Issue 14, 2019

Catalase-linked immunosorbent pressure assay for portable quantitative analysis

Abstract

In this study, catalase-linked immunosorbent pressure assay with a gas-generation reaction was established for quantitative detection of disease biomarker C-reactive protein (CRP) by a portable pressuremeter. The pressure-based detection system recognizes, transduces, and amplifies the target signal to a convenient target-correlated pressure signal reading in a closed chamber. Biotin molecules were modified on the surface of catalase in order to incorporate catalase into the pressure immunoassay by the streptavidin–biotin interaction. To improve the assay performance, the modification ratios of biotin molecules to catalase, and the concentrations of capture and detection antibodies were further optimized. The catalase-linked immunosorbent pressure assay allows portable and quantitation analysis of CRP with a limit of detection of 1.8 nM, which can satisfy the clinical needs for determining the risk of cardiovascular disease. The catalase-linked immunosorbent pressure assay also shows superior specificity and good accuracy. Compared to the previously reported assay catalyzed by PtNP nanozyme, catalase is not easily deactivated during storage and operation. With the merits of enzymatic efficiency, biocompatibility, low non-specific adsorption and facile modification, catalase can be reasonably used for reproducible, stable, simple quantitative detection of disease markers using a portable pressure-based assay in resource-limited settings.

Graphical abstract: Catalase-linked immunosorbent pressure assay for portable quantitative analysis

Supplementary files

Article information

Article type
Paper
Submitted
18 Mar 2019
Accepted
01 Jun 2019
First published
03 Jun 2019

Analyst, 2019,144, 4188-4193

Catalase-linked immunosorbent pressure assay for portable quantitative analysis

D. Liu, F. Liu, Y. Huang, Y. Song, Z. Zhu, S. Zhou and C. Yang, Analyst, 2019, 144, 4188 DOI: 10.1039/C9AN00499H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements