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A new yet little understood threat to our ecosystems is microplastics. These microscopic particles

accumulate in our oceans and in the end may find their way into the food chain. Even though their

origin and the laws governing their formation have become ever more clear fast and reliable

methodologies for their analysis and identification are still lacking or at an early stage of development.

The first automatic approaches to analyze mFTIR images of microplastics which have been enriched on

membrane filters are promising and provide the impetus to put further effort into their development. In

this paper we present a methodology which allows discrimination between different polymer types and

measurement of their abundance and their size distributions with high accuracy. In particular we apply

random decision forest classifiers and compute a multiclass model for the polymers polyethylene,

polypropylene, poly(methyl methacrylate), polyacrylonitrile and polystyrene. Further classification results

of the analyzed mFTIR images are given for comparability. The study also briefly discusses common

issues that can arise in classification such as the curse of dimensionality and label noise.
1 Introduction

The pollution of aquatic environments bymicroplastics1–3 (MPs)
is a topic that receives ever more attention both from scientists
and the general public. To better understand the impact of this
novel contaminant it is indispensable to quantify the abun-
dance of MPs in their respective habitats. Therefore many
approaches to monitor MPs have been proposed4 and though
these methodologies shed light on the complexity of the
dilemma a generally applicable procedure which truly handles
the problem of quickly and accurately identifying MPs remains
yet to be found.

Chemical analysis of environmental samples is usually
limited to bulk features such as the overall abundance of
polymer types. In order to assess the size distribution of MPs
micro Fourier-transform infrared (mFTIR) and mRaman spec-
troscopy5,6 have become ever more popular as these methods
also allow an analysis of particles that are too small for manual
sorting and single spectroscopic measurements.2 Aer
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mandatory purication7 MPs are enriched on membrane lters
which are thenmeasured to obtain hyperspectral images (HSIs).
While these technologies open the gates towards far smaller
scales they also introduce further challenges such as large
amounts of spectroscopic data.

Even though most instrument soware packages include
algorithms to analyse HSIs current solutions still do not yield
high accuracy4 or are computationally expensive. Currently the
common approach is to perform MP identication in a semi-
automatic manner where a spectroscopy expert compares
selected pixel spectra to a reference database.8

At rst glance the obvious solution to speed up this process
is to automatically compare each pixel to the database without
any human intervention. However, this approach is not only
slow but also results in high error rates as current database
search routines oen either do not recognize certain MP spectra
or falsely assign them to a different type of polymer. Neverthe-
less attempts have been made to improve the shortcomings of
current algorithms.

Primpke et al.9 proposed an algorithm which relies on a dual
database search using two different similarity measures. A class
affiliation is considered as correct only if both measures yield
the same polymer type. Though the use of two different
measures certainly reduces the error rate the detected MPs still
have blurred contours, gaps and holes. The authors attributed
this problem to effects caused by weathering processes or
insufficiently removed biolms and post-processed the class
Anal. Methods, 2019, 11, 2277–2285 | 2277
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affiliation image using a closing algorithm that smoothens
particle contours based on neighboring polymer pixels.

Renner et al.10 proposed to use a database search to identify
MP spectra based on a spectral feature selection algorithm
which can also deal with weathered MPs. In the rst step
vibrational bands are detected using the 1st derivative of the
spectra. In the second step a curve tting of the derived spectra
allows a de-noised estimation of the MP spectra to be produced.
Using the peak areas the MPs are then identied using a data-
base search. While this study applied the algorithm to MP
spectra obtained from attenuated total reection FTIR (ATR-
FTIR or FTIR ATR) spectroscopy the authors stated that the
method might require only a little alteration to be applicable to
mFTIR images.

While database searches can be considered to be pioneering
methods in this eld we believe that future routine analyses will
require faster approaches as the throughput demand will
certainly rise. In this paper we propose to use model-based
classication for a fast identication of MPs in large HSI data-
sets. In particular we use a combination of spectral descriptors11

and random decision forest12 (RDF) classiers to obtain our
preliminary results for the polymers polyethylene (PE), poly-
propylene (PP), poly(methyl methacrylate) (PMMA), poly-
acrylonitrile (PAN) and polystyrene (PS).

This work is intended to provide a faster alternative to
current database algorithms but should not be considered a full
evaluation of classication with respect to MP identication as
only one type of algorithm is considered. However, as many
issues which are discussed in this study are independent of the
used classier we hope that the given references may also be
helpful when other approaches are considered.

The rest of this article is organized as follows: section 2
discusses some aspects of mFTIR images that are particularly
problematic for classication and related approaches. In
section 3 we give a brief introduction into classication and the
algorithms used. A discussion on the differences and benets of
classication with respect to current solutions is given in
section 3.1 and a description of the involved algorithms and
mathematics in sections 3.2 and 3.3. The most important
aspects of the methodology are summarized in section 3.4 and
the used soware is described in section 3.5. The experimental
assessment is described in section 4 leading to some consid-
erations regarding the throughput rate in section 4.5. The
article concludes with a discussion of the experiments in
section 5 and nal remarks in section 6. Readers who are new to
machine learning might also be interested in further reading
given in section 7.
Fig. 1 Polystyrene spectra of varying quality sampled at the center of
a particle (upper chart) and at particle edges (lower chart). As particle
sizes can be as low as 10 mmMie scattering distorts the baselines of the
spectra.
2 mFTIR images from the viewpoint of
chemometrics

The focal plane array-based mFTIR images5 (FPA-based mFTIR)
used in this study were measured in the wavenumber range
between 1249.6 cm�1 and 3594.5 cm�1 with a spectral resolu-
tion of 609 bands. The image size varies around 1000 � 1000
pixels so that each image contains about 106 spectra. Even
2278 | Anal. Methods, 2019, 11, 2277–2285
though the lateral resolution is high enough to capture polymer
particles as small as 10 mm the chemometric analysis of these
images is far from trivial.

One major obstacle is the Mie scattering effect, a phenom-
enon that occurs if electromagnetic waves are in the size range
of the measured particles. In the case of mFTIR the infrared
radiation is diffracted at the edges of the MPs and other mate-
rials which results in a distorted baseline. Fig. 1 depicts
a collection of PS spectra which were sampled at various posi-
tions of a mFTIR image. The spectrum in the upper chart was
extracted from the center of a particle whereas the others orig-
inate from particle edges. While the characteristic PS bands are
still recognizable in these spectra the signal-to-noise ratio
worsens to a degree where they are barely visible. However, if
our goal is to correctly measure the number of MPs and their
size distribution the identication of these low quality spectra is
of crucial importance for determining the particle contour.

Another problem that has to be overcome is the so-called
curse of dimensionality,13,14 a phenomenon which is due to the
high dimensionality of the datasets. In the case of spectro-
scopic data only a few spectral wavelengths contain informa-
tion which is relevant for the identication of MPs whereas the
largest part of the spectrum contains mostly noise. Similarity
measures, such as the Euclidean distance or the Pearson
correlation coefficient, are therefore dominated by noise
rather than characteristic vibrational bands which negatively
impacts the performance of many distance-based chemo-
metric techniques.

Less evident but also problematic for MP identication is the
resonant Mie scattering effect which alters the intensity and
position of vibrational bands. This phenomenon is not
This journal is © The Royal Society of Chemistry 2019
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§ This is a soware specic abbreviation. See http://www.imagelab.
at/help/spectral_descriptors.htm for further information.
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addressed in this paper; however, for further reading we here
refer to Bassan et al.15

3 Methodology
3.1 Motivation

In their extensive review about monitoring MPs Renner et al.4

stressed the need to develop more robust database search
algorithms and to standardize the different methodologies to
increase their comparability. In this context we propose to use
model-based classication as an alternative to the common
database approach. Classication or supervised learning is the
task of learning a function from labeled training data so that the
class affiliations of unknown data can be predicted. The key
difference between model-based classication and database
searches is that instead of using reference data for deciding the
class affiliation we use a multivariate model of the actual data.

The typical use case of databases is when we have an
unknown spectrum and require a ranking of similar spectra in
order to help the researcher in the identication. In the case of
monitoring MPs the situation is very different as the associated
spectra of certain polymer types are already known. Therefore,
our motivation of proposing classication as an alternative is
that the mathematical problem that underlies database
searches makes them ill-suited for the task of identifying large
numbers of spectra for the following reasons:

� The classication of n unknown spectra using a database of
m reference spectra requires n � m computations of a similarity
measure in order to determine the hit quality, which is an
expensive task.

� Database reference spectra are oen measured under ideal
laboratory conditions which decreases the similarity to the
actual MP spectra as these may be distorted by Mie scattering,
have very low signal-to-noise ratios, show total absorption or
contain a mixture of artifacts originating from biolms. Further
we have to consider that polymers are oen not pure with
respect to their chemical composition as they can appear as
blends and usually will contain various additives such as llers
and pigments. One may argue that this problem can simply be
solved by adding further reference spectra to the database but
this signicantly increases the computational load per spec-
trum as stated above.

� The decision of class affiliation is usually based on the
highest hit quality which as seen from the viewpoint of machine
learning is closely related to a 1-nearest-neighbor (1NN) classi-
cation. While the k-nearest neighbor (kNN) classier for k > 1 is
a well-established benchmark technique, the 1NN classier is
known to require large sample sizes in order to be stable
enough for most applications.

In chemometric classiers such as the RDF,12 partial least
squares discriminant analysis16 (PLS-DA) and support vector
machine17 (SVM) have long found their way into the analysis of
hyperspectral images.18–20 In order to identify an unknown
spectrum we simply have to compute the model output which is
orders of magnitude faster than a similarity search. Another
advantage of using classiers is that they are readily available
through open source libraries such as scikit-learn21 or WEKA22
This journal is © The Royal Society of Chemistry 2019
and thus allow an easy comparison and evaluation of research
results.

While one classication algorithm might be preferable over
the other depending on the structural characteristics of the data
we chose the RDF because it is a fast algorithm with respect to
the training and application step. Another advantage of RDFs is
that they can solve problems where the decision boundary is
non-linear which we found to be a useful property for some
polymer types. However, before the RDF can be applied to the
problem of classifying MPs a preprocessing step is necessary to
boost its performance which will be discussed in the following
section.
3.2 Spectral descriptors

The conclusions that can be drawn from section 2 regarding the
spectra in mFTIR images are that we have to deal with both
a distorted baseline and high dimensionality of the dataset.
While there exist many algorithms for baseline correction and
dimensionality reduction23 those methods tend to be compu-
tationally expensive and may also introduce artifacts into the
data. Here we propose to preprocess the data using spectral
descriptors11,24 (SPDCs). This concept allows a spectroscopy
expert to apply his or her knowledge to the data to extract the
features that are descriptive for certain chemical compounds
thereby making baseline correction obsolete and reducing the
dimensionality at the same time.

SPDCs are simple mathematical functions that map one or
more spectral bands into one descriptive variable. By creating
an entire set of SPDCs which is tailored to certain polymer types
the spectroscopist can concentrate the chemical information
into a descriptor space of much reduced dimensionality and
improved data structure. In other words if we use q SPDCs on
a hyperspectral datacube of p layers, where q � p, we create
a descriptor cube of q layers where each individual layer
represents the output of a certain descriptor. The process of
designing a set of SPDCs can also be seen as a manual method
of building a model for dimensionality reduction as in the end
the SPDCs are reused to preprocess other datasets.

The methodology is illustrated schematically in Fig. 2 where
a selection of three different kinds of SPDCs is applied to
polymer spectra (le side) sampled from mFTIR data. Probably
the most straightforward descriptor is the ABL§ whose mathe-
matical denition is to compute the baseline-corrected peak
area within a dened wavenumber range. The resulting
descriptor image (pink) highlights mainly PMMA particles as
this polymer has a prominent peak in that region. The PAN
bers are visible as well though their contribution is poor.

As can be guessed from that image one descriptor alone
doesn't do the job. Due to the overlapping peaks further SPDCs
will be necessary. However, the ABL is not always the best way to
go. A more sophisticated way which is less prone to noise11 and
achieves an even better separation from the background is the
TC§ descriptor. Here we compute the Pearson correlation
Anal. Methods, 2019, 11, 2277–2285 | 2279
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Fig. 2 Descriptor images generated using the ABL, TC and IGF descriptors. The spectra (left) correspond to three types of common polymers. By
using the stated spectral descriptors on certain ranges of the hypercube the corresponding descriptor images (middle) can be computed which
are then reassembled as a descriptor cube of reduced dimensionality and improved data quality (right).
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between a simple triangular template peak and the spectrum. If
the correlation is signicant the resulting value is multiplied
with the base-line corrected area of that region. The introduc-
tion of correlation makes the descriptor more robust against
background noise which can be seen in the corresponding
descriptor image (cyan) where the PAN bers clearly stand out.

Taking the concept of templates a step further we can also
use characteristic peak patterns instead of a simple triangle to
compute a correlation. The IGF§ descriptor embeds this concept
by multiplying the correlation coefficients of multiple ranges
that each apply an individual peak pattern. In Fig. 2 this specic
IGF uses the patterns of PS and thus selects the PS beads from
the background as can be seen in the orange image.

While the IGF seems the most appealing descriptor it is also
the most cost intensive to compute and in some cases too strict
with respect to certain low quality spectra from particle edges.
In our experience the TC is the most generally applicable
descriptor and also signicantly faster to compute. For this
reason we mostly used that type to design our SPDC sets for our
experiments and reduced the dimensionality from 609 spectral
bands to 50 baseline corrected descriptor variables.
3.3 Random decision forest

The RDF is a binary tree-based ensemble learner that combines
the concept of the random subspace method25 and bagging26

(bootstrap aggregating). Its theory is based on decision trees
which have long been used as models both in classication and
regression. A common trait of decision trees is their tendency to
overt the training data which causes a low bias but high vari-
ance. While the former is benecial for a model the latter causes
a poor general performance. The RDF addresses this issue by
averaging the output of an entire forest of decision trees thereby
retaining the low bias while compensating for the high vari-
ance. However, a basic requirement for this approach to work is
that the trees are uncorrelated which necessitates some form of
randomization in the process of model creation.
2280 | Anal. Methods, 2019, 11, 2277–2285
Ho27 introduced the idea that each tree is grown on its own
randomly selected subspace of the feature space spanned by
a dataset. This concept was then enhanced by Breiman12 who
used bagging to further decorrelate the decision trees. Here
each tree is grown on its own randomly sampled subset of the
training data. By combining both randomization strategies we
arrive at the modern version of the RDF.

In short the growth of each tree starts with the initial node
splitting its bootstrap sample using a randomly sampled subset
of variables. The split is determined by a threshold on the
variable which achieves the best separation of the training data.
This process repeats recursively for each child node using its
own set of variables to determine the optimal split. In the end
we arrive at a forest of trees where each leaf node represents
a class.

For an object of unknown class affiliation the prediction is
then determined in the following way: starting from the root the
object traverses the trees where each node determines (through
the use of the threshold) the next branch that is to be followed.
In the end the object reaches the leaf nodes where the nal class
affiliation may then be determined using an average vote of the
trees which results in a value in the interval [0,1] or a majority
vote yielding either 0 or 1. Please note that in this scenario we
only discriminate between two classes which is called a binary
classication problem. In brief multiple classes can be treated
by creating a set of binary classiers for each polymer type. How
these outputs can be treated will be discussed in more detail in
sections 3.5 and 4.4.

Regardless of which classication algorithm is used
a trained model should always be validated to assess how well it
generalizes on independent test data. A common approach is to
separate a test dataset from the training data which is then
classied using the RDF model. By comparing the known labels
to the predicted labels we can thus draw conclusions about the
model performance. Here the RDF has the special trait that the
separation of a test dataset is not strictly necessary. As only the
bootstrap samples determine the model the omitted samples
This journal is © The Royal Society of Chemistry 2019
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form a kind of test dataset that can be used in the validation by
computing different out-of-bag (OOB) estimates. For better
comparability to other classication algorithms we will use both
approaches in this paper.

3.4 Implementation strategy

In summary the concept of classifying mFTIR images uses
a combination of SPDCs and RDFs and is based on the
following steps:

� Decide on the polymer classes that would be identied
using the RDF. The background and the matrix have to be
considered as well and thus also form at least one class. While
the distinction between polymers may be simple thematrix is by
far more complex because it contains a mixture of IR active
substances both of biologic or inorganic origin.

� Create a training set of labeled spectra drawn from different
mFTIR images, which contains a sufficient number of repre-
sentatives from all classes (including the background and
matrix). Here it is important to include low-quality spectra from
particle edges so that their contours can be correctly estimated.

� Design a set of SPDCs which is tailored towards the
detection of the polymers. The goal is to enhance the separation
of classes in the descriptor space. Therefore, if certain matrix
spectra are very similar to those of polymers this set may be
enhanced by SPDCs that cover their features as well.

� Train the classier. At this stage we use the RDF though
other algorithms can be considered as well.

� Validate the classier on test data.
� Reiterate this process from an earlier stage if the model

validation proves unsatisfactory.
The above process requires the knowledge of a spectroscopy

expert in two phases: the sampling of the spectra establishes
our ground truth and thus should not contain any errors.
Further the quality of the SPDCs may be higher if an expert
applies his or her domain knowledge.

Whether a machine learning expert is required depends on
the used soware and classication algorithm. When tuning
classication models the determination of the model order is of
crucial importance. Undertting the training data increases the
model bias whereas overtting leads to increased variance. In
this context the RDF might be easier to handle than other
algorithms as choosing a too high number of trees will not lead
to overtting. On the other hand undertting is possible if the
number of trees is set too low.

3.5 Soware

In this study we used the general purpose imaging soware
Epina ImageLab (imagelab.at) to implement the described
strategy. This soware facilitates sampling of the training set,
the design of SPDCs and the training of the RDF in an easy-to-
use graphical user interface. ImageLab handles multiclass
problems by using a one-vs-all (OVA) scheme. This means that in
order to discriminate between N classes we create N binary
classiers where each RDF separates one class from all others.
In this implementation of the RDF the model creates an output
in the range [0,1] with the decision boundary at 0.5. By applying
This journal is © The Royal Society of Chemistry 2019
each binary classier to our data we thus get N class maps.
Subsequent analysis of these images is then performed using
a built-in particle detection tool which will not be covered in
this paper.
4 Experimental

In the following sections we will cover the training, validation
and application of a RDF classier set for the polymers PE, PP,
PMMA, PAN and PS. The background, matrix and other poly-
mers will be denoted as ‘NonPolymer’.

For this preliminary assessment we chose PE, PP, PS and
PMMA as these are among the 10 most important polymer
resins with respect to the demand in the EU.28 PAN on the other
hand allows us to determine whether the proposed method can
deal with bers.
4.1 Data acquisition

Sampling polymer spectra from real-world environmental
samples is a cumbersome task as most images will only contain
a few if any particles of the polymer types that we want to detect.
As a workaround we created articially enhanced samples
where selected MPs of varying sizes were added to a freshwater
plankton sample as the matrix before ltering. The justication
for this procedure lies in the need to sample spectra which show
the same effects that were discussed in section 2.

In particular the microplastics were either produced by
abrasion from a larger polymer material or directly bought as
powder. By using a round surface aluminum oxide lter
(Anodisc 0.2 mm pore size, 10 mm diameter) the spiked envi-
ronmental samples were then ltered and dried at room
temperature overnight. The subsequent imaging was conducted
using a Bruker Hyperion 3000 FTIR microscope (https://
www.bruker.com) equipped with a 60 � 64 pixel FPA detector
in conjunction with a Tensor 27 spectrometer. Each sample was
placed on a CaF2 lter and measured in transmission mode
with a 15� IR objective. The FTIR measurement was performed
at a resolution of 8 cm�1 and a coaddition of 6 scans. 4 � 4
binning was applied to the measured data resulting in a pixel
size of ca. 11 mm. Themeasurement of the whole sample surface
takes around 10 hours. Further the background was acquired on
a blank lter material. For a more detailed description of this
procedure see Löder et al.5 The subsequent chemometric anal-
ysis was conducted in ImageLab by exporting the data as ENVI
les.
4.2 Training

For this preliminary study about 100 spectra were sampled for
each of the polymer classes by three spectroscopy experts. To
ensure enough variability in the matrix and the background
2770 spectra were sampled from both the articially enhanced
datasets and from two environmental samples published by
Primpke et al.8 which sums up to a total of 3270 spectra. As
stated above the validation of the RDF does not require separate
test data though for reasons of better comparability to other
Anal. Methods, 2019, 11, 2277–2285 | 2281
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classication algorithms we further divided each class into
a randomly sampled training and test set of equal size.

For the nal training of the RDF a set of 50 SPDCs was built
to overcome the effects discussed in section 2. As illustrated in
Fig. 2 the SPDC set was designed to enhance the separability of
the polymer and matrix spectra in the descriptor space. For the
most part this was done by using TC and ABL descriptors which
are well suited to describe the presence of single peaks. For
more complex peak patterns such as the ones observed in PS we
used IGF descriptors. Each binary classier was then trained on
the transformed spectra using 75 trees and a bootstrap sample
size of 50%.

4.3 Validation

The model validation results for each binary classier are given
in Table 1. Here ‘OOB-RelCls’ is the OOB relative classication
error which is dened as the ratio of incorrectly classied cases.
‘OOB-RMS’ refers to the OOB root mean square error when esti-
mating posterior probabilities.

The last two columns show the true/positive (TP) and false/
negative (FN) rate when the RDF model is used to predict the
labels of the test dataset. A more detailed assessment of this
result is given in Fig. 3 where the confusion matrices for each
binary classier are illustrated.
Table 1 Validation results using OOB estimates and true/positive and
false/negative rates of the test dataset

Class name OOB-RelCls OOB-RMS TP rate FN rate

PE 0.0012 0.0361 0.9412 0.0006
PP 0.0006 0.0335 0.9400 0.0000
PMMA 0.0006 0.0353 0.9592 0.0006
PAN 0.0006 0.0317 1.0000 0.0000
PS 0.0024 0.0531 0.9608 0.0006
NonPolymer 0.0037 0.0881 0.9993 0.0357

Fig. 3 Confusion matrices for the classes PE, PP, PMMA, PAN, PS and
NonPolymer. Here the test dataset is classified using the RDF model.
The scale to the left indicates the ratio of trees that agree on the
positive classification. The default decision boundary at 0.5 is high-
lighted in red. The green dots represent the true/positiveswhereas the
gray dots represent the true/negatives. The cases where the known
and the predicted labels differ are marked using a red ‘�’. The numbers
in each confusion matrix specify the absolute number of cases for
each quadrant.

2282 | Anal. Methods, 2019, 11, 2277–2285
4.4 Application

At the application stage the mFTIR image that is to be analyzed is
transformed using the set of 50 SPDCs. The resulting descriptor
cube is then classied using the binary classiers. For each
class the model output is assembled as a class map where each
pixel indicates the result of the averaged vote. For the nal
particle count analysis we require dichotomized images which
can be obtained in two ways: one approach is to apply
a threshold to each class map and post-process it individually.
Here we can either use the default threshold at 0.5 or an arbi-
trary selection in the range [0,1]. (For example we might set the
threshold to 0.8 which means that at least 80% of the decision
trees have to agree for a positive classication.) The other would
be to create a combined class affiliation image where each pixel
receives the class number of the binary classier which yields
the highest output value. This approach is known as an OVA
scheme. For a discussion of other possibilities for handling
multiclass problems we here refer to Riin and Klautau.30

An OVA result of one of our articially enhanced datasets is
given in Fig. 4. In Fig. 5 we further show the upper right part of
the result as an overlay with the optical image of the sample.

In order to assess the performance of the RDF on untreated
natural data we also classied the dataset ‘RefEnv1’† which was
published by Primpke et al.8 The result of the lower le part of
the mFTIR image is given in Fig. 6.

Please note that the ESI‡ includes a link to a short video31

which shows the application of the RDF using the datasets
‘Microplastic’29 and ‘RefEnv1’.†
4.5 Throughput rate

Even though the performance of modern day computer systems
evolves very quickly we want to give a rough estimation of the
Fig. 4 OVA image of the ‘Microplastic’† (ref. 31) dataset.

This journal is © The Royal Society of Chemistry 2019
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Fig. 5 Zoomed-in overlay of the classification result obtained from
the ‘Microplastic’† (ref. 31) dataset. The NonPolymer class is trans-
parent so that the underlying image is visible.

Fig. 6 Zoomed-in overlay of the lower left part of the ‘RefEnv1’†
dataset. The original mFTIR data and the optical image were published
by Primpke et al.8 under a Creative Commons Attribution 4.0 Inter-
national License and is accessible through DOI: 10.1007/s00216-018-
1156-x.

Paper Analytical Methods

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
M

ar
ch

 2
01

9.
 D

ow
nl

oa
de

d 
on

 7
/1

9/
20

25
 6

:3
9:

34
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
throughput rate. As a reference dataset we chose ‘RefEnv1’†
(1024 � 1024 pixels) which was tested on two different PCs. The
rst PC was equipped with an Intel Core i5-8400 CPU @ 2.80
GHz and 8 GB RAM (speed: 2400 MHz, form factor: DIMM)
running MS Windows 10. Here the time required for all six
binary RDF classiers was 4 min 10 s, which yields an approx-
imate rate of 4195 spectra per s. If we disregard the time
required for computing the descriptor cube we thus get an
average rate of 25 165 spectra per s for a single class. From there
This journal is © The Royal Society of Chemistry 2019
we estimate the time required for an image of 106 pixels and 20
polymer classes to be in the range of 15 min.

To assess the performance of the RDF on different operating
systems we also conducted a test on a PC running Arch Linux
(https://www.archlinux.org) and Windows 10 using dual boot-
ing. Though ImageLab is an MS Windows application it can be
run on GNU/Linux distributions using Wine (https://
www.winehq.org). The system was equipped with an Intel
Core i5-7400 CPU @ 3 GHz and 32 GB RAM (speed: 2133 MHz,
form factor: DIMM). On this setup we measured 4 min 45 s for
Arch Linux and 5 min 30 s for Windows 10. Due to the better
memory management of GNU/Linux the performance here
increases by approximately 15%.

Please note that all computations were done using one CPU
core. For parallel computations on multi-core systems these
rates have to be adapted accordingly.

5 Discussion

Considering Table 1 and Fig. 3 we nd that the most chal-
lenging binary problem appears to be the separation of the
NonPolymer spectra from those of the polymers. An explana-
tion for this behavior might be that in this particular case the
RDF has to encapsulate multiple dispersed classes whereas
with respect to the polymer classes we have the comparatively
simple task of separating one class from all others. As stated in
section 3.4 it might therefore be a better approach to separate
the matrix and background into more than one class.
However, whether the additional effort really improves the
overall classication result has yet to be determined
experimentally.

The confusion matrices in Fig. 3 allow a deeper insight into
the mechanics of the decision process while the error rates in
Table 1 only give an overall result. For almost all polymer classes
we nd a few instances where the RDF's decision deviates from
the labels of the test dataset. We investigated these instances
and found that the spectra in question are all rather extreme
cases of very low quality where the spectroscopy experts had
difficulties in deciding on the class affiliation. In the literature
this phenomenon is referred to as label noise or class noise and
oen arises if either low quality data have to be labeled or the
task of labeling is in itself very difficult and requires a lot of
experience. Another source of label noise can also be attributed
to the fact that the three spectroscopy experts each labeled their
own training data independently. Consequently, their biased
opinions on certain rare cases thus become visible in the
confusion matrices. We can therefore conclude that these
misclassications are not a sign of poor model quality but are
a result of human bias.

Nonetheless the question arises to what extent the label
noise affects the training of the RDF and classication in
general. Though we did not investigate this topic in our exper-
imental setting, simulations conducted by Folleco et al.32 on
eleven different classication algorithms show that the RDF
seems to be very robust against label noise. A more general
discussion on handling label noise can found in Frénay and
Verleysen33 and Nettleton et al.34
Anal. Methods, 2019, 11, 2277–2285 | 2283

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9ay00252a


Analytical Methods Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
M

ar
ch

 2
01

9.
 D

ow
nl

oa
de

d 
on

 7
/1

9/
20

25
 6

:3
9:

34
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
From visual inspection of the classication results shown in
Fig. 4 and 6 we conclude that the RDF model performs satis-
factorily within certain bounds. By closely assessing polymer
particles both in the lateral and the spectral domain we found
some instances in the datasets RefEnv1† and RefEnv2† where
certain MP spectra were not detected. A closer assessment of
these spectra revealed that the reason for the failed identica-
tion is strong total absorbance effects. As our training data did
not contain spectra which exhibit total absorbance of this
magnitude the model has difficulties in assigning these spectra
to the correct polymer class. In particular PE and PP are most
affected because they have only a few characteristic vibrational
bands. Contrary to that we nd that PMMA is quite robust
against this phenomenon because of its rather broad peaks.

One approach to address this problem would be to also
sample such spectra where total absorbance is very prominent
and include them in the training of the RDF. However, we
question whether this is a reasonable approach because the
class assignment thus also contains a high uncertainty of
whether the underlying particle is truly of that polymer type.
Another idea could be that an RDF model is used to ag spectra
which show strong total absorption effects aer the initial
polymer identication has been performed. In this way
a researcher can be warned that the automatic result requires
a manual reassessment or that the sample should be remeas-
ured altogether. We here conclude that this issue is less
a technical problem but more a matter of discussion of how
much total absorption can be tolerated to still allow an accurate
analysis of FPA-based mFTIR images.

As for the throughput rate of the method we nd that the
RDF facilitates a relatively fast analysis and as dataset sizes can
be expected to rise in the future we can assume that the addi-
tional demand can be met. In the case that much shorter
analysis times are necessary there are also linear classication
algorithms such as PLS-DA and linear SVM at hand which are
even faster and can be trained in parallel using the same
methodology.

6 Conclusion

In this paper we presented a preliminary study of the applica-
tion of the RDF classier for the fast detection of MPs in FPA-
based mFTIR images. While many questions regarding best
practices for the design of classiers in this research eld are
still open our experimental results show that the development
of classiers is both feasible with a reasonable amount of effort
and yields high accuracy while retaining a high throughput rate.

7 Further reading

For readers who are new to machine learning and are interested
in the mathematical background of the paper we would like to
provide some guiding citations to the literature. We recom-
mend the book of Hastie et al.35 for an introduction to machine
learning. Further the paper by Domingos36 summarizes the
main challenges we face when trying to create classiers. Rich
course material and code examples may also be found on
2284 | Anal. Methods, 2019, 11, 2277–2285
https://www.scikit-learn.org and https://www.cs.waikato.ac.nz/
ml/weka/. Readers more interested in the details of the RDF
should start with Biau and Scornet37 before they proceed to
Breiman.12
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