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Optimization and quantification of the systematic
effects of a rolling circle filter for spectral pre-
processing

Sebastian Mirz, * Robin Groessle and Alexander Kraus

Spectral pre-processing, especially baseline approximation, is a crucial part in quantitative spectroscopic

applications, such as Raman or FTIR spectroscopy. Filters used for this task need to be optimized for their

application, in order to achieve a sufficient baseline approximation while minimizing the distortion of the

spectral lines. We propose a combined method that optimizes a rolling circle filter and quantifies the

residual systematic influence on the spectral lines by a Monte Carlo approach that simulates and sub-

sequently analyses spectra with known line properties and known maximum baseline curvature.

1 Introduction

A typical spectrum consists of a signal that contains features
relevant for the spectroscopic application and the non-relevant
background and noise. The background can be further classi-
fied into two groups: first, the smooth low-frequency baseline
caused for example by instrumental effects, such as the source
intensity or beam splitter transmission in FTIR, or the fluo-
rescence background in Raman; second, sharp high-frequency
background signals or bands caused for example by atmos-
pheric absorption. The goal of spectral pre-processing is to
separate the relevant signal from the background. By the separ-
ation of the signal and background, baseline removal tech-
niques allow quantitative studies based on spectroscopy.
Common applications are, e.g. the investigation of molecular
energy levels1 or concentration measurements based on line
intensities or absorbances.2–4

An excellent overview of baseline-removal techniques is
given by H. G. Schulze et al.,5 containing e.g. polynomial or
spline approximation methods, band-pass filters or derivative
methods. Fully automated pre-processing methods have been
implemented using the Savitzky–Golay6 or second derivative
methods.7 The Savitzky–Golay filter8 is a smoothing-filter that
obtains results similar to a moving average. Therefore, the
filter tends to deliver uneven baselines. Modifications to
improve this behaviour, e.g. as proposed by H. G. Schulze
et al.,6 are time consuming just like the smoothing splines
used by the second derivative method presented by
C. Rowlands and S. Elliott.7

In this work, we use a geometrical rolling circle filter for
baseline estimation. This filter was originally published by
I. K. Mikhailyuk and A. P. Razzhivin.9 They demonstrated its
application to 1-dimensional data in the form of Raman
spectra and chromatograms and 2-dimensional electrophor-
esis patterns. The rolling circle filter for baseline-removal is
commonly used in spectroscopic techniques based on Raman
spectroscopy, such as composition analysis via micro-Raman
spectroscopy of algae10,11 or the investigation of the structural
phase transition of vanadium dioxide.12 For the continuous in-
line concentration monitoring of hydrogen isotopologue mix-
tures, James et al.13 implemented a fully automatic spectral
analysis based on a slightly modified rolling circle filter in
combination with a Savitzky–Golay filter. Our application is
the development of a real-time and inline measurement
system for the concentration of liquid hydrogen isotopologues
for the integration in a cryogenic distillation column in the
fusion fuel cycle.3,4,14 We use the original rolling circle filter
and apply it on the FTIR spectra of liquid hydrogen isotopolo-
gues, which delivers a sufficient baseline-removal without the
necessity of an additional Savitzky–Golay filter for the charac-
teristic background curvatures and peak shapes of these
spectra.

In FTIR spectroscopy, a division by a reference spectrum,
recorded with only the solvent in the measuring cell is typically
used for baseline removal. However, in the case of gases or
pure liquids as the sample, a smooth baseline remains to be
removed after this division, which implies the use of a filter
for pre-processing before the actual analysis. The parameters
of the filter need to be optimized, depending on its appli-
cation, to minimize the distortion of the spectral lines and pre-
serve the important parameters for spectra analysis, namely
the peak position, peak intensity (height or integral) and peak
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width. Since this optimization cannot completely avoid the dis-
tortion effects, the systematic influence of the filter on the
peak parameters needs to be known, to be used either as a
systematic uncertainty or for correction. We present a method,
demonstrated on the example of a rolling circle filter, that
both optimizes the filter and quantifies its systematic influence
on the peak parameters namely width, intensity and position.

2 Two-dimensional parameter
optimization of the rolling circle filter
by a least squares method

The rolling circle filter,9 which is the subject of this study, can
be described in three steps. First, a circle with radius r is con-
structed for each point of the input spectrum, with the x-coor-
dinate of this point being the x-coordinate of the center of the
circle. This corresponds to the circle rolling over the spectrum.
Second, the circle touches the spectrum in at least one point,
but never intersects it. The circle touches from below, if the
signals are positive, and from above, if the signals are negative.
In the following, only the procedure for negative signals is dis-
cussed. Third, the difference of the input spectrum and the
circle’s lower arc is calculated. This value is compared with the
corresponding y-coordinates in the output array. The higher
value is written to the output array. This comparison is
repeated for each point of the input spectrum and its corres-
ponding circle. The output array then represents the con-
structed baseline.

Since the circle radius strongly defines this baseline and
needs to be adapted to the curvature of the input spectrum, it
is indispensable to optimize this parameter depending on the
application of the filter.

2.1 Optimization method

This optimization method for filter parameters uses the sum

of squared differences χ2 ¼ P

i
ðtðν̃Þb;i � tðν̃iÞÞ2 of the extracted

baseline t (ν̃)b and the unfiltered transmission spectrum t (ν̃)
as the characteristic parameter. This method was already
proposed by I. K. Mikhailyuk and A. P. Razzhivin9 and
implemented by N.N. Brandt et al.15 In the case of the rolling
circle filter, according to Mikhailyuk and Razzhivin,9 χ2 shows
a plateau at certain radii, with the ideal filter radius being on
the plateau, close to the right edge.

This plateau is created by the following effects:
• for small radii rν̃, the filter-circle rolls into the signal

peaks, therefore χ2 is small.
• for intermediate radii rν̃ – the plateau – the filter elimin-

ates the background. Its radius is larger than the peak width,
but smaller than the background curvature, therefore χ2

increases only slowly with increasing filter radius.
• For large radii rν̃, the baseline detaches from the spec-

trum, as the filter radius becomes larger than the spectrum’s
curvature, leading to a rapid increase in χ2.

We also use the rolling circle filter for the presented optim-
ization, however we apply three modifications in comparison
to Mikhailyuk and Razzhivin.

First, we use the rolling circle filter for transmission spectra
in absorption spectroscopy and therefore negative signals.

Second, we normalize the spectra to their value at the wave-
number 2500 cm−1.

Third, we use an ellipse instead of a circle, and therefore
characterize our filter by two parameters. This allows us to
minimize the calculation time, as the calculation-time
depends on the size of the arrays holding the spectrum and
the circle shape.

Since this extends our optimization problem to two dimen-
sions rν̃ and rT, χ

2 is represented by a matrix (dimension n × m).
We can improve the search for kinks and the plateau in
this matrix by analyzing the norm of the corresponding
Hessian matrices for each element of the χ2 matrix. The
Hessian matrices (dimension m × n = 2) are calculated from
each element of the chi squared matrix according to

Hij ¼ @2χ2

@ri@rj
. We then calculate the sub-multiplicative max-

norm kHk ¼ ffiffiffiffiffiffiffi
mn

p �maxðHijÞ for each Hessian matrix. This
results in a (n − 2) × (m − 2) matrix sensitive to the edges of
the plateau in the χ2 matrix.

2.2 Result: determination of optimized filter parameters

To illustrate the previously discussed optimization method, we
chose the second vibrational branch of an absorption spec-
trum of a liquid hydrogen–deuterium mixture. We performed
the described algorithm on this for 50 values in the parameter
intervals given in Table 1.

Fig. 1 shows χ2 and the corresponding norms of the
Hessian matrices for these parameter intervals. The edges of
the plateau, which quadratically depend on the ν̃ and T-radius,
are clearly visible in the norm of the Hessian matrix. To illus-
trate the determination of the ideal rolling circle filter radius,
Fig. 2 shows the χ2 dependency on the radius rν̃ for a fixed
radii rT. Between the ν̃-radii of approximately 500 cm−1 and
1350 cm−1 for rT = 4.0 and 500 cm−1 and 2000 cm−1 for rT = 8.0
the previously discussed plateau in the χ2 dependency is
visible. This shows that a smaller T-radius can be compensated
by an also smaller radius in the ν̃ direction.

For the radius rT = 4.0, χ2 shows a second plateau with the
right edge at approximately rν̃ = 6000. To investigate its origin,
we filtered a spectrum used for this optimization with
different filter radii, see Fig. 3. The hereby determined base-
lines show a beginning detachment from the peak edges at the
filter radii of rν̃ = 2500 and rT = 8.0.

Table 1 Input parameters for the rolling circle filter optimization

Parameter Min. Max.

rν̃ (cm
−1) 100 9000

rI 0.1 25
ν̃ (cm−1) 5800 12 000
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The baseline created with the radii of rν̃ = 6000 and rT = 4.0
corresponds to the right edge of the second plateau in the χ2

dependency at a fixed rT = 4.0. For this larger filter ellipse, the
baseline completely detaches from the peaks between ν̃ =
5800 cm−1 and ν̃ = 6800 cm−1 and ν̃ = 7800 cm−1 and ν̃ =
9100 cm−1. At these radii, the rolling circle filter is unable to
create a baseline that compensates for the curvature that is
caused by the transmission function of the KBr beam-splitter
used in the FTIR spectrometer for the recording of this spectrum.

In conclusion, the right edge of the left plateau with the
radii rν̃ = 2000 and rT = 8.0, or similarly rν̃ = 1350 and rT = 4.0,
serves as an ideal radius according to our optimization
procedure.

2.3 Discussion

The results of the optimization of the rolling circle filter per-
formed exemplarily show the importance of this procedure
concerning three points.

First, the optimal filter parameters enable the determi-
nation of a baseline for the filtered spectrum that minimizes
the distortion of the spectral lines.

Second, as seen in Fig. 3, the optimal filter parameters
prevent a detachment of the baseline from the spectrum in
regions with high curvature. Depending on the spectrum, the
optimal filter parameters are not necessarily represented by the
global maximum, but rather by local maxima, in the matrix of
the norms of the Hessian matrices of the χ2 matrix, and there-
fore, a careful selection of filter parameters is necessary.

Fig. 1 The χ2 matrix (a) and the corresponding norms of the Hessian
matrices of the χ2 matrix kHk (b).

Fig. 2 The χ2 (a) and the corresponding norms of the Hessian matrices
of the χ2 matrix kHk (b) at the fixed radii rT = 4 and rT = 8. Note the
plateau between 500 cm−1 and 1350 cm−1 at 2000 cm−1 and the second
edge at rν̃ = 6000 for rT = 4. The ideal filter radius is the point, where,
beginning at small radii, kHk starts to differ from zero.

Fig. 3 Comparison of baselines created by the rolling circle filter at
different parameters rν̃ and rT for the first vibrational overtone band of a
transmission spectrum of a liquid hydrogen deuterium mixture.
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Third, regarding the rolling circle filter, the optimal para-
meter curve in the T-ν̃ radius space enables us to choose a
small ν̃ radius and therefore allows us to minimize the calcu-
lation time.

In a real spectrum, not only the line width and intensity,
but also the baseline’s curvature varies. Therefore, a simple
optimization of a filter for spectral pre-processing cannot be
performed on a single line, but has to be obtained for the
spectral part that is the subject of the investigation. However,
the result of such an optimization leads to a parameter set
that is only optimal for an average line. Therefore, some lines
are filtered perfectly, for some lines, the baseline doesn’t
touch the peak edges in the case of neighboring lines and for
some lines, the baseline is already subtracting the actual peak
area. The first effect is minimized by the division of the
sample spectrum by a reference spectrum, in case the base-
line’s curvature is caused by an instrumental effect. The
second effect, however, cannot be prevented if a single filter
parameter set is used for lines with different widths.
Therefore, the quantification of this effect is indispensable, if
the line absorbance and width are the subject of the spectro-
scopic investigation.

3. Quantification of the influence of
a filter on the line-shape in the
example of the rolling circle filter

The aim of this study is to quantify the systematic influence of
the rolling circle filter on the peak shape, in order to deter-
mine and correct the systematic uncertainty introduced by the
rolling circle filter. Especially relevant are the parameters that
represent the position, width and intensity or absorbance of
the peak. These parameters serve as a measurand in spectro-
scopic investigations.

To study the systematic influence of the filter on these, we
implemented a method based on the simulation of random
peaks on a random background. We set the constraint that the
parameters defining the background and peaks are chosen
randomly, but in a defined range. These spectra are then
treated with the rolling circle filter and the peaks are analyzed
to extract their parameters after filtering. There are three main
reasons to rely on statistics, rather than doing a specific ana-
lysis for this simulation.

First, the correlations between the peak and background
parameters and the influence of the filter on these are
unknown beforehand. Therefore, since it is not known which
input parameters lead to which result, direct non-randomized
analysis is not possible.

Second, this method is intended as a general method not
only applicable for one filter. For a specific filter, there might
be specific methods to investigate possible correlations, a uni-
versal method however needs to rely on statistics.

Third, usually in a spectroscopic application, the final fil-
tered spectrum is the result that is used to determine the peak

width, integral and position. Therefore, the systematic influ-
ence on the peak shape must be known on the basis of the
already filtered peak. A method based on statistics provides
suitable tools to achieve this.

3.1. Determination of input parameters for the simulation
from measured spectra

The simulation needs two different sets of input data: back-
ground related and peak related parameters. The relevant para-
meters characterizing the background shape b(ν̃) are its gradi-

ent m(ν̃) = b’(ν̃) and curvature κðν̃Þ ¼ b′′ðν̃Þ
ð1þ b′ðν̃Þ2Þ32

.16 We deter-

mined the maximum curvature as the input parameter from
the measured spectra by extracting a baseline with the rolling
circle filter and a numerical calculation of the curvature for
every point of the baseline. We determined then the line para-
meters width σ, position μ and intensity I by the typical selec-
tion of spectral lines from the second vibrational branch of the
liquid hydrogen isotopologues, see Table 2, and then a
manual determination of the respective parameters. The
hereby determined input parameter ranges, including a
certain margin, are given in Table 3.

3.2. Simulation method

As the peak, we chose a simple Gaussian shape

Aðν̃Þ ¼ I � 1

σ
ffiffiffiffiffi
2π

p exp
ðν̃� μÞ2

σ2
, scaled by the factor I, with the

Gaussian width σ and the center wavenumber of the peak μ.
This shape is symmetric, therefore an asymmetric contribution
introduced by the rolling circle filter can be easily quantified.
Also, the shape is only defined by three parameters, which
leads to a better stability for the fitting of this shape to the fil-
tered spectra. The peak parameters were chosen randomly in
the parameter range given in Table 3.

We place the simulated peaks on a random cubic spline
background only defined by its maximum curvature. This kind

Table 2 Selected lines and the corresponding parameters intensity I,
width σ and center μ determined from the experimentally measured
FTIR spectra of the inactive hydrogen isotopologues

Line μ (cm−1) I σ

L35 6644.8 0.008 6.7
L43 7156.9 0.018 3.0
L52 8858.6 0.038 20.1
L62 8868.3 0.064 7.4

Table 3 Input parameter ranges for the spectral simulation determined
from the measured spectra

Parameter Minimum Maximum

κ — 2.15 × 10−6

μ 6050 9750
Σ 2 50
I 0.001 1
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of background b(ν̃) is generated by randomly choosing curva-
ture values with a given maximum absolute value. These curva-
ture values are interpolated with cubic splines resulting in the
curvature κ(ν̃). The non-linear second order differential
equation for the background

b″ðν̃Þ ¼ κðν̃Þð1þ b′ðν̃Þ2Þ3=2 ð1Þ

is then solved numerically using a Runge–Kutta17 method.
Here the initial values are chosen to be ∀n ∈ N0:b(n)(0) = 0.

For simplicity and to avoid overlaps, we restrict the simu-
lation to a single peak per spectrum. An example of a trans-
mission spectrum simulated in this way is given in Fig. 4.

The simulated spectra are then filtered with the rolling
circle filter with a radius of rν̃ = 2000 in the wavenumber and
rT = 8 in the transmission direction and the absorbance is cal-
culated. As input parameters for the following peak fit, the
intensity, width and center of mass of the filtered peak are
determined numerically. The peak is then fitted with a
Gaussian shape using a least squares method with a
Levenberg–Marquardt minimizer18,19 to determine its para-
meters. From the rolling circle filter baseline, the average gra-
dient and curvature in the five-sigma interval surrounding the
peak are numerically calculated.

3.3 Results

3.3.1 Peak position. To quantify the influence of the
rolling circle filter on the peak position, we investigated the
statistical distribution of the difference Δμ = μ − μf of the posi-
tion of the simulated peak μ and the position of the filtered
peak μf. We selected the data with respect to two effects.

First, broad peaks tend to vanish after filtering with the
rolling circle filter, therefore only peaks with an intensity after
filtering of I > 10−5, corresponding to 1% of the minimum
initial intensity in the simulation, are used for the following
analysis.

Second, in the case of a large peak curvature, the back-
ground can contain features similar to those of a broad peak,
therefore only peaks where the standard deviation of the curva-
ture in the five sigma interval is around the peak of σκ < 10−9

were accepted.
Fig. 5 shows four histograms for negative and positive gra-

dients and curvatures. The histograms show a positive shift of

Fig. 4 Comparison of a filtered spectrum (rolling circle filter radii rν̃ =
2000 cm−1 and rT = 8) and a simulated spectrum with the peak para-
meters μ = 8103.85, σ = 3.46, and I = 9.92 and the average background
curvature κ = −2.26 × 10−7 and gradient m = −2.23 × 10−4 in the five-
sigma interval surrounding the peak.

Fig. 5 Statistical distribution of the difference of the peak positions Δμ before and after filtering with the rolling circle filter for different intervals of
the gradient m and curvature κ. The broken y-axis is only used to make the flanks of the distribution visible, and no data are left out in between.
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the line position for negative gradients with a mean value of
0.13 cm−1 and a negative shift for positive gradients with a
mean value of −0.33 cm−1. On a negatively curved background,
the rolling circle filter similarly induces a positive shift of the
line position of 0.08 cm−1 on average and a negative shift with
a mean value of −0.28 cm−1 for positively curved backgrounds.
To translate this to an uncertainty contribution to the line
position induced by the rolling circle filter, we calculated 68%
and 95% intervals of the histograms shown in Fig. 5. These
intervals, serving as a measure for this uncertainty contri-
bution, together with the symmetrical standard deviation of
the distributions are shown in Table 4.

3.3.2 Peak width and intensity. To quantify the influence
of the rolling circle filter on the peak width and intensity, we
selected two intervals for each of the parameters width σ,
intensity I, slope m and curvature κ. These intervals are given
in Table 5. To cover a large parameter space, but reduce the
scattering of the data points, the data are filtered by fixing all
but one parameter in the first interval and setting this selected
parameter to its second interval. This procedure leads to two
significant correlations: the difference Δσ = σ − σf of the width
(see Fig. 6) and the difference ΔI = I − If of the intensity (see
Fig. 7) before and after filtering correlate with the width after
filtering σf. This is an expected behavior, since the rolling
circle filter rolls into the peaks and the area that is thereby
subtracted from the lines depends on the line width. This
effect therefore reduces the line intensity, and also the line
width. We quantified this effect by a regression of the function

yðσÞ ¼ a � σ 2 þ b � σ 3: ð2Þ

The results of this regression, suitable for quantification
and correction of the systematic uncertainty induced by the
rolling circle filter, are shown in Table 6.

3.4 Discussion

The simulation showed that the rolling circle filter influences
the position of a spectral line, depending on the curvature and
gradient of the underlying baseline. We quantified this shift to
approximately −0.3 cm−1 for positive and 0.1 cm−1 for negative
gradients and curvatures. The systematic uncertainties of this

Table 4 Results of the statistical analysis of the difference in the peak
position before and after filtering with the rolling circle filter giving the
mean μ, standard deviation (std. dev.), and 68% and 95% intervals of the
statistical distributions

Criteria
Δμ
(cm−1)

std. dev.
(cm−1)

68% interval
(cm−1)

95% interval
(cm−1)

m > 0 −0.33 0.57 −0.90 0.24 −1.45 0.80
m < 0 0.13 0.30 −0.17 0.43 −0.46 0.72
κ > 0 −0.28 0.63 −0.91 0.35 −1.52 0.96
κ < 0 0.08 0.29 −0.20 0.37 −0.48 0.65

Table 5 Parameter ranges for peak selection

Parameter

1st interval 2nd interval

Min Max Min Max

σ 5 25 25 50
I 0.3 0.6 0.6 1.0
m −5 × 10−5 0 0 5 × 10−5

κ −5 × 10−7 0 0 5 × 10−7

Fig. 6 Correlation of the width difference Δσ and width after filtering σf.
The data are selected according to the intervals given in Table 5. First,
the data with all parameters in the first interval (all 1st int.) are shown.
Then, only one parameter is switched to its second interval, and these
data are labelled with the corresponding parameter and ‘2nd int.’. The
solid line shows the fit of eqn (2) with the resulting confidence intervals.

Fig. 7 Correlation of the intensity difference ΔI and width after filtering
σf. The data are selected according to the intervals given in Table 5. First,
the data with all parameters in the first interval (all 1st int.) are shown.
Then, only one parameter is switched to its second interval, and these
data are labelled with the corresponding parameter and ‘2nd int.’. The
solid line shows the fit of eqn (2) with the resulting confidence intervals.

Table 6 Polynomial regression of the parameter correlations

y(ν̃) a b red. χ2

ΔI 9.3 ± 4 × 10−5 1.7 ± 0.2 × 10−5 6.8 × 10−3

Δσ −4.3 ± 0.5 × 10−3 5.6 ± 0.2 × 10−4 6.1 × 10−2
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shift can be quantified via 68% confidence intervals, see
Table 4, and are below 1 cm−1. Therefore, this influence in the
sub-wavenumber region is only relevant for highly precise
spectroscopic investigations. Since this shift is smaller for nar-
rower peaks, we can conclude that the rolling circle filter in
combination with peak fitting does not enable high precision
measurements on broad spectral lines.

Regarding the peak width and intensity, there is a strong
influence of the rolling circle filter, causing broad peaks to
vanish completely after the filtering. Using the parametriza-
tions of the systematic effect of the rolling circle filter on the
peak intensity and width, it is possible to quantify this effect
as a systematic uncertainty and the parametrization can be
used to correct it for further analysis. This intensity correction
makes the rolling circle filter suitable for investigation of the
intensities of spectral lines as it is for line positions.

4. Conclusion

We have shown that the filter optimization procedure is
necessary to prevent a detachment of the baseline, while mini-
mizing the distortion of the spectral lines by the filter. Our
method then enables a quantification of the remaining influ-
ence of the filter regarding real spectra, that occurs, as the
filter can only be optimized to a certain line width, intensity
and background curvature. We quantify the influence of the
filter on these varying parameters by the subsequent systema-
tics study. This combined method leads to a filter procedure
that delivers a reliable baseline with a known and therefore
correctable influence on the spectral shape.

In our case, line intensities are used for concentration
measurement, and this is a crucial result on the way to a cali-
bration that is independent of the instrument used. A transfer
of the calibration results to a different experimental setup is
only possible if the systematic influences of the respective
instrument and analysis procedure are known and can be cor-
rected, if significant. Also, if the measurement samples signifi-
cantly differ from the calibration samples, the performed
quantification and correction of the systematic effects of the
filter is the only possibility to obtain reliable measurement
values in such a setting. Both issues can be solved with the
presented combination of filter optimization and residual sys-
tematic uncertainty quantification.

The method can, with small modifications, be applied to
different filters, since filters for baseline approximation
should always provide a smooth baseline without extreme cur-
vatures or even edges. Under these conditions, χ2 should be a
suitable measure for the quality of the baseline approximation.
Furthermore, the creation of a filter bank with different filter
settings, e.g. radii of the rolling circle filter, for different spec-
tral regions can be a promising content of further studies.
This can deliver a significant advantage compared to a single
filter setting, in the case of strongly varying line widths or
background curvature. The presented method for the optimiz-
ation of the rolling-circle-filter and the quantification of the

remaining systematic effects on the peak shape can be the
basis for a study that optimizes and compares different filter
methods, such as rolling circle, averaging, wavelet and deriva-
tive filters. While such a systematic comparison and evaluation
is beyond the scope of the presented work, we will address this
in a future publication on this topic.
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