Issue 15, 2019

Thermographic characterization of thin liquid film formation and evaporation in microchannels

Abstract

The science of transport in microchannels has greatly benefited applications ranging from micro-mixing, chemical synthesis and biological analysis to compact and efficient energy devices. One of the most critical and intricate phenomena in this field of science is the dynamics of thin liquid film formation during the flow of liquid and gas/vapor mixtures. These films can form in microseconds and be less than a micrometer thick, while dominating thermal transport in phase-change processes. Here, we report the captured details of these phenomena using a new measurement technique with unprecedented spatial and temporal resolutions of 20 μm and 100 μs, respectively. Thin films with thicknesses ranging from 1 to 20 μm forming around elongated bubbles over a capillary number range of 0.025 to 0.1 are characterized. The measurements suggest that these films thermally develop and evaporate at timescales in the order of 1–10 ms, two orders of magnitude longer than their formation timescale. The formation, reflow and evaporation of the liquid film constitute a complex dynamic involving variations of the film thickness over the periphery of a rectangular channel, leading to a thicker liquid film feeding (through lateral capillary wicking) a much thinner rapidly evaporating film. As a result, the thinner film dictates the rate of surface heat transfer while the thicker film determines the duration of thin film evaporation. A modified Bretherton model provides the best fit to the experimental results.

Graphical abstract: Thermographic characterization of thin liquid film formation and evaporation in microchannels

Supplementary files

Article information

Article type
Paper
Submitted
02 Apr 2019
Accepted
20 Jun 2019
First published
20 Jun 2019

Lab Chip, 2019,19, 2610-2618

Author version available

Thermographic characterization of thin liquid film formation and evaporation in microchannels

M. Habibi Matin, A. Fazeli and S. Moghaddam, Lab Chip, 2019, 19, 2610 DOI: 10.1039/C9LC00301K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements