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augmented networks (AFAN): an
approach to generating three-dimensional
biomimetic microfluidic networks with controlled
flow

Jiaming Guo, a Keely A. Keller, b Pavel Govyadinov, a Paul Ruchhoeft,a

John H. Slater b and David Mayerich *a

In vivo, microvasculature provides oxygen, nutrients, and soluble factors necessary for cell survival and

function. The highly tortuous, densely-packed, and interconnected three-dimensional (3D) architecture

of microvasculature ensures that cells receive these crucial components. The ability to duplicate

microvascular architecture in tissue-engineered models could provide a means to generate large-

volume constructs as well as advanced microphysiological systems. Similarly, the ability to induce

realistic flow in engineered microvasculature is crucial to recapitulating in vivo-like flow and transport.

Advanced biofabrication techniques are capable of generating 3D, biomimetic microfluidic networks in

hydrogels, however, these models can exhibit systemic aberrations in flow due to incorrect boundary

conditions. To overcome this problem, we developed an automated method for generating synthetic

augmented channels that induce the desired flow properties within three-dimensional microfluidic

networks. These augmented inlets and outlets enforce the appropriate boundary conditions for

achieving specified flow properties and create a three-dimensional output useful for image-guided

fabrication techniques to create biomimetic microvascular networks.
Introduction

The ability to generate vascularized tissue constructs has been
a major challenge in the eld of tissue engineering for
decades.1–3 To overcome this limitation, small volume
constructs have been implemented that rely on diffusion-
mediated transport to deliver oxygen, nutrients, and soluble
factors, and to remove waste products. The ability to generate
hydrogels laden with microvasculature that recapitulates the
dense and tortuous architecture of in vivo vascular networks
could aid in fabricating larger volume tissue constructs4 and
advanced cell culture platforms to model physiological and
pathological processes.

Two general approaches to generate vascularized constructs
have been developed: self-assembly of networks by vascular
cells and formation of pre-dened, engineered vasculature fol-
lowed by vascular cell seeding. Self-assembly provides
a straightforward approach to create microvasculature in both
natural5–9 and synthetic10,11 hydrogels. When performed in
hydrogels housed in a microuidic device, self-assembled
networks can anastomose with larger microuidic channels
ngineering, University of Houston, USA.

iversity of Delaware, USA
allowing for uid ow through the networks.5,8,12 This approach
has been implemented to investigate leukocyte adhesion to
vessel walls,8 cancer cell extravasation,13 convective transport,10

soluble factor signaling during vasculogenesis,14 and endothe-
lial cell response to uid ow.8 While self-assembly is a power-
ful approach to generate microvascular networks, there is no
control over the nal architecture, therefore making it impos-
sible to use the same network across multiple experiments or to
easily couple experimental data with computational uid
dynamics (CFD) models. Furthermore, self-assembly has not
been implemented to generate larger diameter arterioles and
arteries needed to reproduce the hierarchical structure of in vivo
vasculature.

To overcome these limitations, various biofabrication tech-
niques have been developed that allow pre-denition of
network architecture prior to seeding with vascular cells. Many
of these techniques are amenable to generating two-
dimensional (2D), planar networks embedded in hydrogels
which have been implemented for drug screening,15,16 blood
ow modeling,17–19 disease modeling,20,21 to investigate ow-
mediated signaling between tumor and endothelial cells,22

cancer cell extravasation,23 self-healing of vasculature post
inammation,24 and thrombotic response of vessels due to
inammation.20 While many existing microfabrication
approaches allow for direct control over 2D, planar networks,
This journal is © The Royal Society of Chemistry 2019
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Fig. 1 An illustration demonstrating the challenges for addressing
boundary conditions in microfluidics-based microvascular models (a–
c), along with our solution (d). (a) A single-inlet, single-outlet network
created by adding a bounding channel that connects all dead-ends. As
there is no direct control over the bounding connections, the resulting
model exhibits irregular flow. (b) A multi-inlet, multi-outlet network
created by attaching a series of peripheral pumps to provide necessary
boundary conditions, which is impractical for 3D, non-planar
networks. (c) A single-inlet, single-outlet network effectively elimi-
nates flow through a majority of branches by blocking most termi-
nations (red X's). (d) Our solution constructs connections between
network terminations and pre-defined feeders to enforce the appro-
priate boundary conditions and thus desired flow properties in both 2D
and 3D networks.
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they do not duplicate the complex 3D structure of in vivo
networks.25 A few techniques to generate 3D, non-planar
networks have been developed, including 3D printing of sacri-
cial carbohydrate glass,26 modular assembly,27 and 3D bio-
printing.28 These approaches have been implemented to
increase cell viability in larger volume constructs,26 to create
a perfusable microuidic hydrogel,27 and to spatially organize
both cells and vasculature in a tissue construct.28 Although
these approaches allow repeated fabrication of 3D vascular
networks with well-dened geometry, they are incapable of
fabricating dense and tortuous small-diameter structures
needed to recapitulate in vivo microvascular architecture.
Direct-write assembly29 and omnidirectional printing,30 are
capable of generating a hierarchical vascular system with a wide
range of diameters, 10–530 mm for direct-write assembly and
18–600 mm for omnidirectional printing, but are not yet
amenable to generating dense, tortuous, and highly inter-
connected microvascular networks. To overcome this problem,
we recently developed an image-guided, laser-induced hydrogel
degradation (LIHD) technique that utilizes either computer
aided design (CAD) synthetic networks or 3D image stacks of in
vivo vasculature as digital templates to fabricate 3D, biomi-
metic, hydrogel-embedded microuidic networks whose archi-
tecture closely matches that of in vivo microvasculature.31,32

Laser-induced degradation is amenable to both synthetic and
natural hydrogels31–39 and has been utilized to generate micro-
uidic networks in cell-laden constructs.40

One limitation of using 3D image stacks of in vivo vascula-
ture as a digital template is the presence of dead-end vascular
structures that impede ow (Fig. 1c). Similar to modeling
synthetic microvascular networks (SMNs), real microvascular
networks (RMNs) must be cropped to t within designed
volumes. Since RMNs exhibit a high degree of connectivity, the
selection of any region results in an incomplete network with
multiple terminations, making it difficult to prescribe desired
boundary conditions. Two generalized methods have been
proposed to overcome this problem: incorporating multiple
inlets and outlets to the network (Fig. 1b)41 or completing the
network with additional connections to force the terminating
vessels to converge to a single bounding channel (Fig. 1a).40

While the rst approach is capable of generating physiologically
realistic ow through the network,42 it is limited to 2D, planar
networks. This approach also requires the implementation of
multiple syringe pumps and connectors which is experimentally
cumbersome. The second method (Fig. 1a) offers a simple
solution to this problem by adding an additional bounding
channel that connects all of the network dead-ends to a single
inlet and outlet, but has only been implemented for 2D, planar
networks and does not provide control over which dead-ends
are inlets or outlets, thereby limiting control over ow proper-
ties. To overcome these problems, we developed a network
design approach that constructs synthetic connections between
boundary nodes and two feeders (Fig. 1d), an inlet and outlet,
allowing for well-controlled boundary pressure, at previous
dead-ends based on established models or in vivo measure-
ments. Accurate ow simulations are required to calculate these
boundary connections. Rigorous numerical methods, such as
This journal is © The Royal Society of Chemistry 2019
the nite element method43 and nite difference method44 are
frequently used in CFD. However, determining the parameters
for the necessary augmented elements would require a time-
consuming iterative optimization step that is impractical on
most workstations. Accordingly, we performed this optimiza-
tion using the linear Hagen–Poiseuille (H–P) method, which
allows for a rapid extrapolation of pressure-driven ow through
fabricated networks. We implemented these features in an
interactive soware package called Accurate Flow in Augmented
Networks (AFAN) using C++ and CUDA for fast evaluation and
real-time visualization.

We demonstrate that the resulting augmented network
design can be fabricated using LIHD. We also demonstrated
that our augmented microvascular model has a high level of
ow predictive capability based on comprehensive CFD models
and microuidic experiments. This approach lays the founda-
tion for implementing 3D image stacks as digital templates for
fabrication of biomimetic vascular networks embedded in
hydrogels whose architecture and ow properties accurately
mimic in vivo vasculature.
Materials and methods
Two-dimensional Wheatstone bridge network

We designed and fabricated a microuidic network based on
the Wheatstone bridge using the AFAN user interface. Based on
Anal. Methods, 2019, 11, 8–16 | 9
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Fig. 2 Overview of our method. An inset shows a viable ROI network
culled from a larger microvascular network for augmentation and
fabrication.
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user input describing network architecture and ow properties,
AFAN generates a binary mask used as the basis for fabrication.

The fabricated network was constructed based on our
previously published protocols.32 Plasma-bonded poly-
dimethylsiloxane (PDMS) and glass microuidic devices were
fabricated to provide connections for a syringe pump. For
hydrogel incorporation within a device, devices were function-
alized by washing with 2,2-dimethoxy-2-phenylacetophenone,
and 3-(trimethoxysilyl)propyl methacrylate, to allow hydrogel
bonding to the PDMS and glass.10 A pre-polymer solution of 5%
weight per volume 3.5 kDa poly(ethylene glycol) diacrylate
(PEGDA), 3.7 mM Alexa Fluor 633-labeled acryl-poly(ethylene
glycol), and 10.2 mM lithium phenyl-2,4,6-trimethylbenzoyl-
phosphinate (LAP) in HEPES-buffered saline (HBS) (pH 8.3,
10 mMHEPES, 100 mMNaCl) was photopolymerized inside the
microuidic device via exposure to UV light at 6mW cm�2 for 30
seconds. A photo-mask placed in the light path was used to
dene the geometry of the hydrogel within the device. LIHD was
used to create amicrouidic network in the PEGDA hydrogels as
previously described.31–33 A series of virtual masks45 dening
ROIs in x, y, and z, were generated to guide the position of a 140
fs pulsed Ti:S laser operating at 790 nm at 37.7 nJ mm�2 focused
through a 20� (NA ¼ 1.0) water immersion objective for selec-
tive hydrogel degradation.

The fabricated network was lled with 2000 kDa FITC-
labeled dextran at 1 mg mL�1 in HBS and imaged via struc-
tured illumination. Particle image velocimetry was used to
quantify the average velocity in each segment of the micro-
uidic network. Using a syringe pump, 3 mm diameter poly-
styrene spheres, at 8.4 � 106 particles per mL in HBS, were
owed through the network at 25 mL h�1. Images of the particles
were acquired using a 2 ms image acquisition time over 3 min
intervals. An average of 200 particles per 3 min interval were
analyzed per segment in triplicate. The center-to-center
distance traveled by each particle was measured using ImageJ
and the particle velocity was calculated by dividing the distance
traveled by the 2 ms acquisition time. Particles that spanned
segments, or that overlapped, were excluded and particle
velocities were averaged for each segment. Constant uid ow
was maintained and veried throughout the image collection
period. The particle streaks collected are colored to help
distinguish particles from each other (Fig. 6b).
Three-dimensional microvascular network

The overview for our approach is shown in Fig. 2. We used
a whole mouse brain microvascular data set (Fig. 7a) collected
using knife-edge scanning microscopy (KESM)46,47 available
through the KESM Brain Atlas (https://www.kesm.cs.tamu.edu).48

A 652 � 652 � 100 pixel (120 � 120 � 100 mm) region of interest
(ROI) was identied and extracted from the whole-brain data set.
Microvessel centerlines and connectivity were segmented using
a predictor–corrector algorithm,49 while the surface model and
radii were extracted manually by setting a threshold to separate
the microvascular structure from the background. This data was
combined to generate a graph-based model used as input to the
AFAN soware.
10 | Anal. Methods, 2019, 11, 8–16
The AFAN user interface was used to specify boundary
pressures producing ow velocities based on in vivo measure-
ments.50,51 The AFAN H–P method was used to extrapolate ow
properties throughout the ROI. The segmented network was
then augmented with connections to enforce the desired
boundary conditions. The augmented network was constructed
such that an input volumetric ow rate Qi produced the desired
ow characteristics in the ROI (Fig. 1d).

A comparative CFD model was generated from an AFAN-
produced binary mask and imported into OnShape (https://
www.onshape.com), an online CAD package. The geometric
mesh was constructed using a built-in meshing function in
SimScale (https://www.simscale.com), which creates polyhedral
meshes for uid-based models. SimScale was used to integrate
an incompressible steady laminar uid ow into the simulation
with the simpleFoam solver in the OpenFOAM toolbox.52 We
specied the appropriate materials and boundary conditions
(inlet velocity, outlet pressure, and no slip walls), and conducted
simulations on the cloud. The results were visualized and
analyzed using ParaView,53 which offers a host of post-
processing operations for data analysis. The augmented, 3D
biomimetic network was fabricated in PEGDA hydrogels and
visualized with uorescent dextran in the same manner as the
2D network.

Results and discussion
Network characterization

Characterizing the hydraulic resistance of each synthetic
connection relies on accurate boundary measurements of either
boundary pressures or ow rates. The proposed interpretation
This journal is © The Royal Society of Chemistry 2019
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of pressure-driven ow through circular microchannels uses the
H–P equation based on boundary pressures:

Q ¼ pr2v ¼ pr4DP

8mL
(1)

which estimates the volumetric ow rate Q as a function of the
pressure drop DP, dynamic viscosity m, channel length L, and
channel radius r. If necessary, the corresponding wall shear
stress s can be calculated from the computed average ow
velocity v based on eqn (2).

s ¼ 4mv

r
(2)

The H–P equation was initially derived for channels that are
innitely long with no variation in geometry, but microvessels
oen have nite lengths and changing cross-sections. Since the
H–P method builds on several assumptions, including New-
tonian, incompressible, and laminar ow properties, and
boundary conditions such as the uniform pressure gradient
condition, we provide the following justication to demonstrate
its viability in our proposed models: for ow regimes, in vivo
blood ow exhibits a Newtonian pattern when the shear rate is
greater than or equal to 100 s�1,54 and small microvessels such as
capillaries and arterioles satisfy this condition.55 Furthermore,
uids in capillaries are well approximated as incompressible
mediums as the Mach number Ma drops below 0.2.56 Finally, the
Reynolds number Re in capillaries is usually much smaller than
2000, and oen less than 1, therefore such ow is completely
laminar. As for boundary conditions, the H–P equation can be
reasonably applied to channels with nite lengths if the uid has
a local and fully developed laminar ow prole.57 While a modi-
ed H–P equation was developed to correct for the tortuous and
fractal properties of capillaries,58 a capillary ber can also be
approximated as a straight cylinder of the same length with no
variation in diameter since inertial effects are negligible and the
cross-sectional velocity is stable for curved paths in low Reynolds
situations.59 In conclusion, the H–P method can be applied to
extrapolate accurate pressure-driven ow in our proposedmodels.

Nevertheless, eqn (1) only quanties the average velocity
through one channel, requiring an integral method that links
all channels together to solve for the entire network. A common
technique is to apply an electric–hydraulic analogy using the
following strategy:57

(1) Transform the hydraulic network into an equivalent
electric circuit and complete the circuit with voltage sources
(resembling pressure sources) based on an educated guess or
previous measurements.

(2) Calculate and label each resistor based on eqn (1).
(3) Write an Ohm's function for each ber and a Kirchhoff's

current function57 for each branching point.
(4) Organize these equations into a linear system and solve

with standard matrix factorization.
The high-dimensional matrix factorization step can take

hours using CPU-based implementation for large networks. In
this work, this step was performed using the CUBLAS library in
combination with an nVidia Geforce 970 GTX graphics card to
This journal is © The Royal Society of Chemistry 2019
provide real-time performance, and interactive visualization
and renement of the network and its augmented components.
Network augmentation

Since modeling entire microvascular networks is experimentally
impractical, current studies rely on selected ROIs that are culled
from a larger network. The peripheral network of an ROI plays
an important role in regulating its boundary pressure. Simply
building a microuidic model consisting of an extracted ROI
will not produce predictable ow as most boundary nodes are
either open to atmosphere or abruptly terminated, andmultiple
source supplies can be attached to provide the necessary
boundary conditions. However, this method is impractical for
3D networks that have vessels terminating from all directions of
the ROI volumes. We addressed this by developing a network
augmentation technique that connects all the inlet nodes to an
inlet feeder and all the outlet nodes to an outlet feeder using
synthetic connections. Not only do these connections
compensate for the absence of the peripheral network in
controlling boundary conditions, but they also reduce the
number of sources connected to a microuidic device and
therefore can be easily integrated into most microuidic
devices.

The augmented network is composed of three parts: an ROI
network, augmented connections, and two main feeders. The
synthetic connections play the role of a ow splitter to simul-
taneously achieve the appropriate boundary pressure Pi at each
end while keeping the ROI network unchanged (Fig. 1d). Since
augmenting outlets is identical to inlets, we will focus our
discussion on inlets in the following sections.

According to eqn (1), building a synthetic connection with
the appropriate hydraulic resistance requires a trade-off
between channel length and radius. For planar networks, we
xed channel length and solved for radius as an easy way to
avoid intersection (Fig. 3a). There are several graphical user
interface libraries, such as the OpenGL library, that simplify 2D
spatial arrangements. To build xed-length connections, we
introduced a pool-like feeder (a cylinder) with uniform pressure
outputs around the surface. To obtain the source pressure, the
inlet corresponding to the lowest source pressure was con-
strained to 5 mm. We expanded other connections, decreasing
their resistance to match the calculated source pressure.

For non-planar networks, we introduced a bus-like feeder (a
cuboid) with uniform pressure outputs at the top and bottom
faces (Fig. 3b), which connes connections to a single plane (e.g.
x–y). This helps determine optimal arrangements while avoid-
ing overlaps. To obtain the source pressure, we set all radii to 5
mm and xed the length of the inlet requiring the highest source
pressure. Other connections were extended to increase their
resistance to satisfy the established boundary conditions, or
calculated source pressures. Unlike channel expansion, channel
extension must account for channel distribution and space
utilization. While multiple methods can be used to increase the
channel length, one can simply replace the original connections
with longer straight connections. Unfortunately, this approach
sacrices space efficiency for simplicity and may make the
Anal. Methods, 2019, 11, 8–16 | 11
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Fig. 3 Augmenting networks with synthetic connections. (a) For
planar networks, the pool-like feeders (orange circle) and direct
connections are placed and arranged to avoid intersections. After
fixing one channel radius, the rest of the connections are expanded to
satisfy pressure constraints. (b) For non-planar networks, the bus-like
feeders (orange rectangle) are placed and connected using homo-
geneously axis-aligned paths without overlap. After fixing one channel
length, the rest of the connections are extended to satisfy pressure
constraints.

Fig. 5 Validation of the flow-controlling capability of our method
using a Wheatstone bridge planar network. A blue-red Brewer color
map is used to visualize the flow velocity of each channel. The AFAN
results closely match COMSOL results in predicting the flow direction
throughout the ROI network. (a) The augmented network is designed
to have downward flow in the central channel. (b) Augmented
connections are modified to induce upward flow in the central
channel. (a and b) SB ¼ 10 mm.
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network difficult to fabricate. More complex paths, such as
Hilbert curves,60 provide an efficient use of space, but are
incompatible with our fabrication method as our hydrogels may
not be able to mechanically support such a densely-packed
structure. We address this by adopting a space-lling method
using square curves (Fig. 4), which provides a compromise
between simplicity, space efficiency, and fabrication integrity.
Each of the square wave-like connections was constructed
inside of a user-dened axis-aligned bounding box (AABB),
which allowed for rapid testing of intersections and overlaps.
The workow to construct these connections is summarized as
follows:

(1) Construct initial connections and arrange to avoid
overlap.

(2) Optimize the curve order, n, based on an input parameter,
s, used to control the channel sparsity.

(3) Optimize the channel width, w, and channel length, h,
based on the desired total channel length, L0.

(4) Build an AABB for each connection and check for inter-
sections using AABB collision detection algorithms.
Fig. 4 Two iterations of 2D and 3D square curves. (a) The total
channel length L0 of a 2D square curve is computed by equation: L0 ¼ L
+ 2hn. (b) The total channel length L0 of a 3D square curve is computed
by equation: L0 ¼ (1 + 2n)L + 4hn2.

12 | Anal. Methods, 2019, 11, 8–16
Renement of square curves and other interactive functions
have been incorporated into AFAN. Microvessels were rendered
as truncated generalized cones (TGCs)61 dened by two adjacent
points along a ber that outline the local vessel shape and
diameter (Fig. 7d). Volumetric ow and pressure were interac-
tively calculated and visualized using arrow glyphs color-
Fig. 6 Microfluidic validation of the AFAN method based on an SMN.
The designed network is fabricated via laser-induced degradation of
a PEGDA hydrogel polymerized in a microfluidic housing. (a) A 3D
rendering of the fabricated network shows circular cross-sections
filled with 2000 kDa FITC-labeled dextran. (b) A 2D projection image
composed of 988 time-lapse images of the microfluidic network
depicts flowing 3 mm polystyrene particles, presented as colored
streaks, that are used for particle image velocimetry. White lines
indicate channel boundaries, determined using 2000 kDa FITC-
labeled dextran. (c) The wall shear stress in each segment was
calculated based on the average flow velocity and compared to the
simulation results using AFAN, where the error bars represent standard
deviation. (b) SB ¼ 40 mm.

This journal is © The Royal Society of Chemistry 2019
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Fig. 7 Mouse brain microvasculature reconstructed from 1000 KESM
sections. (a) A raw section (x–y image) is shown, with microvascular
cross-sections stained black using an India-ink perfusion. An inset
shows a close-up of the India-ink embedded sample, in which vessels
are stained black. (b) A maximum intensity projection of all 1000 KESM
sections shows the overall structure of the sample. (c) An inset shows
a viable ROI containing several inlets and outlets problematic for
modeling. (d) Our approach represents the ROI network as a graph-
like model with geometric components including points (orange dots),
fibers (blue lines), and radii (dashed purple lines). The fiber lists F0 and
F1 associated with each pivot point store fiber connectivity (e.g. a fiber
in F0 has geometry specified outward from the given point). An inset
shows visualizing fibers as a series of truncated generalized cones
(TGCs) in AFAN. (b) SB ¼ 0.5 mm. (c) SB ¼ 15 mm.

Fig. 8 CFD validation of the AFAN method based on an RMN. (a) The sim
using AFAN. Synthetic connections are rendered as black lines to reduce
shows the velocity field across the ROI and its associated vessel segment n
The velocity field is visualized using arrow glyphs color-mapped by the
simulations. Dashed red line represent maximum velocity values comp
shows great consistency between two methods. (a–b) SB ¼ 50 mm.

This journal is © The Royal Society of Chemistry 2019
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mapped by ow speed. A group of keyboard and mouse
commands are registered for interactive purposes, allowing
users to create customized augmented channels attached to an
RMN. Conveniently, boundary pressure values are specied
with only a few clicks.
Two-dimensional Wheatstone bridge network

We rst designed a simple planar network based on the
Wheatstone bridge structure which allows for control of the
ow direction in the central channel based on varying boundary
conditions. We used AFAN to specify two sets of boundary
conditions with inverse ow directions in the central channel
via different augmented connections (Fig. 5). We imported the
resulting volumes into COMSOL (https://www.comsol.com) to
simulate a laminar ow using the same boundary setups. The
comparison shows consistency of ow directions between two
results, demonstrating our ability to control the ow prole
within the ROI network via synthetic connections, or augmen-
tation channels.

Aer fabrication, analysis of FITC-dextran images (Fig. 6a)
showed a close agreement in vessel diameters between the
mask and fabricated network as previously demonstrated.31

Segment diameters range from 18.2 mm to 19.2 mm in segments
ulation and visualization of laminar flow through a designed network
the memory usage for better visualization of the ROI network. An inset
umbering. (b) Visualizing and analyzing the CFDmodel using ParaView.
flow velocity. (c) A velocity comparison between AFAN and SimScale
uted from AFAN average velocities values. (d) A pressure comparison

Anal. Methods, 2019, 11, 8–16 | 13
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1–5 of the fabricated network, and 19.2 mm to 30.6 mm in
segments A–E; note that segments A and Dwere purposefully set
larger than the rest of the segments. Segment diameters are 20.0
mm in segments 1–5 of the original network; 30.0 mm in segment
A, 20.0 mm in segment B, 22.0 mm in segment C, 26.0 mm in
segment D, and 20.0 mm in segment E; this shows a close
agreement in network architecture between the fabricated
network and its model counterpart. The measured velocity and
calculated wall shear stress in all of the segments closely
matched the AFAN simulation results (Fig. 6c). Segment 2
shows a slightly higher value than the simulation; this is likely
due to particle lodging in the bifurcation between segments 1,
2, and 3 that causes a slight narrowing at the inlet of segment 2.
Nevertheless, this experiment demonstrates that our AFAN
soware can be used to design and model physiologically rele-
vant microuidic networks. Here, we are referring to relevance
with respect to wall shear stress that averaged 45 dynes per cm2

in the synthetic network which closely matches measured in
vivo values for capillaries.55
Three-dimensional, augmented, biomimetic network

Microvascular networks are difficult to accurately reconstruct
due to the high spatial resolution and large volumes required
(Fig. 7b). Microvessels within these networks are oen less than
10 mm in diameter (Fig. 7c),62 however large volumes are
necessary for understanding connectivity patterns and identi-
fying the desired ROIs within microvascular beds.63 Images
were therefore acquired using knife edge scanning microscopy
(KESM)46 at a resolution of 0.6 mm laterally and 1.0 mm axially,
which is sufficient to resolve the smallest microvessels.47 This
method provides whole organ images at high contrast, making
them easier to reconstruct. Vessel center lines and radii were
extracted using an automated predictor-corrector algorithm49

that reconstructs the medial axis of each capillary ber. This
created an explicit graph model storing the architecture of the
segmented network (Fig. 7d) and provided an accurate
description of connectivity for ow simulations.

The average velocity of each channel was initially estimated
using AFAN (Fig. 8a) while the maximum velocity of each
channel was calculated using SimScale (Fig. 8b). The
Fig. 9 3D volume rendering of a fabricated microvascular network
(top) and its digital mask (bottom) shows a close agreement in overall
architecture and channel diameters between them. SB ¼ 20 mm.

14 | Anal. Methods, 2019, 11, 8–16
comparison shows that our linear method succeeds in quanti-
fying the velocity and pressure elds across the augmented
network (Fig. 8c and d). It also shows that the deviation between
the average ow velocity and maximum velocity can be
compensated by a scaling factor, which is equal to 2 for circular
channels (Fig. 8c). This is the result of integrating the velocity
prole along the channel cross-section.

An RMN with vessel diameters ranging from 10–20 mm
(Fig. 2) was also designed and fabricated. A 3D volume
rendering of the fabricated network (Fig. 9) was created using
Amira (ThermoFisher Scientic), which demonstrates a great
agreement in network structure between the mask and fabri-
cated network.

Conclusion

In this paper, we proposed a new method for designing
microvascular networks to enforce controlled ow when fabri-
cated in microuidic devices. To fulll this aim, we developed
soware for simulating, characterizing, and visualizing micro-
vascular networks for in vitro applications. We demonstrated
the ow predictability of our linear model using rigorous CFD
methods. We also demonstrated the viability of our network
augmentation technique by fabricating an AFAN-developed
microuidic device and tracking uid ow. The predicted
network characteristics, including the structure, uid velocity,
and wall shear stress, closely match experimental results. This
opens the door to creating microuidic models of microvas-
cular networks whose structure and uid ow parameters
mimic that of their in vivo counterparts. This will enhance the
use of in vitro cell culture models by allowing researchers to
more closely recapitulate in vivo ow patterns. Ideally, we can
bridge different sub-networks in series to study blood circula-
tion between different regions or across whole organs, such as
the brain.64,65 AFAN has been integrated into an open-source
application available online (https://www.stim.ee.uh.edu).
However, this current approach is based on the assumption of
Newtonian ow, and thus limited to microvessels with high
shear rates. To fully represent realistic in vivo ow, we plan to
explore future modications to our algorithm that will account
for non-Newtonian effects, as well as validate our results using
more accurate ow media.
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