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est ML model for predicting the
bandgap in a perovskite solar cell†

Nita Samantaray, *a Arjun Singh *a and Anu Tonkb

Perovskite solar cells (PSCs) have gained attention for their characteristics of high efficiency and

commercial viability. However, the efficiency of a PSC depends on various factors. One such important

parameter is the bandgap of the active layer as it plays an important role in PSCs with regards to the

amount of light absorption. Thus, it influences the overall performance of the solar cell. It is important to

predict the bandgap of the active layer in PSCs to achieve an effective fabrication process. In this study,

we compared six machine learning (ML) models to predict the bandgap. The models were created using

a dataset of 500 devices, such as MAPbI3, FAPbI3, CsSnI3 and CsMAPbI3, obtained from The Perovskite

Database Project. These models were further validated using a different dataset of 50 devices. The

models were created using ML methods: random forest, gradient boosting regressor, k-nearest

neighbours (KNN), AdaBoost, Gaussian process regressor, and bagging. The feature parameters

considered for the models were the A coefficient, B coefficient, and C coefficient, out of various other

parameters such as the perovskite dimension, perovskite thickness, perovskite deposition temperature,

and perovskite deposition time. The random forest model showed better results compared to other

models with a low mean absolute error (MAE) of 0.000775, low mean squared error (MSE) of

0.00000920, and high coefficient of determination (r2) of 0.9994.
Sustainability spotlight

Our research aims to enhance the efficiency of perovskite solar cells (PSCs) by accurately predicting the bandgap of the active layer—a critical factor in light
absorption and overall performance. We evaluated six machine learning models, using a dataset of 500 devices, to predict the bandgap. Among these, the
random forest model demonstrated superior performance with a low mean absolute error (MAE) of 0.000775, a low mean squared error (MSE) of 0.00000920,
and a high coefficient of determination (r2) of 0.9994. Our work supports the UN Sustainable Development Goals: affordable and clean energy (SDG 7); industry,
innovation, and infrastructure (SDG 9); and climate action (SDG 13).
1. Introduction

PSCs have emerged as a promising material in the eld of
photovoltaics owing to their exceptional efficiency and potential
for commercial viability.1,2 These solar cells utilize the unique
properties of perovskite materials to convert sunlight into
electricity with remarkable efficiency. An important factor
inuencing the performance of PSCs is the bandgap of the
active layer, which decides the amount of light absorption and
thus the overall efficiency of the solar cell. An accurate predic-
tion of the bandgap is essential for optimizing the fabrication
process and enhancing the performance of PSCs.3
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520–3524
To improve the efficiency of PSCs, extensive research into
understanding and optimizing the properties of perovskite
materials has been carried out. The bandgap of the active layer
is a key parameter that directly impacts the absorption spec-
trum and photon-to-electron conversion efficiency of PSCs.4

Consequently, predicting and optimizing the bandgap is
essential for achieving high-performance PSCs. Traditional
methods for predicting the bandgap rely on complex theoretical
models and experimental techniques, which can be time-
consuming and resource-intensive.5 In recent years, ML tech-
niques have emerged as powerful tools for predicting material
properties with high accuracy and efficiency.6

In 2024, Miah et al. emphasized the critical role of bandgap
tuning in enhancing both the performance and stability of
PSCs, offering insights into mechanisms that optimize effi-
ciency while addressing degradation factors. Perovskite mate-
rials exhibit excellent optoelectronic properties and efficiency in
solar cells, but their low stability hinders commercialization.7

In 2024, Ghosh et al. published a study that focused on
predicting the bandgaps of nitride perovskites using four
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Diagram illustrating the learning processes of the random forest
model.

Table 1 Type of perovskites (ABC3) with the A, B and C coefficients
and their actual bandgap

Sl. No. A B C Perovskites Actual bandgap References

1 MA Pb I MAPbI3 1.6 11
2 FA Pb I FAPbI3 1.6 12
3 Cs Sn I CsSnI3 1.3 13
4 Cs; MA Pb I CsMAPbI3 1.5 14
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machine learning (ML) models: multi-layer perceptron (MLP),
gradient boosted decision tree (GBDT), support vector regres-
sion (SVR), and random forest regression (RFR). The models
were trained on 1563 nitride perovskites with bandgaps
between 1.0 and 3.1 eV.8

Sadhu et al. recently suggested that ML models accurately
forecast PSC parameters, with key features such as the grain
size, band gap, and electron/hole mobility driving performance
optimization for commercialization. The study focused on the
analysis and prediction of the performance of PSCs using
machine learning techniques.9

In our study, we investigated the accuracy of various ML
models in predicting the bandgap of perovskite materials used
in PSCs. We utilized a dataset from The Perovskite Database3

comprising information on 500 devices, including different
perovskite compositions such as MAPbI3, FAPbI3, CsSnI3, and
CsMAPbI3. The dataset contains a range of feature parameters
relevant to the fabrication process, including perovskite
dimensions, coefficients, thickness, deposition temperature,
and deposition time. Our primary objective is to compare the
performance of six different ML models in predicting the
bandgap of the perovskite material, and identify the most
accurate and reliable predictive model.

To achieve our objective, we employed six ML methods:
random forest, gradient boosting regressor, k-nearest neighbors
(KNN), AdaBoost, Gaussian process regressor, and bagging. These
models are trained on a dataset of 500 devices, and subsequently
validated using a separate dataset consisting of 50 devices. The
performance of each model is evaluated based on key metrics,
such as the mean absolute error (MAE), mean squared error
(MSE), and coefficient of determination (r2). Additionally, we
analysed the feature importance of the selected parameters to
gain insights into their inuence on bandgap prediction.

Our results demonstrate that the random forest model
outperforms the other ML models in predicting the bandgap of
perovskite materials for PSCs, exhibiting low MAE and MSE
values, and a high coefficient of determination (r2). This high-
lights the accuracy of the random forest model in capturing the
complex relationships between the input parameters and the
bandgap of the active layer. Furthermore, our analysis sheds light
on the importance of specic feature parameters in determining
the bandgap, providing valuable guidance for optimizing the
fabrication process of PSCs. Overall, this study contributes to
advancing the understanding and predictive capabilities of ML
techniques in the eld of perovskite solar cells, paving the way for
enhanced device performance and widespread adoption of this
promising renewable energy technology.

The random forest regression model in Fig. 1 accurately
predicts the bandgap, enabling researchers to systematically
explore and ne-tune perovskite compositions, dimensions,
and deposition parameters.

2. Methodology
2.1 Data collection and preprocessing

Data were taken from The Perovskite Database comprising 500
perovskite solar cells (PSCs), including various compositions,
© 2024 The Author(s). Published by the Royal Society of Chemistry
such as MAPbI3, FAPbI3, CsSnI3, and CsMAPbI3. This dataset
has various feature parameters relevant to the fabrication
process, such as perovskite dimensions, coefficients (A, B, C),
thickness, deposition temperature, and deposition time. Each
device in the dataset was characterized by its corresponding
bandgap, giving the target variable for our predictive models. To
ensure the relatability of the dataset, data preprocessing steps
were performed, including handling missing values, removing
outliers, and normalizing feature scales.10 Some of the prom-
inent PSCs and its actual bandgap on the collected dataset are
mentioned in Table 1 for reference.

Heatmap analysis was used to identify the feature parame-
ters in predicting the bandgap of perovskite materials for
perovskite solar cells (PSCs). Heatmaps provide a visual repre-
sentation of the correlation between each input feature
parameter and the target variable (bandgap).15 The original
dataset for this study includes essential parameters, such as the
power conversion efficiency (PCE), open-circuit voltage, short-
circuit current, and ll factor. However, since the bandgap
pertains specically to the active layer, i.e., the perovskite
material, rather than the entire perovskite solar cell, we focused
on parameters directly associated with the active layer.16 These
parameters include the perovskite dimension, perovskite
thickness, perovskite deposition temperature, perovskite
deposition time, and the A, B, and C coefficients.

Further, by analysing the heatmap as mentioned in Fig. 2, we
were able to identify the feature parameters with the strongest
correlations to the bandgap, indicating their importance in the
predictive model. Hence, we identied that the A coefficient, B
RSC Sustainability, 2024, 2, 3520–3524 | 3521
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coefficient, and C coefficient have higher and positive heatmap
coefficients, i.e., 0.70, 0.83, 0.63, respectively, and are strongly
correlated with the bandgap compared to the other parameters.
Hence, we considered the A coefficient, B coefficient, and C
coefficient for training the models and performing further
analysis.

Visualizing the feature importance through a heatmap
provided signicant clarity on how each parameter inuenced
the bandgap prediction. The heatmap allowed for an intuitive
understanding of the relative signicance of each feature by
displaying their importance in a clear, color-coded matrix. This
method made it easier to identify the most impactful factors
and how they correlated with the predicted bandgap.

The heatmap provided a visual and analytical tool that
enhanced the interpretability of feature importance, aiding
researchers in focusing on the most important parameters for
improving bandgap prediction and the overall performance of
PSCs.
2.2 Model training and evaluation

We selected six ML models known for their robustness and
effectiveness in regression tasks: random forest, gradient
boosting regressor, k-nearest neighbors (KNN), AdaBoost,
Gaussian process regressor, and bagging. These models were
chosen based on their ability to capture the complexity between
Fig. 2 . Heatmap analysis to determine the feature parameters.

3522 | RSC Sustainability, 2024, 2, 3520–3524
input features and target variables, which is essential for
accurately predicting the bandgap of perovskite materials in
PSCs. Each model was trained on the pre-processed dataset of
500 devices, and tested on a separate dataset having 50 devices.

The performance and accuracy of the models were then
veried using the following metrics.

2.2.1 Coefficient of determination (r2). r2 measures the
correlation between different sets of variables, and indicates
what it takes for the model to t the data. It ranges from 0 to 1,
in which 1 signies a perfect t and high reliability, while
0 suggests weak correlation and poor generalization. Eqn (1) for
r2 compares the squared variations between the predicted and
target outputs to the squared differences between the target
outputs and their mean.11

r2 ¼ 1�
�
Yj � Y

p
i

�2
�
Yj � Yj

�2
(1)

where Yj accounts for the values which are targeted, and
Ypi denotes the predicted outputs that we get from the model.
The variable Yj denotes the mean of Yj.

2.2.2 Root mean square error (RMSE). RMSE quanties the
average of difference between the predicted and target outputs.
It provides an overall accuracy of the generalized regression
model. Eqn (2) is computed by taking the square root of the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Comparison of the experimental data of different ML models

Sl. No. ML model
Mean absolute
error (MAE)

Mean squared
error (MSE)

Coefficient of
determination (r2)

1. Random forest 0.000775 0.00000920 0.9994
2. Gradient boosting regressor 0.0222 0.0041 0.8841
3. k-Nearest neighbors (KNN) 0.0365 0.0143 0.5914
4. AdaBoost 0.0283 0.0029 0.9163
5. Gaussian process regressor 0.0351 0.0082 0.7662
6. Bagging 0.0448 0.0162 0.6673
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average value of the squared differences between the predicted
and target outputs.12

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

�
Yj � Y

p
j

�2r
(2)

2.2.3 Mean absolute error (MAE). The mean absolute error
calculates the average absolute difference between the pre-
dicted and target outputs for continuous variables. It represents
the average errors without considering their direction. The
calculation for MAE is shown in eqn (3), and is obtained by
taking the average of the differences between the predicted and
target outputs.13

MAE ¼ 1

n

��Yj � Y
p
j

�� (3)

These metrics offer quantitative assessments of a model's
generalization capacity, providing insights into its correlation
with the data, accuracy in predicting target outputs, and overall
error magnitude. By analysing these metrics, researchers and
practitioners can evaluate and compare the efficiency of
different trained models.

3. Results and discussion

Among the various machine learning ML models (such as
random forest, gradient boosting regressor, k-nearest neigh-
bours (KNN), AdaBoost, Gaussian process regressor, and
bagging) evaluated in this study, random forest emerged as the
most effective ML model for the prediction of the bandgap of
PSCs. A comparative analysis shown in Table 2 below revealed
that random forest exhibited higher accuracy and precision,
due its low mean absolute error (MAE) of 0.000775, low mean
squared error (MSE) of 0.00000920 and high coefficient of
determination (r2) of 0.9994, indicating its exceptional ability to
explain the variance in the target variable. The study was per-
formed using perovskite solar cell parameters, such as the A
coefficient, B coefficient and C coefficient.

In this analysis of machine learning models for predicting
the bandgap of perovskite materials in PSCs, we visualized the
performance metrics of each model using a line graph with
markers. The above table offers a clear and concise comparison
of the mean absolute error (MAE), mean squared error (MSE),
and coefficient of determination (r2) across different machine
learning models. Each line in the graph corresponds to
© 2024 The Author(s). Published by the Royal Society of Chemistry
a specic performance metric, while the markers indicate the
values associated with individual machine learning models. It
reveals distinct patterns in model performance, with random
forest demonstrating the lowest MAE andMSE values, as well as
the highest r2 coefficient among all models evaluated.

Table 2 enhances the comprehensibility of our ndings,
enabling researchers and practitioners in the eld to easily
discern the relative performance of different machine learning
approaches for predicting the bandgap of perovskite materials
in PSCs.
4. Conclusion

This study analysed the effectiveness of ML models in predict-
ing the bandgap of perovskite materials for use with PSCs. By
comparing six different ML models, including random forest,
gradient boosting regressor, k-nearest neighbours (KNN), Ada-
Boost, Gaussian process regressor, and bagging, random forest
was found to be more effective. The performance of random
forest was highly effective, with a low mean absolute error
(MAE) of 0.000775, low mean squared error (MSE) of
0.00000920, and high coefficient of determination (r2) of 0.9994.
These results highlight the potential of ML techniques in
accurately predicting critical parameters, such as the bandgap
of perovskite materials, thereby helping in the development of
high-efficiency PSCs.

As future scope, there are several aspects for research in this
domain that can be explored. Firstly, research can be directed
towards optimizing the feature parameters used in the ML
models to further enhance prediction accuracy. Additionally,
studies can explore more efficient ML algorithms and ensemble
techniques that can even yield better performance in bandgap
prediction.17 A few advanced machine learning models (such as
Neural Networks) or Transformer models (such as PolyNC or
polyBERT) can be further taken into consideration for this
work.18–20 Furthermore, exploring the same model in different
datasets would provide a more comprehensive understanding
of the factors inuencing the bandgap variation in PSCs.
Overall, continued research in this eld holds the promise of
advancing the development of efficient and commercially viable
perovskite solar cells.

This model also can be integrated into the material design
workow. For instance, when new compositions of perovskite
materials (e.g., mixed halides or organic-inorganic hybrids) are
proposed, the model can quickly estimate the bandgap without
RSC Sustainability, 2024, 2, 3520–3524 | 3523
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needing extensive experimental trials. This could signicantly
reduce the time and cost associated with experimental material
characterization, allowing for more efficient screening of
potential parameters for high-efficiency solar cells.

In addition, the model could be used to guide the fabrication
process by offering real-time predictions of bandgap during
deposition stages, helping engineers maintain optimal condi-
tions. This would not only improve device performance, but also
ensure reproducibility across different manufacturing batches.

Data availability

The data supporting this article are available as part of the ESI†
and are available on the journal's homepage in sufficient detail
to enable the reproducibility of experiments. The primary
dataset comprises 500 perovskite solar cell (PSC) devices,
including MAPbI3, FAPbI3, CsSnI3, and CsMAPbI3, whereas the
validation dataset consists of 50 PSC devices. These datasets
include feature parameters, such as the A coefficient, B coeffi-
cient, C coefficient, perovskite dimension, perovskite thickness,
perovskite deposition temperature, and perovskite deposition
time. Additionally, the machine learning models developed in
this study, including random forest, gradient boosting
regressor, k-nearest neighbors (KNN), AdaBoost, Gaussian
process regressor, and bagging, are available as part of the ESI†
and on the journal's homepage in sufficient detail to enable the
reproducibility of experiments. We are committed to ensuring
transparency and reproducibility of research, and therefore, all
ESI† required for this study are made openly accessible.
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