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In digital assays, devices are typically considered to require precisely controlled volumes since variation in
compartment volumes causes biases in concentration estimates. To enable more possibilities in device
design, we derived two methods to accurately calculate target concentrations from raw results when the
compartment volume may vary and may not follow known parametrically described distributions. The
Digital Variable Volume (dvv) method uses volumes of ON compartments (those with positive signals) and
the total sample volume, while the Digital Variable Volume Approximation (dvva) method uses the
number of ON compartments, the total number of compartments, and a set of separately measured
volumes. We verified the trueness of the dvv and dvva methods using simulated assays where volumes
followed an empirical distribution (based on measured droplet volumes) and well known distributions
with a wide range of standard deviations. We applied both methods to digital PCR experiments with poly-
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disperse volumes, and also derived equations to estimate standard errors and limits of detection. The dvv
method allows the compartment volume to follow any distribution in each assay run, the dvva method
allows for quantification without in-assay volume measurements, and both methods potentially enable
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1. Introduction

In digital assays, targets are partitioned into separate compart-
ments, which are processed to give ON/OFF (positive/negative)
signals (usually with amplification) depending on whether the
compartments have any or no target entities. Digital assays
have been developed to detect various target types (nucleic
acids,'” proteins,™ and cells>®), and implemented in com-
mercial systems.””® These systems require the compartments to
have uniform volumes,” posing a challenge in precise micro-
fabrication and limiting total addressable sample volumes due
to the volume limitations of most microfluidic systems.
Simple, non-microfluidic, methods to make compartments
typically result in widely distributed compartment
volumes,'® ™ making quantification inaccurate using tra-
ditional statistics.’® Herein, we report general statistical
methods to quantify results of digital assays with any volume
distributions, termed Digital Variable Volume (dwv), and
Digital Variable Volume Approximation (dvva).
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Previously developed methods to infer results of digital
assays with polydisperse volumes assume that the compart-
ment volumes follow truncated normal (Gaussian) distri-
butions'® or gamma distributions.”” These methods provide
accurate results when the volumes follow the specified distri-
butions, or when the standard deviations are small. However,
in systems where compartments are made by a simple
method, such as vortexing,"*'* the volume distribution does
not have a known analytical form and spans orders of magni-
tude. A method to account for general volume variation was
previously published'® but has not been shown to work with
very wide volume distributions (e.g. those of manually made
droplets"*'* with standard deviations exceeding a few times
the mean). Another method was built upon results for multivo-
lume digital PCR (MVdAPCR)" but with the assumption that
the compartment volumes are non-identical, and without the
confidence intervals of the estimated concentrations.

We aimed to derive the dvv and dvva methods so that they
are compatible with any volume distribution, no matter how
wide it is or if it follows any known function. These methods
differ in the type of information available due to different
experimental setups. The dvv method is applicable when the
volumes of ON compartments are measured in each assay run
and the total sample volume is known. The dvva method is
useful when one knows the number of ON compartments, the
total number of compartments, and a set of pre-measured
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compartment volumes as an estimate of the volume
distribution.

In this paper, we describe the derivation of the dvv and
dvva methods. We then compare the truness of the dvv and
dvwva methods to that of some previously published
methods,'®™® using both assay results simulated with
different volume distributions and experimental results. We
also provide trueness maps of those methods and simple
approximation methods. We then characterize the precision of
dvv and dvva, and provide a simple approximation of the limit
of detection.

2. Materials and methods

Mathematical symbols that are generally used throughout the
whole paper are defined in Table 1. Some other symbols used
only locally are defined where they first appear.

2.1. Computation

Calculations and simulations were done using Python (3.6.4)
with scipy (1.0.0) and numpy (1.14.1) on a laptop computer.

2.1.1. Calculation of concentration estimators. Numerical
solutions were obtained using the method scipy.optimize.
fsolve. Calculations using the Nonparametric Volume
Modeling (volmod) were executed using the published
implementation in R'® as provided online (http:/github.com/
CenterForStatistics-UGent/dPCRVolMod).

2.1.2. Simulation of assay results. The simulation of
volumes following the empirical distribution was done by
inverse transform sampling. The cumulative histogram was
obtained from the experimentally measured volumes"

Table 1 Definitions of mathematical symbols

Symbol Definition

x Estimator of the parameter x (general notation)

(x) Expectation of x (general notation)

A Bulk concentration (number of targets/unit
volume)

Estimator of 4 (inferred from the assay result)
Natural log of bulk concentration
Estimator of A (inferred from the assay result)

o, Standard error of A

A A with smallest 6

n Total number of compartments
Viotal Total volume of compartments
a Number of ON compartments

A =4, Vo, ey V) Set of volumes of ON compartments

b=n 5 Number of OFF compartments

Ve =D v Total volume of OFF compartments
m =1 Number of pre-measured volumes
M ={vy, Vyy ey Ui} Set of pre-measured volumes

fv) Volume probability density function
L Likelihood function

L=In(]) Loglikelihood function

Ity Mean volume

oy Standard deviation of volume

Hinv Geometric mean of volume

w Product logarithm function (also known as

Lambert W function)
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(rescaled to have volume mean uy = 1). The interpolated
inverse was obtained using the method scipy.interpolate.
interpolateld. This function was then used to convert uni-
formly distributed random numbers into the volumes that
follow a distribution similar to that of the measured volumes.
Volumes following the gamma distributions were simulated
using the method numpy.random.gamma. The shape was p”/
ov>, and the scale was py’/oy (oy is volume standard deviation).
Volumes following the lognormal distributions were simu-
lated using the method numpy.random.lognormal. The mean
4
%), and
oyt py
the standard deviation of the underlying normal distribution

52
was 4 [ In <—;’ + 1>.
Hy

1
of the underlying normal distribution was Eln(

The simulation of volumes following the truncated normal
distributions was limited to those with smaller standard devi-
ations, due to a theoretical upper limit on the coefficient of
variation (oy/uy), which we now prove. We can calculate the
actual mean (uy) and standard deviation (oy) of a truncated
normal distribution defined on (0, o) using the underlying
mean (u,) and standard deviation (o).

A \ﬁaoewmzm -
z erf (”—O)

0’0\/5

(1)

e—Ho*/00*

2n [1 —Lerfe (ﬁ:‘)ﬂ)} ’

’uog—lluz/(Zﬂoz)

oVin |1~ Lerfe(;)]
(2)

oy =0y |1—

The larger oy, the larger the coefficient of variation, oy/uy.
With erf (0) = 0 and erfc (0) = 1, as o, approaches infinity, ov/uy
approaches a constant.

. oy /1
lim —=,/-—1~0.756
Go® fly 2

Therefore, random volumes following truncated normal dis-
tribution were simulated with a limited range of standard devi-
ations (oy < /2 — 1= 0.756 with uy = 1). Volumes following
the truncated normal distributions were simulated using the
method scipy.stats.truncnorm.rvs. To achieve the desired uy
and oy, the mean (u) and standard deviation (oy) of the under-
lying normal distribution were calculated by numerically
solving the system of eqn (1) and (2). The parameters for the
scipy.stats.truncnorm.rvs method include the lower bound of
(0 — po)loo, upper bound of effectively infinity (numpy.finfo
(numpy.float64).max), location of u,, and scale of o,.

Volume simulation was verified by comparing histograms
of simulated volumes with the theoretical probability distri-
bution functions (Fig. S17).

For a compartment with volume v;, at bulk concentration 4,
the assay result was simulated via a Poisson random number
(with mean of v;1), using the method numpy.random.poisson.

(3)

This journal is © The Royal Society of Chemistry 2019
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2.2. Generation and characterization of droplets that
describe the empirical distribution

The volume values were obtained in the same procedure pre-
viously described.” Droplets were generated by vortexing the
aqueous phase and non-aqueous phase together in a 1.5 mL
microcentrifuge tube. Samples were thermocycled then trans-
ferred to an imaging chamber and characterized using a
microscope (20x objective on a Nikon Eclipse Ti2 inverted
microscope with epifluorescence illumination and a 14-bit
Nikon DS-Qi2 CMOS camera (Nikon Instruments, Melville, NY,
USA)). The stability of polydisperse droplets prepared using
this same technique was previous demonstrated® and the
stability of the reagents used in this work has been previously

noted.”"*?
2.3. Digital PCR experiments
Digital PCR experiments were performed as previously

described." In each digital PCR experiment, polydisperse dro-
plets were prepared using 100 pL of the PCR reagents (see
details below) and 200 pL of BioRad oil/surfactant mixture
(BioRad, Hercules, CA, USA). These fluids were vortexed at
maximum speed for 30 seconds to create a population of poly-
disperse droplets with diameters in the range of 1.5 to
13 000 pm. The median diameter was 56 pm and corresponds
to 90 pL.

DNA targets were amplified using the BioRad Supermix for
ddPCR (BioRad, Hercules, CA, USA). Input DNA concentrations
were varied from 0.8 to 32 000 copies per pL. Final primer and
probe concentrations were 500 nM and 250 nM, respectively.
The assay utilized the targeted the E. coli rodA gene (forward
primer [GCAAACCACCTTTGGTCG], reverse primer
[CTGTGGGTGTGGATTGACAT]|, and  probe [TexasRed-
AACCCCTACAACCGGCAGAATACC-BHQ2]).** The droplet-based
reactions were run in either a C100 or C1000 thermocycler
(BioRad, Hercules, CA, USA) using the following protocol:
95 °C for 10 minutes, 40 cycles of 95 °C for 30 seconds and
60 °C for 1 minute.

In each experiment, droplets were imaged in a 100 pm-deep
cell counting chamber slide (Countess slide, ThermoFisher
C10228) using a Nikon Eclipse Ti2 inverted microscope with
epifluorescence illumination and a 14-bit Nikon DS-Qi2 CMOS
camera (Nikon Instruments, Melville, NY, USA). Large stitched
images were acquired using 26 x 13 individual fluorescence
images with a 20x objective, an automated x-y stage, and a
15% overlap. Droplets in the countess slides were focused
manually prior to imaging. The Nikon NIS-Elements AR soft-
ware was used to control the image acquisition.

The MATLAB (Mathworks, Natick, MA, USA) image analysis
software was used to automate the quantification of ON dro-
plets in each image. Briefly, images were cropped to remove
edges with uneven illumination, converted to a black and
white format, and thresholded before ON droplets were identi-
fied. The MATLAB Image Processing Toolbox (Mathworks,
Natick, MA, USA) was used for droplet size identification and
counting of ON droplets. In particular, images were analyzed
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using the imfindcircles function in the MATLAB Image
Processing Toolbox. The size range was set to 2-50, with
ObjectPolarity set to bright, Sensitivity set to 0.90-0.95, and
EdgeThreshold set to 0.10-0.15. The resulting radii were con-
verted to droplet volumes in pL.

3. Results
3.1. Derivation
3.1.1. General definitions and assumptions. In digital

assays, the targets (molecules, cells, etc.) in the bulk sample
are randomly distributed into many compartments (e.g. drop-
lets). A compartment with one or more targets gives a signal
(e.g- fluorescent intensity after nucleic acid amplification), and
is called an ON compartment. A compartment without targets
does not provide a signal, and is called an OFF compartment.
Targets are distributed into compartments following the
Poisson distribution. The assay system can detect and count
the number of ON compartments (but not the number of
targets per compartment).

For each assay, the bulk concentration needs to be calcu-
lated using a certain inference method. The dvv and dvva
methods are based on maximum likelihood estimation; the
concentration estimate is the one that maximizes the likeli-
hood of observing a certain experimental result. The choice of
maximum likelihood estimation was inspired by its use in
MVAPCR" (where each assay utilizes a handful of pre-
determined, precisely controlled volumes), which has been
inspired by limiting dilution assays for microorganism
counting.>**® In particular, an important feature is that results
from different volumes are readily combined by way of multi-
plying the likelihoods. Below, we derive the expressions used
to calculate the concentration estimates and the standard
errors using the maximum likelihood framework.

The main goal is to calculate the bulk concentration (1) or
its logarithm (A). The calculated values (estimators) are
denoted as 4 and A, respectively. All symbols are defined in
Table 1.

We begin by calculating the probability that a particular
compartment with turns ON given the volume (v) and bulk
concentration (1) (eqn (4)). It is the same as the probability of
having more than one target in the compartment, based on
the Poisson distribution with the mean of vA. This probability
is useful in subsequent derivation steps.

(wa)fe vt

k! o (4)

Peach(4,v) =1 — Prob(no targets) = 1 —

=1-e™

Herein, we operate under the assumption that eqn (4) is
correct. Mathematically, the assay in each compartment
follows Poisson statistics. In practice, this condition requires
the following. First, the target particles are much smaller than
the smallest compartment size, so that it is possible for each
compartment to have from 0 to a very large number of target
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particles. Second, the assay in each compartment happens
without interference from any other compartment (i.e. no
cross-talks, blocking, etc.). Third, the subject (e.g. a pond) has
to contain a much larger number of target particles (e.g. bac-
teria) in comparison to the expected number of targets in a
sample (e.g. 1 mL of pond water) (even if the concentration is
low), and the distribution of the particles is spatially homo-
geneous. Fourth, target particles are separate and independent
from each other, i.e. the co-occupation of any two particles in
the same compartment is due to independent events.

3.1.2. Digital variable volume (dvv). For dvv, the obser-
vations from an assay are the volumes of the ON compart-
ments, A = vy, Vs, ..., Vg, Where a is the number of ON compart-
ments. The total sample volume, Vi, is also required, but
this value is known from the experimental setup.

The likelihood [(4) of observing a certain assay result, ie.
particular numbers of ON and OFF compartments (a and b,
respectively) with the associated volumes is the product of
individual likelihoods calculated using eqn (4).

b
Hpeach /1 Vi H 1 peach )}
=1

ON OFF (5)
b
v, /1) e—vil
1l

We need to find the 4 value that maximizes /(1). We use the
natural logarithm of the concentration (A = In(1)) and the logli-
kelihood function (L(A) = In(/(4))) to conveniently calculate the
standard errors and enforce the requirement for positive con-
centrations. The calculation of the standard error is also more
appropriate for A than for 1 because the distribution of A is
less skewed.>*** Therefore, the goal is now finding the A value
that maximizes L(A). The expression for L(A) and the first and
second derivatives are shown below.

A) = iln(l - e’”""‘) —é ivi
= iln (1 —e e ) (Vtotal sz) (6)
=3 (1

a

[1a

i=1

e_leA> + vieA] - VtotaleA

a 2o Vi e

ZAZ Vi
ve1

To calculate A, we can numerically find the root of the first
derivative (eqn (7)), i.e. solve the equation below.
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a

.
ZT = Viotal (9)

i=1

Eqn (9) agrees with the result obtained by using an
equation for MVAPCR (eqn (10) in Kreutz et al.'®), treating
individual compartments as pre-determined compartments in
MVAPCR. Although this approach was taken previously with
the assumption that none of the volumes are identical,>® the
derivation of eqn (9) herein shows that this assumption is
mathematically unnecessary.

Plugging L'(A) = 0 into eqn (8), we have L"(A) < 0. So the A
value found using eqn (9) indeed maximizes L(A). Also, using
the derivatives at A, the standard error of A can also be calcu-
lated using the observed Fisher information, —L"(A).?’

ve
= Vvariance = | [———— / 24 E
L” ve‘)
1 —e

(10)

This o; can be used to calculate the confidence interval.
Calculating o; using the expected Fisher information is not
feasible because the volume distribution is unknown. In fact,
to use the dvv method, the volume distribution is not required
and need not be the same from one experiment to another.

3.1.3. Digital variable volume approximation (dvva). For
dvva, the observation from a particular assay run is a, the
number of ON compartments. This method also requires the
total number of compartments, n, and the set of m pre-
measured volumes, M = vy, V5, .., V. The pre-measured
volumes provides information about the volume distribution.
They are obtained by making compartments and measuring
their volumes without running the actual assay. The assay
reagents and sample matrix must be the same as those in the
actual assay, but the instrument for volume measurement is
not necessarily the same as that in the actual assay. The same
set of pre-measured volumes is used in the calculation for
every assay. The assumption is that this set of volumes is
sufficiently representative of the actual volume distribution.

In general, we can calculate the probability a compartment
turns ON using the volume distribution (specified by the prob-
ability density function f(v)).

Pox(d) = Jf(V)peach(M)dv - jf(v)(l e )y
=1- [f(v)e’“dv

(11)

Previously, f(v) has been chosen to follow the gamma distri-
bution'” or truncated normal distribution.'® However, in prac-
tice, f(v) may not be described by a simple function. and even
when it is, a set of pre-measured volumes still needs to be
experimentally obtained to characterize f(v). Therefore, for the
dvv a method, a set of separately measured volumes, M = vy,
Vy, «eey Uy i used instead of f(v).

This journal is © The Royal Society of Chemistry 2019
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Pon(4 e ") (12)

S\'-‘

1= o

=1

1 m
=1-—)» e

The likelihood function can then be obtained using the
binomial distribution (for the case of @ ON compartments out
of n compartments with the probability of pon(4)).

1) = ()1 = o

(=35 ()

As motivated above, we can calculate the loglikelihood func-
tion with the change of variable A = In(4), and subsequently,
its first and second derivatives.

n-a (13)

m—yel (14)
+ (n—a)ln(z"_lnf : > +1n(a>
(Z —141iy e—v,e") %Zv ehvie!
L(A) = o i
( Ze*”'e’ ) %;e e (15)
2 — pon(e")] %;vie/\
- pon(eM)[1 — pon(et)]
L'(A) =L A)et 11— T po(e] S e
i=1 (16)

2A [ 1 —vet
vie
- g vie !
=1

~ pon(eM)[1 — pon(et)]

To maximize L(A), we can find the root of L'(A) (eqn (17)),
and verify that it corresponds to a maximum by checking the
sign of the second derivative (eqn (18)). An interesting obser-
vation is that eqn (17) can also be obtained by using a/n to esti-
mate pon(4).

0=LA)=~-— ( Ze”’e> :**pON(eA) =%*P0N(/1)

(17)

L”(A)|A:/i :L”(A)|L’(A):0

A } : —ve!
2, 1 vie'
4 ' ve

=1

=0- <0
pon(e*)[1 — pon(et)]
We can then calculate o4 using the expected Fisher infor-
mation, —(L"(A)).”” The second derivative, L"(A), is a linear
function of ¢ — pon(e”) (eqn (16)). We can plug (2 — pon(e*)) = 0

(18)
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in eqn (15) and plug the subsequent result in eqn (16) to
obtain the following expression for o.

, 1
oy = haiane = |t
1 (19)
=————/Pon(eM)[1 — pon(eM)]/n
e"%zvze’”"w

In this particular case, the standard error calculated using
the observed Fisher information, —L"(A),?” is also the same as
eqn (19) evaluated at A = A. This can be verified by plugging
L'(A) = 0 into L"(A) (eqn (16)).

3.1.4. Lower bound of the standard error. A digital assay
setup typically provides the most precise concentration esti-
mates at an intermediate concentration, where the standard
error is minimal. To estimate the lower bound of o4, we con-
sider the scenario when every compartment has the volume of
v. Plugging m = 1 and v; = v in eqn (19) we have

mono

JAZGA =

20
vet\/n (20)

Using the first and second partial derivatives with respects
to A, we can calculate the optimal A (denoted A,) and the
minimum o;.

_ 2
Ao = In (W) ~ 0.466 — In(v) (21)
_ W2/t — 1 1.24263
min(s;) = R (22)

w2/ +2 " Va

3.1.5. Other methods. We also considered previously
known methods to calculate A (or ). Previously published
methods are Nonparametric Volume Modeling® (volmod),
Poisson Plus'® (pp), Poisson Plus Approximation'® (ppa), and
Huggett-Cowen-Foy'” (hef). Quick approximation methods are
those using the count (number of ON compartments) (cnt),
the arithmetic mean volume (amv), or the geometric mean
volumes (gmv). The list of the methods (including dvv and
dvva) and the corresponding equations is provided in Table 2.

3.2. Trueness

We characterized the truness of the methods by applying them
to simulated assay results and experimental digital PCR
results.'* In particular, the metric is the bias in the natural log-
arithm of the concentration, which is the difference between
the estimators (A) obtained by the specified methods and the
corresponding known quantities (A) set in the simulation or
measured by a reference method (in the cases of experimental
results).

3.2.1. Simulated assays. Assay results were simulated using
different volume distributions (all with uy = 1). Herein, the
empirical distribution is that of volumes made by vortexing an
aqueous/oil mixture in a cell detection assay, and was pre-
viously characterized."® The gamma and truncated normal dis-
tribution were chosen because previously published methods

Analyst, 2019, 144, 7209-7219 | 7213
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Table 2 Methods for calculating bulk concentrations from digital
assays results. Terms are defined above (Table 1)

Method Input Equation

Digital variable volume A, Vioa —
(dwv) =1

Digital variable volume

m
Approximation (dvva) an,M 0=%— (1 -1y e*”*“)
i=1
Nonparametric volume '
Modeling"® (volmod) a,n, M An iterative process
erfc (—L W _oyA
Poisson Plus'® (pp) a, n, 1-2= () e—iitHo A
Hv, Ov erfe (_% (%))
— 24262 1-2
Poisson Plus a, n, J ="V ) V”V:Vf"n(")
approximation'® (ppa) Hy, Oy
Huggett-Cowen-Foy'’ a,n J=—1 |1 4
Count (cnt) a,n A=
Arithmetic mean an,uy A= ;—Vlln(l -9
volume (amv)
Geometric mean Hinv A =In (1-9

volume (gmv)

were based on them.'®'” The lognormal distribution was also
considered due to previous characterizations of sizes of water
droplets in oil for some particular systems.'"'?

The standard deviation of the empirical distribution is 1.96.
Random volumes following this distribution were simulated
using inverse transform sampling.”® The standard deviations
of the gamma and lognormal distributions were chosen from
0.01 to 5.01 and included the standard deviation of the empiri-
cal distribution (1.96). The gamma, lognormal, and truncated
normal (truncated at 0 to ensure volumes are positive) distri-
butions with different standard deviations (in the range of
0.01-5.01) were also used. Eqn (3) also implies that the

empirical

gamma
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pp method® is not compatible with distributions with coeffi-
cients of variation larger than such limit.

We compared the trueness of the dvv, dvva, volmod, pp,
and hef methods with volume distributions that have the same
standard deviation as that of the empirical distribution of 1.96
(Fig. 1). The truncated normal distributions were not con-
sidered due to the limit discussed above (eqn (3)), so only the
empirical, gamma, and lognormal distributions were used.
The dvv and dvva methods were accurate in the whole range of
true A and in all distributions. The volmod method underesti-
mated in cases of gamma distributions with larger standard
deviations, but were accurate in all other cases (including the
empirical and lognormal distributions with large standard
deviations). The hef method was accurate with the gamma dis-
tribution as expected (it is based on the gamma distribution).
With the lognormal distribution, the hef method was accurate
at lower A values only and over-estimated at higher ones. The
pp method under-estimated at all concentrations with all dis-
tributions. This result is expected because the truncated
normal distribution behind the pp method cannot have a stan-
dard deviation of 1.96 while the mean is 1 (eqn (3)). Note that
the confidence intervals for the hef method were abnormally
wide with the empirical and lognormal distributions, and were
narrow with the gamma distribution. This observation further
emphasizes the need for the appropriate volume distribution
in the model, or the use of methods such as dvv or dvva to
bypass that need.

To provide an overview of the trueness of different methods
in a wide range of distributions, we also calculated error maps
of the inference methods (Table 2) over wide ranges of A and
oy (Fig. 2), with different distribution types (gamma, lognor-
mal, and truncated normal). After averaging over many simu-
lation runs, the bias (A — A) was 0 throughout for both the dvv
dvva methods. The volmod method was correct in most con-
ditions, except those with very large volume standard devi-

lognormal

H
9]
|
X

Fig. 1 Trueness of the dvv, dvva, volmod, hcf, and pp methods in analyzing simulated assay results. The plots show the bias (A — A) calculated from
simulated assay results versus input A. The shaded areas indicate the 95% confidence intervals calculated from the standard deviations.
Compartment volumes were simulated following the empirical, gamma, and lognormal distributions, with parameters matching that of the empirical
distributions (uy = 1 and oy = 1.96). The bulk concentration was varied over 2 orders of magnitude (1 € [0.069, 6.93] & A € [-2.67, 1.94]). The number
of pre-measured volumes, m, was 2000, and the number of compartments, n, in each assay was 1000. Each point shows the average of results from
1500 assays. Such number of assays was chosen to ensure the sample size is large enough, and the simulated results (e.g. ;) converge (Fig. S27).
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Fig. 2 Trueness maps of inference methods (Table 2) with different volume distributions (gamma, lognormal, and truncated normal), standard devi-
ations (oy € [0.01, 5.01] & In(oy) € [-4.61, 1.61]), and bulk concentrations (A € [-2.67, 1.94]), with uy = 1. The color maps show the difference
between A (calculated from simulated assay results) and input A. The orange and blue dots indicate locations of 20% overestimation of i
(A—A > 0.18) and 17% underestimation of A (A — A > 0.18), respectively. The number of pre-measured volumes, m, was 2000, and the number of
compartments, n, in each assay was 1000. Each point shows the average of results from 1500 assays. Dark gray areas indicate where the calculation

is invalid. For the truncated normal distribution, In(sy) < —0.461, because oy < 0.756 when py = 1 according to eqn (3).

ations. As expected, the hef method had no errors with the
gamma distribution, but led to errors with the other distri-
bution types. Similarly, the pp method gave correct results for
truncated normal distributions, but not others. In general,
methods other than dvv and dvva were accurate at lower bulk
concentrations and volume standard deviations, while the dvv
and dvva methods were accurate in all cases considered.

3.2.2. Experimental assays. We calculated A values with
different methods using experimental results of digital PCR
assays in vortexed droplets™® (Fig. 3). The dvv, dvva, volmod
methods gave A values similar to the expected ones (as con-
firmed by a commercial digital PCR assay). As expected from
the simulation (Fig. 2 and 3), the hef method overestimated at
higher concentrations, and the pp method slightly underesti-
mated in some occasions.

dvva

) 10 ) 10 © 10
o ik

0w oo
oo N W
o
LI |

-12.5
-10.0
-12.5

A

volmod

Q@ 10 O
S N 19
259

However, results using all methods were noisy and were
obtained with only 3 technical replicates. As previously
pointed out,"* there remains challenges in imaging and
measuring droplets with sizes spanning a wide range. Future
experiments with more replicates and better droplet counting
methods (e.g. using a confocal microscope or a flow-through
reader) will allow for a more expansive validation process.

3.3. Precision

Having established that the dvv and dvva methods have good
trueness (Fig. 2), we investigate the precision, using the stan-
dard error A.

It is useful to characterize when the calculation is more or
less precise, i.e. the standard errors are smaller or larger,
respectively. Using A obtained with the dvv method for simu-

hcf

-2.5

Fig. 3 Application to experimental data (droplet digital PCR'®). Plots show the relationship between A values calculated using the dvv, dvva, hcf,
and pp methods versus the expected A = In (1) values. The solid lines indicate the corresponding simulation results (averaged over 1500 simulation
runs). The white dashed lines indicate where A — A. The known input concentrations (1) were 8.0 x 1077, 8.0 x 107°, 8.0 x 107>, 8.0 x 107, 8.0 x
1073,1.6 x 1072, and 3.2 x 1072 copies per pL, and the corresponding A values were —14.04, —11.74, —-9.43, —7.13, —4.83, —4.14, and —3.44. Note that
the y-axis scale in each panel was chosen to present the data fully and clearly, and may be different from those of other panels.
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Fig. 4 Maps of the standard error (c;) at different volume standard deviations (cy) and log bulk concentrations (A), with different types of volume
distributions (gamma, lognormal, and truncated normal), using the dvv method. Each panel corresponds to a volume distribution type, and provides
the landscape of the standard error as a function of A and 6y. The white dashed line denotes the optimal A (eqn (21)). The magenta lines denote the
contours (interval = 0.002). Each standard error (each point on the maps) was calculated from 1500 A values, each of which was calculated using
the dvv method from raw results of an simulated assay. In each assay, the number of compartments was n = 1000. The dark gray area corresponds
to where the truncated normal distribution is not defined (sy < 0.756 according to eqn (3)). The mean volume, py, was 1.

lated assay results, ; was calculated over wide ranges of A and
oy (Fig. 4). The quantity ¢; did not markedly increase until
oy = 0.5. Similarly, the most-precise A is near the best-case esti-
mate of ~0.466 (eqn (21)). Note that at smaller oy, the land-
scapes are similar across different distribution types, and at
larger ov, the most-precise A also increases.

The dvva method is called “approximation” because the
pre-measured volumes are used to approximate the true
distribution. The more pre-measured volumes
(larger m), the better this approximation. Indeed, as m
becomes larger, the dvva 6; becomes smaller and approaches
the dwv o (Fig. 5).

The standard errors of A can be obtained using eqn (10) for
the dvv method, and eqn (19) for the dvva method. The use of
standard errors of A is appropriate (especially when confidence
intervals of assay results are desired) because A values follow
normal distributions (Fig. S31). However, these expressions are

volume

empirical

O'A, dvva/ O'A, dwv

10000

100 1000

m

Fig. 5 Comparison between the standard error (sy) of the dvva method

expected to provide approximations only. If the dvv method is
used, the standard error provided by eqn (10) is conditional
upon the set of individual compartment volumes, each of
which is a random variable based on the true volume distri-
bution. The use of eqn (19) for dvva is more forgiving,
because, even though the set of pre-measured volumes is also
a random variable based on the true volume distribution, it
only needs to be representative enough. Indeed, the error plots
(Fig. 6, S371) indicates that eqn (10) (for dvv) underestimated at
lower concentrations and overestimated at higher concen-
trations, while eqn (19) (for dvva) gave results similar to the
simulated values, with a little underestimation at higher
concentrations.

3.4. Limit of detection

We then investigated how volume variation affects the assays’
sensitivity, using the limit of detection (LOD). Herein, the LOD

lognormal

10000 100 1000 10000

and that of the dvv method. Plots show their ratio as a function of m

(number of pre-measured volumes) at specified A values and volume distributions (empirical, gamma, lognormal). The volume mean, py, was 1, and

the volume standard deviation, oy, was 1.96.
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Fig. 6 Maps of errors in using derived expressions to calculate standard
errors of A. The error is defined as In(calculated ¢; /simulated o). The
calculated o is the standard errors calculated using eqn (10) for the dvv
method, and eqn (19) for the dvva method, averaged over different
simulated assays of the same conditions, as specified by the volume dis-
tribution type, volume standard deviation, and input concentrations. The
emprirical o; for each assay condition is the sample standard deviation
of A obtained by simulated assays. The simulation parameters are the
same as those used to obtain Fig. 2.

is defined as the concentration at which at least 1 ON compart-
ment is observed in g fraction of experiments. In particular, we
choose g = 95%. The LOD can be approximated by considering
the probability of sampling at least 1 target entity in each
whole assay (with the total volume of Vipw = npy). Plugging
this volume and ¢ in eqn (4) we have the following.

g=1- e~ HvLop
hop = — 21—49)
Ny (23)
Arop = In (— M)
Nty

Note that A;0p scales with 1/n and does not depend on the
volume distribution. To verify this observation, we simulated
limits of detection over different volume distribution types
and standard deviations (details in the ESI{). Indeed, eqn (23)
agrees well with results simulated over different n, oy values
(0.01-5.01), and distribution types (empirical, gamma, lognor-
mal, and truncated normal) (Fig. 7).

4. Discussion

4.1. Choice of method

The dvv and dvva methods can both be used to accurately cal-
culate A (Fig. 1 and 2) with computational simplicity by
numerically solving eqn (9) and (17), respectively. However,
they require different inputs, and therefore, are suitable for
different scenarios. The dvv method is more precise (Fig. 5),
and does not rely on any assumptions about the volume distri-
bution. However, the volume of each ON compartment needs

This journal is © The Royal Society of Chemistry 2019
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Fig. 7 Limits of detection of A. The plot shows the relationship
between the limit of detection, A op, and the number of compartments
per assay, n (100-10 000), when the mean volume is a constant (uy = 1).
The points indicate simulated A op at different oy values (0.01-5.01),
with different volume distributions (empirical, gamma, lognormal, and
truncated normal). The white curve represents the analytical expression
(eqn (23)). Note that at each n value, many points representing different
volume distributions cluster at the white curve.

to be measured, adding a requirement on the experimental
setup. This requirement is already satisfied in some systems,
such as imaging based ones with the hardware capability, and
the software to convert images into volumes can be developed
in a straightforward fashion.*"*'*' On the other hand, the
dvva method only requires the ability to detect and count ON
compartments. A low-resolution/low-magnification imaging
system or a flow-through system may already have this capa-
bility. However, the experimental setup has to be consistent
enough so that the volume distribution is similar over
different realizations of the assay (e.g. like a setup previously
described'*'*). 1deally, many pre-measured volumes should be
obtained to accurately reflect the true volume distribution and
to improve the precision (Fig. 5). Therefore, with respect to
instrumentation, the choice between the dvv and dvva
methods is based on the compromise between the simplicity
of compartmentalization and detection.

According to previously published results, the volmod
method was expected to be compatible with any volume distri-
bution.'® Surprisingly, it was found to be inaccurate at larger
volume standard deviations (Fig. 2). A possible reason for this
discrepancy was how the method is implemented. The pub-
lished implementation includes user-determined parameters
such as the number of volumes to be simulated, and the
number of iterations. Default values were used in this paper.
Future investigation in how volmod is implemented would be
useful. An additional motivation for such investigation is that
the volmod implementation in R is about 3 orders of magni-
tude slower than the dvva implementation in Python described
herein (Fig. S57).

Even though other methods (Table 2) may not be as accu-
rate as the dvv and dvva methods in some cases (Fig. 1 and 2),
calibration can be performed when using them, as previously
suggested.'® For example, curves of A versus A with biases are
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monotonically increasing, implying the possibility of cali-
bration (Fig. 1). If the volume distribution is well approximated
by functions specified by a few parameters (such as a gamma
function), the calibration can be simpler than generally recog-
nized."® If the volume distribution cannot be simply described
by a few parameters, many experiments have to be performed.
In such case, depending on the specific scenarios, one needs
to choose between having larger numbers of experiments (for
calibration) and adding the capability of
measurements.

volume

4.2. Volume polydispersity

There are important points to consider about digital assays
with polydisperse volumes in general, regardless of the infer-
ence method. First, a crucial assumption is that any compart-
ment with one or more targets turns ON. This assumption
may not always hold. For example, when the volume distri-
bution is very wide, some compartments with very large
volumes have very low concentrations of targets. If the signal is
generated in a linear fashion, such as enzymatic amplifica-
tion,* the bulk concentration is underestimated. Fortunately,
this issue is mitigated if the signal is generated with super-
linear amplification, such as in the case of nucleic acid ampli-
fication."* On the other hand, if a compartment is extremely
small, the generated signal may not be easily detected.
Therefore, one must pay extra attention to the processes of
signal conversion and detection with a larger volume
variation.

Second, the analysis of the LOD revealed an important
insight about assay systems with variable volumes. The finding
that the LOD does not depend on the volume distribution, and
only scales with 1/Viy (or 1/n when uy is a constant)
(eqn (23)) indicates that the assay sensitivity is not affected by
volume variation. This implies that for detection purposes, any
method of compartmentalization can be employed without
concerns about volume precision or trueness, even when
compartments are droplets with really wide
distributions.*'*

Third, whether the main goal is sensitive detection, quanti-
fication, or both, digital assays can now be performed without
complex and expensive microfluidic devices. This development
enables the design of digital assays geared toward resource-
limited settings. The total addressable volume can consequen-
tially be increased to achieve better sensitivity (eqn (23)) and
mitigate the noise due to volume variation.

volume

4.3. Possible generalization to deal with other stochastic
factors

Volume variation is an important concern when developing
and using digital assays. However, there are many other pro-
cesses that can stochastically affect assay outcomes. For
example, bacteria may have some noise in processing signal,
or DNA molecules may randomly be lost to surfaces before
amplification. Both the dvv and dvva methods can be general-
ized to work with stochasticity in other parts of the setup. In
particular, peacn (eqn (4)) can be a function of other variables,
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and can be plugged into eqn (5) to perform dvv, or eqn (11) to
perform dvva (with separately measured values of the other
random variables). If pe,.n, can be rearranged into eqn (4) with
Vefrective iNStead of v, then all derived equations are readily
applicable.

4.4. Experimental considerations when implementing dvv
and dvva

The main advantage of the dvv and dvva is the independence
from assumptions about the distributions of the compartment
volumes. However, they both rely on volumetric measure-
ments, which may have errors. When dvv is used, in each
assay run, errors in volumes of ON compartments and total
sample volume manifest directly into the equation to solve for
bulk concentration (eqn (9)). When dvva is used, errors in indi-
vidual pre-measured volumes (v;), if not systematic, may still
lead to a set of pre-measured volumes (M = {vy, vy, ..., V;,}) that
is still representative of the true volume distribution, and still
lead to correct calculations of the bulk concentrations
(eqn (17)). In addition, the pre-measured volumes (M = {vy,
Va, .-y Vif) can be obtained separately from the assays, using
accurate and precise instruments (e.g. confocal microscopes®®
and channel-based microfluidic devices*®). Therefore, while
dvv may be more precise (Fig. 5), dvva may be more robust.

Another possible experimental error is the variation in the
signal intensity, which has been observed in many digital PCR
experiments.’** Such error would change the number of
terms in the left hand side of eqn (9) (for dvv) and the a/n
ratio in eqn (9) (for dvva). In both cases, if the errors are not
systematic, their effects on different compartments may par-
tially cancel each other out. However, it would still be better to
apply clustering techniques to better distinguish ON and OFF
compartments as previously suggested.’** Furthermore, an
alternative is to use the likelihood of observing a certain signal
intensity (instead of an ON/OFF response like in eqn (4)) as a
function of the compartment volume and the bulk concen-
tration, and apply a similar maximum likelihood estimation
framework as described herein. In such case, however, the
assay requires the instrument to measure intermediate signal
intensities and is no longer digital.

5. Conclusions

We described the dvv and dvva methods with equations to cal-
culate the estimators of the natural logarithm of the concen-
tration and standard errors. Both methods provided accurate
estimators from simulated and experimental assays, even
when the volume standard deviations were a few times larger
then the means. The dvv method requires the measurements
of ON compartments in each assay, but does not require the
volume distribution to be same in different assays. The dvva
method requires a set of separately measured volumes repre-
sentative of the distributions in all assay runs, but does not
require volume measurements for each independent assay
run. With the simplicity in computation of these methods,
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they can be readily integrated with pre-built systems, or used
separately to analyze raw results on typical computers. In the
future, they can be extended to consider other stochastic pro-
cesses in digital assays. In general, these methods enable the
quantification in a class of digital assays where compartmenta-
lization can be done using simple methods, allowing for
simpler designs and higher volume capacities.
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