loss of MTPPA continues until
700 °C. The initial ca. 20% (calculated 27%) weight loss corre-
sponds to the solvent molecules (ESIT). A recent article about
ultra stable ZrH,-STPPA also shows a similar STPPA decom-
position pattern but 1 is approximately 100 °C more stable
than the previously reported zirconium compound, which was
not porous.>® The magnetism in MOFs is an active research
area.’** We investigated the magnetic properties of 1 via
ab initio calculations (ESIt). Spin-polarized density functional
theory analysis is performed on the structure that is revealed
from XRD data and it is observed that the electronic structure
tends to converge towards a state where a net spin of 3 per Co
atom is established (Fig. 1d). While the charge density of this
net spin has been observed to concentrate mainly around Co
atoms it is not totally localized and extends throughout the
structure along the b axis of the crystal which may point to a
ferromagnetic interaction between Co atoms as well as the
magnetic anisotropy in the crystal.

In conclusion, we report an extremely stable and rare metal-
organic framework (MOF) based on cobalt arylphosphonates.
The calculated surface area of 1034 m”> g~ " indicates that 1 has
the largest surface area synthesized with a tetrahedral arylphos-
phonic acid. The extreme stability (up to 500 °C) at high
temperatures is certainly a great advantage for potential indus-
trial applications. Metal organophosphonates already have a
myriad of applications, such as the catalysis of butane to maleic
anhydride, imaging, bone remodelling, identifying micro
calcifications, proton conductivity and osteoporosis treatment
etc.>**° Moreover, organophosphonates are thought to be involved
in many biochemical pathways.**** The porous metal arylphos-
phonate compounds are rare but the recent efforts using the novel
arylphosphonate linkers have been gradually contributing to the
library of porous metal organophosphonates.

The previously reported Zn,H,-MTPPA, Zn,H,-STPPA and
[Co,(H4-MTPPA)]-3 NMP-H,O0 (1) are isostructural with different
bond lengths and angles. The persistence and conformational
flexibility of the eight-membered chains with different metals
in metal organophosphonate chemistry are significant,>®?%2°
as it could be further used as a reliable secondary building unit

This journal is © The Royal Society of Chemistry 2019
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Fig. 1 The conformations of 1D IBUs composed of corner shared (a) Zn,P,0,4 (in Zn,H4-STPPA) adapted from ref. 19; (b) Zn,P,04 (in ZnyHa-MTPPA)
adapted from ref. 19; (c) Co,P,04 in 1.3NMP-H,0, and the perspective view of the three-dimensional porous framework of 1.3NMP-H,O. The change of
conformational structure of the one-dimensional building block is significant in characterizing the porosity of the organophosphonate—MOF. The pore
sizes are increasing from 564, 937 and 1034 m? g~ from left to right. The conformation of the 1D IBU is significant in determining the pore sizes. (d) Side
and perspective view of the crystal cell for which DFT calculations have been carried out. The yellow cloud represents a typical isosurface of the charge

density carrying a net spin which extends along the b axis.

to construct predictable three-dimensional metal-organic frame-
works using alternating tether lengths. The conformational flexi-
bility of the chain structure observed in 1 could be further used to
construct mechanically breathing metal-organic frameworks and
isoreticular expansions with alternating tether lengths.
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