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Abstract

Organic solar cells (OSCs) emerge as a promising renewable energy technology, offering
advantages such as lightweight design, semitransparency, flexibility, and cost-effectiveness.
Power conversion efficiency (PCE) is a key device performance parameter for OSCs, defined as
the ratio of the electrical power output generated by the device to the incident solar power input.
Despite significant advances, the development of high-performance OSCs remains a labor-
intensive process, heavily dependent on expert experience, involving extensive synthesis,

characterization, and iterative optimization. Data-driven methods offer a promising alternative for

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

accelerating material discovery, but their effectiveness is often limited by the scarcity of high-

quality experimental data. To overcome this challenge, we propose OSC-Net, a multi-fidelity

Open Access Article. Published on 04 November 2025. Downloaded on 11/6/2025 1:09:59 PM.

machine learning framework that integrates a large volume of computational data with a smaller

set of high-accuracy experimental measurements. This approach enables accurate prediction of

(cc)

key device performance parameters, including PCE, while simultaneously tackling the challenges
associated with experimental data scarcity and uncertainty quantification, enabling efficient
screening of OSC materials. Importantly, the predictive capability of OSC-Net was verified against
published experimental data, confirming its accuracy and reliability. By leveraging both data
sources, OSC-Net achieves superior predictive performance compared to conventional single-
fidelity models. Furthermore, the uncertainty quantification captures variability in the model,

enhancing the reliability of predictions. Finally, OSC-Net was employed for large-scale high-
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throughput screening, successfully identifying promising candidates with high predicted PCEs that
were validated against literature-reported experimental data. Thus, OSC-Net presents a feasible
approach for rapid and accurate inference of device performance parameters with limited

experimental datasets, enabling efficient OSC material discovery.

Keywords: Organic solar cell; Machine learning; Multi-fidelity; Uncertainty quantification; High-
throughput Screening

1 Introduction

Organic solar cells (OSCs) have gained significant traction as a promising renewable
energy technology due to their unique attributes, including lightweight, flexibility, and cost-
effectiveness 4. These characteristics make OSCs highly appealing for a variety of innovative
applications such as wearable electronics, building-integrated photovoltaics, and portable power
solutions >, Power conversion efficiency (PCE) is a key device performance parameter for
evaluating OSCs, defined as the ratio of the electrical power output generated by the device to the
incident solar power input, typically expressed as a percentage. Recent advancements in OSCs
have led to notable improvements in PCE, driven by optimizations in device architectures, active-
layer materials, and fabrication processes "~!!. Nevertheless, the development of OSC remains
labor-intensive and heavily reliant on expert intuition, involving extensive synthesis,
characterization, and iterative optimization. This is primarily due to (1) the intrinsic complexity of
organic materials, which complicates the design and selection of donor and acceptor components;
(2) the limited understanding of the complex relationship between material properties, fabrication
parameters, and their effects on device performance parameters, such as PCE !2; and (3) the time-
intensive nature of experimentally evaluating OSCs, involving material design and engineering,
device fabrication, and performance characterization, which can take days to weeks and thus limit
high-throughput material screening. These challenges highlight the need for efficient
computational approaches to predict device performance parameters based on material properties,

enabling faster material discovery.

In recent years, advanced machine learning methods have emerged as powerful tools to
identify relationships between materials properties and OSC device performance for accelerating
OSC research %1315, By leveraging either computational data, such as density functional theory

(DFT) calculations and the Scharber model '®, or experimental data, or both, machine learning
2
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techniques enable the discovery of hidden patterns and critical trends governing OSC performance.
For example, Aspuru-Guzik et al. employed a Gaussian process model trained on 51,000
computational data points from the Harvard Clean Energy Project database !7, which comprises
data derived from DFT calculations and the Scharber model. This model successfully predicted
PCE and identified 838 potential high-performing candidate molecules '8. Similarly, Sun et al.
used a convolutional neural network to extract features from molecular structures for PCE
prediction ', also leveraging computational data from the same database. However, computational
data, particularly PCE values derived from the Scharber model '©, often suffer from limited
accuracy due to simplified assumptions and descriptors. This restricts the predictive accuracy of
machine learning models and the reliability of the candidates they identify for achieving high
efficiency. To overcome these limitations, recent efforts have focused on training machine learning
models using experimental data. Several studies have explored the use of machine learning
methods to predict device performance based on single-component properties, either donor or
acceptor, by learning their relationships to experimental outcomes 2%23. However, since OSC
device performance is critically dependent on the interaction between both donor and acceptor
materials, it is necessary to develop models that simultaneously account for both donor and

acceptor materials in relation to device performance; indeed, some research studies have explored

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

this direction 243!, For example, Sun et al. collected a dataset of 1,719 donor materials and

evaluated different molecular representations as inputs to ML models, finding that fingerprints

Open Access Article. Published on 04 November 2025. Downloaded on 11/6/2025 1:09:59 PM.

exceeding 1,000 bits achieved the highest prediction accuracy 4. Wu et al. collected 565 donor-

(cc)

acceptor combinations and developed five machine-learning models for PCE inference, identifying
that boosted regression trees and random forest models outperformed others in prediction accuracy
23, Similarly, Zhang et al. curated a dataset of 2,078 D/A combinations and trained a graph neural
network using a newly designed polymer fingerprint representation as input features®!. Despite
progress in leveraging machine learning for material discovery, challenges such as limited datasets,
low prediction accuracy, and insufficient uncertainty quantification still exist. These issues are
particularly critical given the complex relationship between material properties and device

performance for OSC, and the substantial uncertainties inherent in the material synthesis process.

In this study, we established a comprehensive database comprising 47,329 computational
entries from reference '® and 1,782 experimental data points collected from the literature and our

laboratory database. Building on this resource, we introduced a multi-fidelity machine learning
3
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framework (OSC-Net) to predict device performance parameters, including PCE, with uncertainty
quantification, thereby enabling high-throughput screening of OSC materials. Different from
previous efforts, this work presents several novelties: (1) A multi-fidelity approach is implemented
using a two-step training strategy to integrate data of different fidelity levels. Specifically, the
proposed model is pre-trained on a large volume of computational data, which is relatively low in
accuracy, and fine-tuned with a smaller but more accurate set of experimental data. Importantly,
the predictive capability of OSC-Net is verified against published experimental data, confirming
its reliability and practical relevance for OSC material discovery. This represents a pioneering
study to investigate the feasibility of a multi-fidelity approach for screening high performance
OSC materials. (2) Uncertainty associated with the machine learning model prediction is
quantified to provide confidence intervals for PCE predictions. These confidence intervals offer
valuable guidance for material discovery and design. (3) Our curated experimental dataset includes
both fullerene and non-fullerene acceptors, paired with a broad range of conjugated polymer
donors in binary blends, including many of the champion devices throughout history to date. The
donor selection spans various levels of synthetic complexity and includes specialized subgroups
with subtle alterations to the chemical structures, such as the PBnDT-TAZ series, facilitating
analysis of structure—property—performance relationships. Additionally, to account for batch-to-
batch variability, a common challenge in OSC materials, we incorporate replicate data from

different laboratories, enhancing the ability of the model to quantify experimental uncertainty.

The rest of the paper is organized as follows. Section 2 introduces the methodology of the
proposed multi-fidelity machine learning model, including database, model architecture, and
uncertainty quantification methods. Results and discussions are presented in Sections 3 and 4,

respectively. Finally, conclusions and future work are presented in Section 5.

2 Methodology

The proposed OSC-Net framework focuses on bulk heterojunction (BHJ) OSCs, in which
the active layer consists of a nanoscale interpenetrating network formed by blending two organic
semiconductors, a donor and an acceptor. This nanostructured morphology enables efficient
exciton dissociation and facilitates charge separation and transport throughout the device. OSC-
Net aims to predict key device performance parameters, along with their associated uncertainties,

based on the chemical identity of the donor and acceptor materials, as well as their blending ratio
4
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for high-throughput material screening. Specifically, OSC-Net takes the fingerprints (FPs) of
donor and acceptor materials, along with their relative ratio, as inputs to predict three critical
device performance parameters as responses, including the open-circuit voltage (¥oc), which
represents the maximum voltage a solar cell can produce, the short-circuit current density (Jsc),
which is the current when the voltage across the device is zero, and the fill factor (FF), which
quantifies how closely the maximum power output approaches its theoretical maximum. These
device performance parameters are sufficient for calculating the PCE, so the PCE itself is not

included as a direct model output. The PCE can be expressed mathematically as:

PCE(%) =

VOCXJSCXFFXIOO 0

n

where Pj, is the incident solar power, assumed to be 100 mW/cm? under standard AM1.5G

illumination conditions.

The OSC-Net structure features a combination of an encoder as the feature extractor and a
multilayer perceptron (MLP) as the predictor head, as shown in the blue block in Fig. 1. The model
first encodes the fingerprint features of the donor and acceptor materials. The resulting encoded
features, along with the donor/acceptor ratio, are passed into the MLP that predicts the three target

performance parameters and their corresponding uncertainties.

The development of the OSC-Net framework involves two main stages: training and testing,
as illustrated in Fig. 1. In the training stage shown in Fig. 1 (a), a two-step training strategy is
employed to incorporate data with different fidelity levels, accuracies, and associated costs,
specifically, computational and experimental data in this study. Initially, a large amount of
computational data, derived from DFT calculations and the Scharber model, was used to pre-train
the OSC-Net. This step allows the OSC-Net to capture the general trend of the input-output
relationships present in low-fidelity computational data. A relatively smaller but highly accurate
set of high-fidelity experimental data was then utilized for fine-tuning the model above, allowing
the model to progressively align with the response surface of the experimental data. This sequential
strategy, inspired by transfer learning 32, effectively enables the OSC-Net to leverage data from
different fidelities, accuracies and costs to create a unified, robust multi-fidelity machine learning

model for predicting device performance 3336,
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In the testing stage, shown in Fig. 1 (b), the fine-tuned model above can rapidly predict the
performance parameters given any input materials, which normally takes sub seconds per

prediction and, therefore, can be used for high-throughput material screening.

(a) Training

=
LF Computational Data OSC-Net

g}} y, - B BT g | — +{ir)
?%}f £ Pre-train
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Transfer Learning l
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Device é.l—\ Curve y,
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* D/A Ratio

* FF(%)

Fig. 1 OSC-Net framework, including training and testing stages.

2.1 OSC database

The dataset consists of 47,329 computational entries from reference '® and 1,782
experimental data points collected from the literature and our laboratory database. All
computational data used PCDTBT as the donor and various non-fullerene acceptors constructed
from a library of 107 fragments—13 cores, 49 spacers, and 45 terminal groups (see reference '3).
For each acceptor, DFT was used to compute the HOMO energy, LUMO energy, and HOMO-
LUMO gap, and the PCE is then predicted via the Scharber model. Note that a fixed donor/acceptor
weight ratio of 0.4 (corresponding to 1:1.5) is applied to every computational sample. Fig. 2
illustrates the distribution of PCE values for both the computational and experimental datasets.
The data are categorized into three groups: low (0-5%), moderate (5-10%), and high (above 10%)

PCE values. For the computational dataset, the median PCE value is 1.06%, and the average is

6
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1.85%, with the data split as follows: 45,990 in the low category, 4,779 in the moderate category,
and 98 in the high category.

In the experimental dataset, the median PCE is 4.88%, and the average is 5.56%, with 914
data points in the low category, 663 in the moderate category, and 205 in the high category. The
experimental dataset includes a wide selection of conjugated polymers as donors, with both
fullerene and non-fullerene small molecule acceptors. Instances involving the same donor and
acceptor material, reported with varying device performance values from different data sources,

are all included, allowing for uncertainty quantification.

For the computational dataset, 90% was randomly selected for pretraining, 5% for
validation during pretraining, and the remaining 5% for testing. Similarly, for the experimental
dataset, 80% was randomly chosen for fine-tuning, while 10% for validation and the remaining 10%
for testing. Various representations of material have been proposed for machine learning-based
analysis, including images, SMILES, fingerprints, energy levels, and more 8 In this study,
fingerprints are used to represent molecules, serving as the input for the machine learning model
to enhance prediction accuracy 24, Specifically, each donor or acceptor material is converted into

a 4096-bit binary array to generate Morgan fingerprints.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
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Fig. 2 Distribution of PCE values of (a) computational data and (b) experimental data.

2.2 OSC-Net architecture
This section describes the architecture of OSC-Net. As shown in Fig. 3, the network
comprises an encoder and an MLP designed to predict three key device performance parameters

(Voc, Jsc, and FF) and using the donor and acceptor Morgan fingerprints (see Section 2.1)

7
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alongside the D/A ratio as inputs. The encoder compresses fingerprint information into feature
maps in the latent space. It consists of three pooling layers, each followed by two convolutional
layers with ReLU activation. The convolutional layer, using a kernel size of 2 X 1 and a stride of
1, compresses the fingerprint data to produce feature maps. Maximum pooling layers, with a 2 x
1 kernel and a stride of 2, further reduce the dimensions of the feature maps. The number of kernels
in each layer, corresponding to the number of channels, is annotated above the corresponding
blocks in Fig. 3. The MLP, taking feature maps from the encoder and the D/A ratio as inputs,
predicts the device performance parameters and their corresponding uncertainties. This MLP has

four layers with 4097, 512, 128, and 3 neurons, respectively.

Encoder MLP

Donor Fingerprint 64

64 128

_ : 128 32
Acceptor Fingerprint

[0.1.0,....0,0,1]

'\”rED double conv 2x3x1  ® max pool 2x1

D/A Ratio

Fig. 3 Architecture of OSC-Net.

The model was pre-trained on computational dataset for 500 epochs and subsequently fine-
tuned on the experimental dataset, over 7,000 epochs. The number of epochs for both stages was
determined through iterative experimentation, guided by the convergence behavior of the training
and validation losses. The large-scale, low-fidelity computational dataset was primarily used to
establish the overall trend of the response surface, and thus required fewer training epochs. In
contrast, the smaller but higher-fidelity experimental dataset necessitated a longer fine-tuning
phase to allow the model to adapt gradually and fully exploit the available data. The Adam
optimizer was utilized with an initial learning rate of 1x10-3 and a decaying schedule was employed
to reduce the learning rate every 10 epochs if validation performance stagnated. The batch size
was set to 20 and 5 for pre-training and fine-tuning, respectively, chosen empirically to balance
memory constraints and convergence speed. The training process used mixed precision training

via Automatic Mixed Precision (AMP), enabling gradient scaling to mitigate underflow issues in

8
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the lower-precision computations. Validation was performed periodically throughout training,
with a routine that assessed model performance on a separate validation set. Based on these
evaluations, the learning rate scheduler dynamically adjusted learning rates to optimize training
progress. The loss curves for both training and validation datasets were monitored across epochs
to track convergence trends. The training employed the Mean Squared Error (MSE) loss, which is

defined as:

MSELoss = Zn: (y, =) )

i=1
Here, i = 1, 2, and 3 correspond to indices of the device performance parameters. The vector y =
[Voc, Jsc, FF] represents ground truth values, derived from computational data during pre-training
and from experimental measurements during fine-tuning. The vector § = [Voc, Jsc, FF ] denotes
their predicted values. The training was performed on NVIDIA GeForce RTX 3080 GPU, utilizing
PyTorch 1.13.0 for model implementation. The model training took approximately 11 hours for

completion.

2.3 Uncertainty quantification

The OSC-Net, serving as an approximate data-driven model, is inherently subject to

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

uncertainties in its predictions. These uncertainties can be broadly classified into two categories:

aleatoric and epistemic uncertainty 3741, Aleatoric uncertainty accounts for the inherent noise in

Open Access Article. Published on 04 November 2025. Downloaded on 11/6/2025 1:09:59 PM.

data caused by randomness, which cannot be reduced even with extensive training data. The

(cc)

evaluation of materials for OSCs typically involves several steps, including material design and
engineering, device engineering, and performance evaluation. Each of these steps may introduce
noise into the data, making it essential to quantify aleatoric uncertainty to account for these effects.
However, given the limited size of our dataset, particularly the experimental entries, modeling
aleatoric uncertainty would compromise the predictive accuracy of OSC-Net, which is the primary
focus of this work. Moreover, the PCE values in our database are generally averaged over multiple
devices to capture variability in performance. For these reasons, we chose not to explicitly model

aleatoric uncertainty in this study.

Epistemic uncertainty, on the other hand, arises from a lack of knowledge or information

about the underlying processes, models, or parameters 42. It reflects uncertainty that could
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potentially be reduced with additional data or improved modeling. In this study, the relationship
between input features and OSC device performance is highly complex and may not be fully
captured by the current model structure, highlighting the importance of quantifying epistemic
uncertainty to account for potential model-driven variability. Several techniques have been
developed to quantify epistemic uncertainty in machine learning models, including Bayesian
Neural Networks, Monte Carlo Dropout, Ensemble Methods, and Gaussian Processes 3744, In
this work, a deep ensemble approach is utilized to estimate the epistemic uncertainty in OSC-Net.
Specifically, an ensemble of M = 5 models is explicitly constructed, and a statistical variance is
computed from their predictions §;, where j = 1, ..., M. Mathematically, the epistemic uncertainty,

denoted as 65 = [0%_yoc, 0% jsc, 0o pr | is defined as:

; 3)

where u; represents the average prediction of the i-th device performance parameter across the

ensemble models.

3 Results

This section first presents the inference results of the pre-trained OSC-Net, trained
exclusively on computational data to predict device performance parameters. Next, the inference
results of the fine-tuned OSC-Net were introduced, which was fine-tuned using experimental data
based on the pre-trained OSC-Net. These fine-tuning results are also compared to those from an
identical model architecture trained solely on experimental data. Finally, the fine-tuned OSC-Net
is applied for high-throughput screening to identify promising high-performance donor—acceptor

material pairs.

3.1 Inference results using pre-trained OSC-Net

Fig. 4 presents scatter plots illustrating the performance of the pre-trained OSC-Net in
predicting device performance parameters for both (a) computational and (b) experimental test
datasets, both of which were not used during training. In these plots, light-colored error bars
represent the 95% confidence interval for epistemic uncertainty ( y-1.96 0¢;, ¥+1.96 g, ;). The

10
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corresponding statistical metrics, including the Pearson correlation coefficient, mean square error
(MSE), uncertainty estimates, and confidence interval (CI) accuracy are summarized in Table 1.
The CI accuracy, defined as the percentage of ground truth values y; falling within the range 95%
of confidence interval ( »-1.96 0¢;, +1.96 0,;), reflects the performance of both the model
prediction and its uncertainty quantification. Training and validation loss curves from the pre-

training stage are shown in Fig. S1 of the Supplementary Information.

For the computational dataset, the pre-trained OSC-Net demonstrates strong predictive
performance across four device performance parameters (Voc, Jsc, FF, and PCE). The model
achieves low MSE values 0f 0.007, 0.256, 0, and 0.129, respectively, and high Pearson correlation
coefficients of 0.987, 0.985, N/A, and 0.981. It is worth noting that, in the computational dataset,
FF values are constant at 65%, making prediction trivial and resulting in an MSE of 0.
Consequently, the correlation coefficient for FF cannot be computed due to zero standard deviation.
For the experimental dataset, the model performs less effectively, yielding higher MSE values of
1.396, 112.872,256.956, and 25.285 for Voc, Jsc, FF, and PCE, respectively, and lower correlation
coefficients of -0.162, 0.625, -0.241, and 0.437. The epistemic uncertainty in experimental datasets
is substantially greater than that in computational datasets. Furthermore, the CI accuracy is

substantially higher for the computational dataset.
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Fig. 4 Scatter plots comparing predicted device performance parameters from the pre-trained OSC-Net to ground
truth values, including uncertainties, for (a) computational and (b) experimental test data.

Table 1 Summary of pre-trained OSC-Net performance in terms of Pearson correlation coefficient, MSE, and

uncertainties.
Va]{ue MSE O CI accuracy
Voc  0.987 0.007 0.041 73.976
Computational Jsc 0.985 0.256 0.272 86.523
Data FF N/A 0.000 0.016 100.000
PCE  0.981 0.129 0.249 89.565
. Voc  -0.162 1.396 0.212 0.000
EXp%ggemal Jse 0625 112.872 0764  4.444
FF  -0241 256.956 0.009 0.000

12


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08724d

Page 13 of 27 Journal of Materials Chemistry A

View Article Online
DOI: 10.1039/D5TA08724D

PCE 0.437 25285  0.973 42.222

3.2 Inference results using fine-tuned OSC-Net

Fig. 5 presents scatter plots comparing the predictive performance of (a) the fine-tuned
OSC-Net, trained on both computational and experimental data, and (b) single fidelity OSC-Net
(SF-OSC-Net), a machine learning model with the same architecture as OSC-Net but trained
exclusively on experimental data. As mentioned previously, in the plots, light green error bars
represent the 95% confidence intervals for epistemic uncertainty. Statistical metrics, including
Pearson correlation coefficients, mean squared errors (MSE), and uncertainty measures, are
summarized in Table 2. The training and validation loss curves from the fine-tuning stage are

provided in Fig. S2 of the Supplementary Information.

Both OSC-Net and SF-OSC-Net share nearly identical architectures and training
procedures, except that OSC-Net was trained on both computational and experimental data,
whereas SF-OSC-Net used only experimental data. While there are clear trends across all device
parameters (Voc, Jsc, FF, and PCE), OSC-Net consistently outperforms SF-OSC-Net, exhibiting
an average 2.5% reduction in MSE and higher correlation coefficients. The OSC-Net exhibits
slightly higher uncertainties than SF-OSC-Net, and achieves better CI accuracy, with an average

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

improvement of approximately 9.2%.
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Fig. 5 Scatter plots comparing predicted device performance parameters to ground truth values, including
uncertainties for training unseen experimental data by (a) fine-tuned OSC-Net and (b) SF-OSC-Net.

Table 2 Summary of fine-tuned OSC-Net, and SF-OSC-Net performance in terms of Pearson correlation coefficient,
MSE, and uncertainties.

rvalue MSE oe  Claccuracy

Voc 0740  0.005 0.031 61.111

Jsc 0.907 6.726 0.824 47.778
Fine-tuned OSC-Net

FF 0774 69386 2.107 40.000

PCE 0.921 2.680 0.465 38.889

SF-OSC-Net Voc 0.729  0.005 0.023 54.444
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Jsc 0901  7.185 0.601 34.444
FF 0769 70.111 1.590 31.111

PCE 0920 2711 0.338 31.111

As mentioned previously, the PCE data were divided into three groups, low (0-5%),

moderate (5-10%), and high (above 10%). Classification performance was evaluated by assigning

class labels based on the predicted PCE values and comparing them with the corresponding ground

truth labels. Table 3 and Table 4 present the confusion matrices for predicting the PCE groups

using OSC-Net and SF-OSC-Net, respectively. The diagonal elements of each matrix (highlighted

in green) indicate correctly classified instances. Overall, OSC-Net demonstrated a higher

classification accuracy compared to SF-OSC-Net, achieving 73.3% versus 71.1%. These results

underscore that incorporating multi-fidelity data through OSC-Net leads to more accurate and

robust predictions than relying solely on experimental data, validating the effectiveness of the

multi-fidelity approach.

Table 3 Confusion matrix of OSC-Net inference

pred.
low moderate high
exp.
low 43 8 0
moderate 11 17 0
high 0 1 10

Table 4 Confusion matrix of SF-OSC-Net inference

pred.
low moderate high
exp.
low 41 10 0
moderate 12 16 0
high 0 2 9
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3.3 High-throughput screening

Next, we conducted a high-throughput screening of all possible donor—acceptor
combinations in our databases, using the trained OSC-Net model. Both donors and acceptors were
presented in our databases (see Section 2.1), although most of the specific pairings had not been
previously evaluated. The screening considered 1289 unique donor materials, 51,385 unique
acceptor materials, and 11 different donor-to-acceptor ratios ranging from 0.10 to 0.60 in
increments of 0.05, resulting in a total of 728,587,915 potential device configurations. The
distribution of the predicted PCE is presented in Fig. 6. Among the combinations evaluated,

768,664 achieved a PCE exceeding 10%, and 4,870 achieved a PCE above 15%.

Y [
. 5-10
m - 10

Frequency

0.0 2:5 5.0 7.5 10.0 12.5 15.0 17.5
PCE (%)

Fig. 6 Distribution of predicted PCE for high-throughput screening

Table 5 compares the key device performance parameters (Voc, Jsc, FF, and PCE) of
several top-performing blends identified by OSC-Net with corresponding experimental data
reported in recent literature published within the last three years 4639, None of these blends was
included in the training databases, and the predicted PCEs closely agree with the experimental
values, with percentage differences (PD) within 3%. Minor discrepancies can be attributed to
variations in processing conditions, film morphology, additives, active-layer thickness, polymer
molecular weight, and other factors not currently considered by OSC-Net. Finally, Table 6 lists
five high-performance donor—acceptor configurations predicted by OSC-Net to exhibit the highest
PCEs across all tested configurations. To the best of our knowledge, these combinations have not
yet been reported in the literature. The chemical structures of these top-performing donor—acceptor

pairs are summarized in Figs. S3 and S4 in the Supplementary Information.

16


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08724d

Page 17 of 27

Open Access Article. Published on 04 November 2025. Downloaded on 11/6/2025 1:09:59 PM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Journal of Materials Chemistry A

View Article Online
DOI: 10.1039/D5TA08724D

Table 5 Experimental validation of OSC-Net through comparison between predicted and literature-reported device
performance parameters

. PCE
# Donor Acceptor D/A ratio Voc Jsc FF (%) PCE Source PD (%)
0.860 26.766 76.419  17.591 OSC-Net
1 D18 DTY-6 1:1.2 (0.45) 2.85

0.876 26.2 78.5 18.1 Ref 46

0.850 26.778  76.968 17.526 OSC-Net
2 D18-Cl N3 1:1.9 (0.35) 0.78
0.848 27.18 75.45 17.39 Ref¥7

0.856 27.379 74895 17.553 OSC-Net

3 D18 AQx-2  1:1.2(0.45) 1.92
0.868 26.1 760 1722  Ref*
0.848 26140  77.67 17217 OSC-Net

4 D18 N3 1:1.9 (0.35) 1.27
0.83 27.2 75.3 170 Ref®
0859 26317 75971 17.174 OSC-Net

5 DI8 Y6-BO  1:1.9(0.35) 1.55
0.876 26.2 737 1691  Ref™®

Table 6 Selection of unexplored high efficiency blends identified by OSC-Net

# Donor Acceptor D/A ratio Voc Jsc FF (%) PCE

1 PL1 A-WSSe-Cl 1:1.2(0.45) 0.860 26.536 77.811 17.762
2 D18-Cl SY1 1:1.5(04) 0.871 27.141 74.420 17.600
3 PM6-Irl SY2 1:1.2(0.45) 0.856 26329 77.851 17.544
4 D18-Cl BP4T-4F 1:1.5(04) 0.842 27413 75771 17.483
5 D18 Bu-OD-4F 1:1.2(0.45) 0.856 26366 76410 17.236

4 Discussion

The pre-trained OSC-Net demonstrates better performance on computational data than on
experimental data, which aligns with expectations since it was trained on computational data. Our
hypothesis is that the relationship between molecular fingerprints and device performance
parameters in computational and experimental datasets would be highly correlated. The pre-trained
OSC-Net is designed to learn this relationship effectively for the computational dataset. At the

same time, it captures the general trend of the relationship for the experimental dataset, as
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evidenced by the correlation coefficients for the experimental dataset, which, although not high,
still have measurable values. These observations suggest that the pre-trained OSC-Net has the
potential to benefit subsequent fine-tuning. However, the small correlation coefficients may not
fully reflect the benefits of pretraining with computational data, as the Pearson correlation
coefficient only accounts for linear relationships. More evidence will be present in the discussion

about fine-tuning.

During inference with the pre-trained OSC-Net, the epistemic uncertainty is notably higher
for the experimental dataset than for the computational dataset. This is because the experimental
dataset contains more complex materials and falls outside the range of the computational dataset,
effectively making inference for the experimental data an extrapolation task. Additionally, larger
gaps between the predicted values and the ground truth are associated with higher uncertainty
levels. This observation validates the effectiveness of the uncertainty quantification framework,
which accurately captures uncertainties associated with each model prediction. When the model is
less confident in its predictions, it assigns relatively large uncertainty values to reflect this lack of

confidence, indicating the robustness of the framework in handling uncertain predictions.

The pre-trained OSC-Net achieves higher CI accuracy on computational data compared to
experimental data. This difference highlights the challenges posed by extrapolation, which impacts
both the model prediction and its uncertainty quantification. Despite the CI accuracy for
experimental data being lower than that for the computational dataset, the pretrained model still

provides a valuable foundation that benefits the subsequent fine-tuning process.

The enhanced performance of OSC-Net over SF-OSC-Net can be attributed to its
pretraining on computational datasets, which serves as a bridge to the ultimate goal, capturing the
experimental response surface. This pretraining makes fine-tuning more efficient compared to
training a model from scratch. However, the performance enhancement is constrained by the
limitations of the computational dataset, including use of a single donor material, outdated acceptor
material properties and a relatively simple computational approach for evaluating device
performance parameters, which results in lower accuracy relative to the experimental data. The
slightly higher uncertainties observed in OSC-Net, compared to SF-OSC-Net, result in higher CI
accuracy, suggesting that larger and more precise uncertainty estimates accurately capture the

variability in the model.
18
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The higher CI accuracy and classification accuracy of OSC-Net over SF-OSC-Net aligns
with the CI accuracy achieved during the pretraining stage. These findings demonstrate that OSC-
Net is a superior modeling approach in both predictive accuracy and uncertainty quantification for

inferring device performance parameters in OSCs.

It is important to note that device performance is influenced by multiple factors beyond
donor and acceptor materials and their ratios, including solvents, additives, processing conditions,
annealing temperature, layer thicknesses, electrode materials, interfacial layers, etc. In the current
OSC-Net framework, only the most significant contributors, donor, acceptor, and D/A ratio, are
explicitly modeled, while the other factors are treated as sources of uncertainty. We employ
uncertainty quantification to implicitly capture the effect of these unaccounted factors, providing

confidence intervals for predictions.

Beyond material synthesis, device optimization (e.g. donor—acceptor pairing, solvent
selection, D:A ratio, additive choice) remains one of the most time-consuming tasks for developing
ideal OSC devices. Leveraging the fine-tuned OSC-Net model, we conducted a high-throughput
screening of 728,587,915 potential donor—acceptor combinations, the vast majority of which have

not been previously reported. Several of the top-performing blends predicted by OSC-Net were

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

validated against experimental data from the literature, with percentage differences (PD) within

3%, confirming the model's accuracy and robustness. In addition, a list of previously unreported

Open Access Article. Published on 04 November 2025. Downloaded on 11/6/2025 1:09:59 PM.

high-efficiency configurations was provided to facilitate future experimental investigation by the

community. Among the identified candidates, donor materials such as D18 and PM6, along with

(cc)

their derivatives, consistently ranked among the top-performing candidates, demonstrating strong
robustness and adaptability across diverse pairings. Similarly, many asymmetric Y6 derivatives,
such as Bu-OD-4F, BP4T-4F, A-WSSe-Cl, and SY1, also exhibited outstanding performance.
Although these asymmetric acceptors often present greater synthetic complexity than their
symmetric counterparts, their superior efficiencies in prediction justify further synthesis and
experimental investigation. These findings highlight the potential of OSC-Net to accelerate the
identification of high-efficiency material pairings, thereby reducing the experimental burden and
material costs associated with device optimization. As new donor and acceptor materials are
synthesized, they can be readily integrated into the OSC-Net framework to guide the selection of

promising pairings for optimal performance.
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5 Conclusion and future work

This paper introduces a novel multi-fidelity machine learning framework, OSC-Net,
designed to predict device performance parameters with uncertainty quantification, enabling high-
throughput screening of OSC materials. A comprehensive database was first constructed,
comprising 47,329 computational data points and 1,782 experimental data points collected from
existing literature. OSC-Net was then developed to incorporate datasets of varying fidelity. The
model uses fingerprints of donor and acceptor materials, along with their relative ratios, as inputs
to predict device performance parameters and their associated uncertainties, facilitating efficient
screening of OSC materials. Compared to previous contributions, the main contributions of this
study are: (1) Multi-Fidelity Framework: A two-step pre-training and fine-tuning strategy was
implemented to integrate datasets of different fidelities effectively. (2) Uncertainty Quantification:

epistemic uncertainties are quantified, providing confidence intervals for model predictions.

Our results demonstrate that (1) the pre-trained OSC-Net exhibits strong predictive
performance for computational datasets, achieving low MSE values of 0.007, 0.256, 0, and 0.129,
respectively, and high Pearson correlation coefficients of 0.987, 0.985, N/A, and 0.981. (2) For
experimental datasets, pre-trained OSC-Net successfully captures the general input-output trends,
demonstrating moderate correlation coefficients and CI accuracy, which enhance the subsequent
fine-tuning process. (3) Fine-tuned OSC-Net consistently outperforms SF-OSC-Net, achieving
lower MSE values (an average reduction of 2.5%), higher correlation coefficients, higher CI
accuracy (an average increase of 9.2%), and higher classification accuracy (an increase of 2.2%)).
These results confirm that pretraining improves the efficiency of the fine-tuning process, leading
to a more accurate model. (4) Fine-tuned OSC-Net provides more accurate uncertainty
quantification compared to SF-OSC-Net, as evidenced by improved CI accuracy. This indicates
that OSC-Net better captures the variability in the model, leading to more trustworthy predictions.
(5) the fine-tuned OSC-Net was applied to a large-scale high-throughput screening, successfully
identifying promising candidates with predicted PCEs exceeding 15%. Several of these candidates
agree well with reported experimental data, and a list of previously unreported high-efficiency
configurations is provided for future investigation. These findings confirm that OSC-Net is a

robust computational tool for accurately predicting OSC device performance with uncertainty

20


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08724d

Page 21 of 27

Open Access Article. Published on 04 November 2025. Downloaded on 11/6/2025 1:09:59 PM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Journal of Materials Chemistry A

View Article Online
DOI: 10.1039/D5TA08724D

quantification, enabling the discovery of high-performance OSC materials in scenarios with

limited high quality experimental data.

Future research will focus on generating higher-quality computational data for pretraining
and expanding experimental datasets for fine-tuning. Subsequently, OSC-Net will be applied to
the material design process to identify optimal donor and acceptor materials for OSC devices,

followed by experimental validation.
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