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Abstract

Organic solar cells (OSCs) emerge as a promising renewable energy technology, offering 

advantages such as lightweight design, semitransparency, flexibility, and cost-effectiveness. 

Power conversion efficiency (PCE) is a key device performance parameter for OSCs, defined as 

the ratio of the electrical power output generated by the device to the incident solar power input. 

Despite significant advances, the development of high-performance OSCs remains a labor-

intensive process, heavily dependent on expert experience, involving extensive synthesis, 

characterization, and iterative optimization. Data-driven methods offer a promising alternative for 

accelerating material discovery, but their effectiveness is often limited by the scarcity of high-

quality experimental data. To overcome this challenge, we propose OSC-Net, a multi-fidelity 

machine learning framework that integrates a large volume of computational data with a smaller 

set of high-accuracy experimental measurements. This approach enables accurate prediction of 

key device performance parameters, including PCE, while simultaneously tackling the challenges 

associated with experimental data scarcity and uncertainty quantification, enabling efficient 

screening of OSC materials. Importantly, the predictive capability of OSC-Net was verified against 

published experimental data, confirming its accuracy and reliability. By leveraging both data 

sources, OSC-Net achieves superior predictive performance compared to conventional single-

fidelity models. Furthermore, the uncertainty quantification captures variability in the model, 

enhancing the reliability of predictions. Finally, OSC-Net was employed for large-scale high-
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throughput screening, successfully identifying promising candidates with high predicted PCEs that 

were validated against literature-reported experimental data. Thus, OSC-Net presents a feasible 

approach for rapid and accurate inference of device performance parameters with limited 

experimental datasets, enabling efficient OSC material discovery.

Keywords: Organic solar cell; Machine learning; Multi-fidelity; Uncertainty quantification; High-
throughput Screening

1 Introduction

Organic solar cells (OSCs) have gained significant traction as a promising renewable 

energy technology due to their unique attributes, including lightweight, flexibility, and cost-

effectiveness 1–4. These characteristics make OSCs highly appealing for a variety of innovative 

applications such as wearable electronics, building-integrated photovoltaics, and portable power 

solutions 5,6. Power conversion efficiency (PCE) is a key device performance parameter for 

evaluating OSCs, defined as the ratio of the electrical power output generated by the device to the 

incident solar power input, typically expressed as a percentage. Recent advancements in OSCs 

have led to notable improvements in PCE, driven by optimizations in device architectures, active-

layer materials, and fabrication processes 7–11. Nevertheless, the development of OSC remains 

labor-intensive and heavily reliant on expert intuition, involving extensive synthesis, 

characterization, and iterative optimization. This is primarily due to (1) the intrinsic complexity of 

organic materials, which complicates the design and selection of donor and acceptor components; 

(2) the limited understanding of the complex relationship between material properties, fabrication 

parameters, and their effects on device performance parameters, such as PCE 12; and (3) the time-

intensive nature of experimentally evaluating OSCs, involving material design and engineering, 

device fabrication, and performance characterization, which can take days to weeks and thus limit 

high-throughput material screening. These challenges highlight the need for efficient 

computational approaches to predict device performance parameters based on material properties, 

enabling faster material discovery.

In recent years, advanced machine learning methods have emerged as powerful tools to 

identify relationships between materials properties and OSC device performance for accelerating 

OSC research 8,13–15. By leveraging either computational data, such as density functional theory 

(DFT) calculations and the Scharber model 16, or experimental data, or both, machine learning 
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techniques enable the discovery of hidden patterns and critical trends governing OSC performance. 

For example, Aspuru-Guzik et al. employed a Gaussian process model trained on 51,000 

computational data points from the Harvard Clean Energy Project database 17, which comprises 

data derived from DFT calculations and the Scharber model. This model successfully predicted 

PCE and identified 838 potential high-performing candidate molecules 18. Similarly, Sun et al. 

used a convolutional neural network to extract features from molecular structures for PCE 

prediction 19, also leveraging computational data from the same database. However, computational 

data, particularly PCE values derived from the Scharber model 16, often suffer from limited 

accuracy due to simplified assumptions and descriptors. This restricts the predictive accuracy of 

machine learning models and the reliability of the candidates they identify for achieving high 

efficiency. To overcome these limitations, recent efforts have focused on training machine learning 

models using experimental data. Several studies have explored the use of machine learning 

methods to predict device performance based on single-component properties, either donor or 

acceptor, by learning their relationships to experimental outcomes 20–23. However, since OSC 

device performance is critically dependent on the interaction between both donor and acceptor 

materials, it is necessary to develop models that simultaneously account for both donor and 

acceptor materials in relation to device performance; indeed, some research studies have explored 

this direction 24–31. For example, Sun et al. collected a dataset of 1,719 donor materials and 

evaluated different molecular representations as inputs to ML models, finding that fingerprints 

exceeding 1,000 bits achieved the highest prediction accuracy 24. Wu et al. collected 565 donor-

acceptor combinations and developed five machine-learning models for PCE inference, identifying 

that boosted regression trees and random forest models outperformed others in prediction accuracy 
25. Similarly, Zhang et al. curated a dataset of 2,078 D/A combinations and trained a graph neural 

network using a newly designed polymer fingerprint representation as input features31. Despite 

progress in leveraging machine learning for material discovery, challenges such as limited datasets, 

low prediction accuracy, and insufficient uncertainty quantification still exist. These issues are 

particularly critical given the complex relationship between material properties and device 

performance for OSC, and the substantial uncertainties inherent in the material synthesis process. 

In this study, we established a comprehensive database comprising 47,329 computational 

entries from reference 18 and 1,782 experimental data points collected from the literature and our 

laboratory database. Building on this resource, we introduced a multi-fidelity machine learning 
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framework (OSC-Net) to predict device performance parameters, including PCE, with uncertainty 

quantification, thereby enabling high-throughput screening of OSC materials. Different from 

previous efforts, this work presents several novelties: (1) A multi-fidelity approach is implemented 

using a two-step training strategy to integrate data of different fidelity levels. Specifically, the 

proposed model is pre-trained on a large volume of computational data, which is relatively low in 

accuracy, and fine-tuned with a smaller but more accurate set of experimental data. Importantly, 

the predictive capability of OSC-Net is verified against published experimental data, confirming 

its reliability and practical relevance for OSC material discovery. This represents a pioneering 

study to investigate the feasibility of a multi-fidelity approach for screening high performance 

OSC materials. (2) Uncertainty associated with the machine learning model prediction is 

quantified to provide confidence intervals for PCE predictions. These confidence intervals offer 

valuable guidance for material discovery and design. (3) Our curated experimental dataset includes 

both fullerene and non-fullerene acceptors, paired with a broad range of conjugated polymer 

donors in binary blends, including many of the champion devices throughout history to date. The 

donor selection spans various levels of synthetic complexity and includes specialized subgroups 

with subtle alterations to the chemical structures, such as the PBnDT-TAZ series, facilitating 

analysis of structure–property–performance relationships. Additionally, to account for batch-to-

batch variability, a common challenge in OSC materials, we incorporate replicate data from 

different laboratories, enhancing the ability of the model to quantify experimental uncertainty.

The rest of the paper is organized as follows. Section 2 introduces the methodology of the 

proposed multi-fidelity machine learning model, including database, model architecture, and 

uncertainty quantification methods. Results and discussions are presented in Sections 3 and 4, 

respectively. Finally, conclusions and future work are presented in Section 5.

2 Methodology

The proposed OSC-Net framework focuses on bulk heterojunction (BHJ) OSCs, in which 

the active layer consists of a nanoscale interpenetrating network formed by blending two organic 

semiconductors, a donor and an acceptor. This nanostructured morphology enables efficient 

exciton dissociation and facilitates charge separation and transport throughout the device. OSC-

Net aims to predict key device performance parameters, along with their associated uncertainties, 

based on the chemical identity of the donor and acceptor materials, as well as their blending ratio 
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for high-throughput material screening. Specifically, OSC-Net takes the fingerprints (FPs) of 

donor and acceptor materials, along with their relative ratio, as inputs to predict three critical 

device performance parameters as responses, including the open-circuit voltage (Voc), which 

represents the maximum voltage a solar cell can produce, the short-circuit current density (Jsc), 

which is the current when the voltage across the device is zero, and the fill factor (FF), which 

quantifies how closely the maximum power output approaches its theoretical maximum. These 

device performance parameters are sufficient for calculating the PCE, so the PCE itself is not 

included as a direct model output. The PCE can be expressed mathematically as:

OC SC

in

PCE(%) 100V J FF
P

´ ´
= ´  (1)

where Pin is the incident solar power, assumed to be 100 mW/cm2 under standard AM1.5G 

illumination conditions.

The OSC-Net structure features a combination of an encoder as the feature extractor and a 

multilayer perceptron (MLP) as the predictor head, as shown in the blue block in Fig. 1. The model 

first encodes the fingerprint features of the donor and acceptor materials. The resulting encoded 

features, along with the donor/acceptor ratio, are passed into the MLP that predicts the three target 

performance parameters and their corresponding uncertainties.

The development of the OSC-Net framework involves two main stages: training and testing, 

as illustrated in Fig. 1. In the training stage shown in Fig. 1 (a), a two-step training strategy is 

employed to incorporate data with different fidelity levels, accuracies, and associated costs, 

specifically, computational and experimental data in this study. Initially, a large amount of 

computational data, derived from DFT calculations and the Scharber model, was used to pre-train 

the OSC-Net. This step allows the OSC-Net to capture the general trend of the input-output 

relationships present in low-fidelity computational data. A relatively smaller but highly accurate 

set of high-fidelity experimental data was then utilized for fine-tuning the model above, allowing 

the model to progressively align with the response surface of the experimental data. This sequential 

strategy, inspired by transfer learning 32, effectively enables the OSC-Net to leverage data from 

different fidelities, accuracies and costs to create a unified, robust multi-fidelity machine learning 

model for predicting device performance 33–36.
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In the testing stage, shown in Fig. 1 (b), the fine-tuned model above can rapidly predict the 

performance parameters given any input materials, which normally takes sub seconds per 

prediction and, therefore, can be used for high-throughput material screening.

Fig. 1 OSC-Net framework, including training and testing stages.

2.1 OSC database
The dataset consists of 47,329 computational entries from reference 18 and 1,782 

experimental data points collected from the literature and our laboratory database. All 

computational data used PCDTBT as the donor and various non‑fullerene acceptors constructed 

from a library of 107 fragments—13 cores, 49 spacers, and 45 terminal groups (see reference 18). 

For each acceptor, DFT was used to compute the HOMO energy, LUMO energy, and HOMO–

LUMO gap, and the PCE is then predicted via the Scharber model. Note that a fixed donor/acceptor 

weight ratio of 0.4 (corresponding to 1:1.5) is applied to every computational sample. Fig. 2 

illustrates the distribution of PCE values for both the computational and experimental datasets. 

The data are categorized into three groups: low (0-5%), moderate (5-10%), and high (above 10%) 

PCE values. For the computational dataset, the median PCE value is 1.06%, and the average is 
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1.85%, with the data split as follows: 45,990 in the low category, 4,779 in the moderate category, 

and 98 in the high category.

In the experimental dataset, the median PCE is 4.88%, and the average is 5.56%, with 914 

data points in the low category, 663 in the moderate category, and 205 in the high category. The 

experimental dataset includes a wide selection of conjugated polymers as donors, with both 

fullerene and non-fullerene small molecule acceptors. Instances involving the same donor and 

acceptor material, reported with varying device performance values from different data sources, 

are all included, allowing for uncertainty quantification. 

For the computational dataset, 90% was randomly selected for pretraining, 5% for 

validation during pretraining, and the remaining 5% for testing. Similarly, for the experimental 

dataset, 80% was randomly chosen for fine-tuning, while 10% for validation and the remaining 10% 

for testing. Various representations of material have been proposed for machine learning-based 

analysis, including images, SMILES, fingerprints, energy levels, and more 8. In this study, 

fingerprints are used to represent molecules, serving as the input for the machine learning model 

to enhance prediction accuracy 24. Specifically, each donor or acceptor material is converted into 

a 4096-bit binary array to generate Morgan fingerprints.

Fig. 2 Distribution of PCE values of (a) computational data and (b) experimental data.

2.2 OSC-Net architecture
This section describes the architecture of OSC-Net. As shown in Fig. 3, the network 

comprises an encoder and an MLP designed to predict three key device performance parameters 

(Voc, Jsc, and FF) and using the donor and acceptor Morgan fingerprints (see Section 2.1) 
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alongside the D/A ratio as inputs. The encoder compresses fingerprint information into feature 

maps in the latent space. It consists of three pooling layers, each followed by two convolutional 

layers with ReLU activation. The convolutional layer, using a kernel size of 2 × 1 and a stride of 

1, compresses the fingerprint data to produce feature maps. Maximum pooling layers, with a 2 × 

1 kernel and a stride of 2, further reduce the dimensions of the feature maps. The number of kernels 

in each layer, corresponding to the number of channels, is annotated above the corresponding 

blocks in Fig. 3. The MLP, taking feature maps from the encoder and the D/A ratio as inputs, 

predicts the device performance parameters and their corresponding uncertainties. This MLP has 

four layers with 4097, 512, 128, and 3 neurons, respectively.

Fig. 3 Architecture of OSC-Net.

The model was pre-trained on computational dataset for 500 epochs and subsequently fine-

tuned on the experimental dataset, over 7,000 epochs. The number of epochs for both stages was 

determined through iterative experimentation, guided by the convergence behavior of the training 

and validation losses. The large-scale, low-fidelity computational dataset was primarily used to 

establish the overall trend of the response surface, and thus required fewer training epochs. In 

contrast, the smaller but higher-fidelity experimental dataset necessitated a longer fine-tuning 

phase to allow the model to adapt gradually and fully exploit the available data. The Adam 

optimizer was utilized with an initial learning rate of 1×10-3 and a decaying schedule was employed 

to reduce the learning rate every 10 epochs if validation performance stagnated. The batch size 

was set to 20 and 5 for pre-training and fine-tuning, respectively, chosen empirically to balance 

memory constraints and convergence speed. The training process used mixed precision training 

via Automatic Mixed Precision (AMP), enabling gradient scaling to mitigate underflow issues in 
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the lower-precision computations. Validation was performed periodically throughout training, 

with a routine that assessed model performance on a separate validation set. Based on these 

evaluations, the learning rate scheduler dynamically adjusted learning rates to optimize training 

progress. The loss curves for both training and validation datasets were monitored across epochs 

to track convergence trends. The training employed the Mean Squared Error (MSE) loss, which is 

defined as:

2

1

ˆMSELoss ( )
n

i i
i

y y
=

= -å  (2)

Here, i = 1, 2, and 3 correspond to indices of the device performance parameters. The vector y = 

[Voc, Jsc, FF] represents ground truth values, derived from computational data during pre-training 

and from experimental measurements during fine-tuning. The vector ŷ = [V̂oc, Ĵsc, 𝐹𝐹] denotes 

their predicted values. The training was performed on NVIDIA GeForce RTX 3080 GPU, utilizing 

PyTorch 1.13.0 for model implementation. The model training took approximately 11 hours for 

completion.

2.3 Uncertainty quantification
The OSC-Net, serving as an approximate data-driven model, is inherently subject to 

uncertainties in its predictions. These uncertainties can be broadly classified into two categories: 

aleatoric and epistemic uncertainty 37–41. Aleatoric uncertainty accounts for the inherent noise in 

data caused by randomness, which cannot be reduced even with extensive training data. The 

evaluation of materials for OSCs typically involves several steps, including material design and 

engineering, device engineering, and performance evaluation. Each of these steps may introduce 

noise into the data, making it essential to quantify aleatoric uncertainty to account for these effects. 

However, given the limited size of our dataset, particularly the experimental entries, modeling 

aleatoric uncertainty would compromise the predictive accuracy of OSC-Net, which is the primary 

focus of this work. Moreover, the PCE values in our database are generally averaged over multiple 

devices to capture variability in performance. For these reasons, we chose not to explicitly model 

aleatoric uncertainty in this study.

Epistemic uncertainty, on the other hand, arises from a lack of knowledge or information 

about the underlying processes, models, or parameters 42. It reflects uncertainty that could 
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potentially be reduced with additional data or improved modeling. In this study, the relationship 

between input features and OSC device performance is highly complex and may not be fully 

captured by the current model structure, highlighting the importance of quantifying epistemic 

uncertainty to account for potential model-driven variability. Several techniques have been 

developed to quantify epistemic uncertainty in machine learning models, including Bayesian 

Neural Networks, Monte Carlo Dropout, Ensemble Methods, and Gaussian Processes 37,43–45. In 

this work, a deep ensemble approach is utilized to estimate the epistemic uncertainty in OSC-Net. 

Specifically, an ensemble of M = 5 models is explicitly constructed, and a statistical variance is 

computed from their predictions ŷj, where j = 1, …, M. Mathematically, the epistemic uncertainty, 

denoted as 𝛔2
e = [𝜎2

e―Voc,  𝜎2
e―Jsc , 𝜎2

e―FF ] is defined as:

2 2
e, ,

1

,
1

1 ˆ( )

1 ˆ

M

i i j i
j

M

i i j
j

y
M

y
M

s m

m

=

=

= -

=

å

å
 (3)

where µi represents the average prediction of the i-th device performance parameter across the 

ensemble models.

3 Results

This section first presents the inference results of the pre-trained OSC-Net, trained 

exclusively on computational data to predict device performance parameters. Next, the inference 

results of the fine-tuned OSC-Net were introduced, which was fine-tuned using experimental data 

based on the pre-trained OSC-Net. These fine-tuning results are also compared to those from an 

identical model architecture trained solely on experimental data. Finally, the fine-tuned OSC-Net 

is applied for high-throughput screening to identify promising high-performance donor–acceptor 

material pairs.

3.1 Inference results using pre-trained OSC-Net 
Fig. 4 presents scatter plots illustrating the performance of the pre-trained OSC-Net in 

predicting device performance parameters for both (a) computational and (b) experimental test 

datasets, both of which were not used during training. In these plots, light-colored error bars 

represent the 95% confidence interval for epistemic uncertainty ( ŷi-1.96 𝜎e,𝑖, ŷi+1.96 𝜎e,𝑖). The 
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corresponding statistical metrics, including the Pearson correlation coefficient, mean square error 

(MSE), uncertainty estimates, and confidence interval (CI) accuracy are summarized in Table 1. 

The CI accuracy, defined as the percentage of ground truth values yi falling within the range 95% 

of confidence interval ( ŷi-1.96 𝜎e,𝑖, ŷi+1.96 𝜎e,𝑖), reflects the performance of both the model 

prediction and its uncertainty quantification. Training and validation loss curves from the pre-

training stage are shown in Fig. S1 of the Supplementary Information.

For the computational dataset, the pre-trained OSC-Net demonstrates strong predictive 

performance across four device performance parameters (Voc, JSC, FF, and PCE). The model 

achieves low MSE values of 0.007, 0.256, 0, and 0.129, respectively, and high Pearson correlation 

coefficients of 0.987, 0.985, N/A, and 0.981. It is worth noting that, in the computational dataset, 

FF values are constant at 65%, making prediction trivial and resulting in an MSE of 0. 

Consequently, the correlation coefficient for FF cannot be computed due to zero standard deviation. 

For the experimental dataset, the model performs less effectively, yielding higher MSE values of 

1.396, 112.872, 256.956, and 25.285 for Voc, JSC, FF, and PCE, respectively, and lower correlation 

coefficients of -0.162, 0.625, -0.241, and 0.437. The epistemic uncertainty in experimental datasets 

is substantially greater than that in computational datasets. Furthermore, the CI accuracy is 

substantially higher for the computational dataset.
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Fig. 4 Scatter plots comparing predicted device performance parameters from the pre-trained OSC-Net to ground 
truth values, including uncertainties, for (a) computational and (b) experimental test data.

Table 1 Summary of pre-trained OSC-Net performance in terms of Pearson correlation coefficient, MSE, and 
uncertainties.

r 
value MSE 𝜎e CI accuracy

VOC 0.987 0.007 0.041 73.976
JSC 0.985 0.256 0.272 86.523
FF N/A 0.000 0.016 100.000

Computational 
Data

PCE 0.981 0.129 0.249 89.565
VOC -0.162 1.396 0.212 0.000
JSC 0.625 112.872 0.764 4.444Experimental 

Data
FF -0.241 256.956 0.009 0.000
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PCE 0.437 25.285 0.973 42.222

3.2 Inference results using fine-tuned OSC-Net
Fig. 5 presents scatter plots comparing the predictive performance of (a) the fine-tuned 

OSC-Net, trained on both computational and experimental data, and (b) single fidelity OSC-Net 

(SF-OSC-Net), a machine learning model with the same architecture as OSC-Net but trained 

exclusively on experimental data. As mentioned previously, in the plots, light green error bars 

represent the 95% confidence intervals for epistemic uncertainty. Statistical metrics, including 

Pearson correlation coefficients, mean squared errors (MSE), and uncertainty measures, are 

summarized in Table 2. The training and validation loss curves from the fine-tuning stage are 

provided in Fig. S2 of the Supplementary Information.

Both OSC-Net and SF-OSC-Net share nearly identical architectures and training 

procedures, except that OSC-Net was trained on both computational and experimental data, 

whereas SF-OSC-Net used only experimental data. While there are clear trends across all device 

parameters (Voc, JSC, FF, and PCE), OSC-Net consistently outperforms SF-OSC-Net, exhibiting 

an average 2.5% reduction in MSE and higher correlation coefficients. The OSC-Net exhibits 

slightly higher uncertainties than SF-OSC-Net, and achieves better CI accuracy, with an average 

improvement of approximately 9.2%.
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Fig. 5 Scatter plots comparing predicted device performance parameters to ground truth values, including 
uncertainties for training unseen experimental data by (a) fine-tuned OSC-Net and (b) SF-OSC-Net.

Table 2 Summary of fine-tuned OSC-Net, and SF-OSC-Net performance in terms of Pearson correlation coefficient, 
MSE, and uncertainties.

r value MSE 𝜎e CI accuracy

VOC 0.740 0.005 0.031 61.111

JSC 0.907 6.726 0.824 47.778

FF 0.774 69.386 2.107 40.000
Fine-tuned OSC-Net

PCE 0.921 2.680 0.465 38.889

SF-OSC-Net VOC 0.729 0.005 0.023 54.444
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JSC 0.901 7.185 0.601 34.444

FF 0.769 70.111 1.590 31.111

PCE 0.920 2.711 0.338 31.111

As mentioned previously, the PCE data were divided into three groups, low (0-5%), 

moderate (5-10%), and high (above 10%). Classification performance was evaluated by assigning 

class labels based on the predicted PCE values and comparing them with the corresponding ground 

truth labels. Table 3 and Table 4 present the confusion matrices for predicting the PCE groups 

using OSC-Net and SF-OSC-Net, respectively. The diagonal elements of each matrix (highlighted 

in green) indicate correctly classified instances. Overall, OSC-Net demonstrated a higher 

classification accuracy compared to SF-OSC-Net, achieving 73.3% versus 71.1%. These results 

underscore that incorporating multi-fidelity data through OSC-Net leads to more accurate and 

robust predictions than relying solely on experimental data, validating the effectiveness of the 

multi-fidelity approach.

Table 3 Confusion matrix of OSC-Net inference

pred.

exp.
low moderate high

low 43 8 0

moderate 11 17 0

high 0 1 10

Table 4 Confusion matrix of SF-OSC-Net inference

pred.

exp.
low moderate high

low 41 10 0

moderate 12 16 0

high 0 2 9

Page 15 of 27 Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

1/
6/

20
25

 1
:0

9:
59

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5TA08724D

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta08724d


16

3.3 High-throughput screening
Next, we conducted a high-throughput screening of all possible donor–acceptor 

combinations in our databases, using the trained OSC-Net model. Both donors and acceptors were 

presented in our databases (see Section 2.1), although most of the specific pairings had not been 

previously evaluated. The screening considered 1289 unique donor materials, 51,385 unique 

acceptor materials, and 11 different donor-to-acceptor ratios ranging from 0.10 to 0.60 in 

increments of 0.05, resulting in a total of 728,587,915 potential device configurations. The 

distribution of the predicted PCE is presented in Fig. 6. Among the combinations evaluated, 

768,664 achieved a PCE exceeding 10%, and 4,870 achieved a PCE above 15%. 

Fig. 6 Distribution of predicted PCE for high-throughput screening

Table 5 compares the key device performance parameters (VOC, JSC, FF, and PCE) of 

several top-performing blends identified by OSC-Net with corresponding experimental data 

reported in recent literature published within the last three years 46–50. None of these blends was 

included in the training databases, and the predicted PCEs closely agree with the experimental 

values, with percentage differences (PD) within 3%. Minor discrepancies can be attributed to 

variations in processing conditions, film morphology, additives, active-layer thickness, polymer 

molecular weight, and other factors not currently considered by OSC-Net. Finally, Table 6 lists 

five high-performance donor–acceptor configurations predicted by OSC-Net to exhibit the highest 

PCEs across all tested configurations. To the best of our knowledge, these combinations have not 

yet been reported in the literature. The chemical structures of these top-performing donor–acceptor 

pairs are summarized in Figs. S3 and S4 in the Supplementary Information.
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Table 5 Experimental validation of OSC-Net through comparison between predicted and literature-reported device 
performance parameters

# Donor Acceptor D/A ratio VOC JSC FF (%) PCE Source PCE
PD (%)

0.860 26.766 76.419 17.591 OSC-Net
1 D18 DTY-6 1:1.2 (0.45)

0.876 26.2 78.5 18.1 Ref 46
2.85

0.850 26.778 76.968 17.526 OSC-Net
2 D18-Cl N3 1:1.9 (0.35)

0.848 27.18 75.45 17.39 Ref 47
0.78

0.856 27.379 74.895 17.553 OSC-Net
3 D18 AQx-2 1:1.2 (0.45)

0.868 26.1 76.0 17.22 Ref 48
1.92

0.848 26.140 77.67 17.217 OSC-Net
4 D18 N3 1:1.9 (0.35)

0.83 27.2 75.3 17.0 Ref 49
1.27

0.859 26.317 75.971 17.174 OSC-Net
5 D18 Y6-BO 1:1.9 (0.35)

0.876 26.2 73.7 16.91 Ref 50
1.55

Table 6 Selection of unexplored high efficiency blends identified by OSC-Net

# Donor Acceptor D/A ratio VOC JSC FF (%) PCE

1 PL1 A-WSSe-Cl 1:1.2 (0.45) 0.860 26.536 77.811 17.762

2 D18-Cl SY1 1:1.5 (0.4) 0.871 27.141 74.420 17.600

3 PM6-Ir1 SY2 1:1.2 (0.45) 0.856 26.329 77.851 17.544

4 D18-Cl BP4T-4F 1:1.5 (0.4) 0.842 27.413 75.771 17.483

5 D18 Bu-OD-4F 1:1.2 (0.45) 0.856 26.366 76.410 17.236

4 Discussion

The pre-trained OSC-Net demonstrates better performance on computational data than on 

experimental data, which aligns with expectations since it was trained on computational data. Our 

hypothesis is that the relationship between molecular fingerprints and device performance 

parameters in computational and experimental datasets would be highly correlated. The pre-trained 

OSC-Net is designed to learn this relationship effectively for the computational dataset. At the 

same time, it captures the general trend of the relationship for the experimental dataset, as 
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evidenced by the correlation coefficients for the experimental dataset, which, although not high, 

still have measurable values. These observations suggest that the pre-trained OSC-Net has the 

potential to benefit subsequent fine-tuning. However, the small correlation coefficients may not 

fully reflect the benefits of pretraining with computational data, as the Pearson correlation 

coefficient only accounts for linear relationships. More evidence will be present in the discussion 

about fine-tuning.

During inference with the pre-trained OSC-Net, the epistemic uncertainty is notably higher 

for the experimental dataset than for the computational dataset. This is because the experimental 

dataset contains more complex materials and falls outside the range of the computational dataset, 

effectively making inference for the experimental data an extrapolation task. Additionally, larger 

gaps between the predicted values and the ground truth are associated with higher uncertainty 

levels. This observation validates the effectiveness of the uncertainty quantification framework, 

which accurately captures uncertainties associated with each model prediction. When the model is 

less confident in its predictions, it assigns relatively large uncertainty values to reflect this lack of 

confidence, indicating the robustness of the framework in handling uncertain predictions.

The pre-trained OSC-Net achieves higher CI accuracy on computational data compared to 

experimental data. This difference highlights the challenges posed by extrapolation, which impacts 

both the model prediction and its uncertainty quantification. Despite the CI accuracy for 

experimental data being lower than that for the computational dataset, the pretrained model still 

provides a valuable foundation that benefits the subsequent fine-tuning process.

The enhanced performance of OSC-Net over SF-OSC-Net can be attributed to its 

pretraining on computational datasets, which serves as a bridge to the ultimate goal, capturing the 

experimental response surface. This pretraining makes fine-tuning more efficient compared to 

training a model from scratch. However, the performance enhancement is constrained by the 

limitations of the computational dataset, including use of a single donor material, outdated acceptor 

material properties and a relatively simple computational approach for evaluating device 

performance parameters, which results in lower accuracy relative to the experimental data. The 

slightly higher uncertainties observed in OSC-Net, compared to SF-OSC-Net, result in higher CI 

accuracy, suggesting that larger and more precise uncertainty estimates accurately capture the 

variability in the model.
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The higher CI accuracy and classification accuracy of OSC-Net over SF-OSC-Net aligns 

with the CI accuracy achieved during the pretraining stage. These findings demonstrate that OSC-

Net is a superior modeling approach in both predictive accuracy and uncertainty quantification for 

inferring device performance parameters in OSCs.

It is important to note that device performance is influenced by multiple factors beyond 

donor and acceptor materials and their ratios, including solvents, additives, processing conditions, 

annealing temperature, layer thicknesses, electrode materials, interfacial layers, etc. In the current 

OSC-Net framework, only the most significant contributors, donor, acceptor, and D/A ratio, are 

explicitly modeled, while the other factors are treated as sources of uncertainty. We employ 

uncertainty quantification to implicitly capture the effect of these unaccounted factors, providing 

confidence intervals for predictions.

Beyond material synthesis, device optimization (e.g. donor–acceptor pairing, solvent 

selection, D:A ratio, additive choice) remains one of the most time-consuming tasks for developing 

ideal OSC devices. Leveraging the fine-tuned OSC-Net model, we conducted a high-throughput 

screening of 728,587,915 potential donor–acceptor combinations, the vast majority of which have 

not been previously reported. Several of the top-performing blends predicted by OSC-Net were 

validated against experimental data from the literature, with percentage differences (PD) within 

3%, confirming the model's accuracy and robustness. In addition, a list of previously unreported 

high-efficiency configurations was provided to facilitate future experimental investigation by the 

community. Among the identified candidates, donor materials such as D18 and PM6, along with 

their derivatives, consistently ranked among the top-performing candidates, demonstrating strong 

robustness and adaptability across diverse pairings. Similarly, many asymmetric Y6 derivatives, 

such as Bu-OD-4F, BP4T-4F, A-WSSe-Cl, and SY1, also exhibited outstanding performance. 

Although these asymmetric acceptors often present greater synthetic complexity than their 

symmetric counterparts, their superior efficiencies in prediction justify further synthesis and 

experimental investigation. These findings highlight the potential of OSC-Net to accelerate the 

identification of high-efficiency material pairings, thereby reducing the experimental burden and 

material costs associated with device optimization. As new donor and acceptor materials are 

synthesized, they can be readily integrated into the OSC-Net framework to guide the selection of 

promising pairings for optimal performance.
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5 Conclusion and future work

This paper introduces a novel multi-fidelity machine learning framework, OSC-Net, 

designed to predict device performance parameters with uncertainty quantification, enabling high-

throughput screening of OSC materials. A comprehensive database was first constructed, 

comprising 47,329 computational data points and 1,782 experimental data points collected from 

existing literature. OSC-Net was then developed to incorporate datasets of varying fidelity. The 

model uses fingerprints of donor and acceptor materials, along with their relative ratios, as inputs 

to predict device performance parameters and their associated uncertainties, facilitating efficient 

screening of OSC materials. Compared to previous contributions, the main contributions of this 

study are: (1) Multi-Fidelity Framework: A two-step pre-training and fine-tuning strategy was 

implemented to integrate datasets of different fidelities effectively. (2) Uncertainty Quantification: 

epistemic uncertainties are quantified, providing confidence intervals for model predictions.

Our results demonstrate that (1) the pre-trained OSC-Net exhibits strong predictive 

performance for computational datasets, achieving low MSE values of 0.007, 0.256, 0, and 0.129, 

respectively, and high Pearson correlation coefficients of 0.987, 0.985, N/A, and 0.981. (2) For 

experimental datasets, pre-trained OSC-Net successfully captures the general input-output trends, 

demonstrating moderate correlation coefficients and CI accuracy, which enhance the subsequent 

fine-tuning process. (3) Fine-tuned OSC-Net consistently outperforms SF-OSC-Net, achieving 

lower MSE values (an average reduction of 2.5%), higher correlation coefficients, higher CI 

accuracy (an average increase of 9.2%), and higher classification accuracy (an increase of 2.2%). 

These results confirm that pretraining improves the efficiency of the fine-tuning process, leading 

to a more accurate model. (4) Fine-tuned OSC-Net provides more accurate uncertainty 

quantification compared to SF-OSC-Net, as evidenced by improved CI accuracy. This indicates 

that OSC-Net better captures the variability in the model, leading to more trustworthy predictions. 

(5) the fine-tuned OSC-Net was applied to a large-scale high-throughput screening, successfully 

identifying promising candidates with predicted PCEs exceeding 15%. Several of these candidates 

agree well with reported experimental data, and a list of previously unreported high-efficiency 

configurations is provided for future investigation. These findings confirm that OSC-Net is a 

robust computational tool for accurately predicting OSC device performance with uncertainty 
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quantification, enabling the discovery of high-performance OSC materials in scenarios with 

limited high quality experimental data.

Future research will focus on generating higher-quality computational data for pretraining 

and expanding experimental datasets for fine-tuning. Subsequently, OSC-Net will be applied to 

the material design process to identify optimal donor and acceptor materials for OSC devices, 

followed by experimental validation.
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