Journal of Materials Chemistry C ## CORRECTION View Article Online Cite this: *J. Mater. Chem. C,* 2018, 6, 7400 Correction: Gate-tunable interfacial properties of in-plane ML MX₂ 1T'-2H heterojunctions Shiqi Liu,^a Jingzhen Li,^a Bowen Shi,^a Xiuying Zhang,^a Yuanyuan Pan,^a Meng Ye,^a Ruge Quhe,^b Yangyang Wang,^{ac} Han Zhang,^a Jiahuan Yan,^a Linqiang Xu,^a Ying Guo,^d Feng Pan*^e and Jing Lu*^{af} DOI: 10.1039/c8tc90116c rsc.li/materials-c Correction for 'Gate-tunable interfacial properties of in-plane ML MX_2 1T'-2H heterojunctions' by Shiqi Liu et al., J. Mater. Chem. C, 2018, DOI: 10.1039/c8tc01106k. The authors regret that an incorrect description was used in the computational details section. The sentence "A periodic type, a Neumann type and a Dirichlet type boundary condition are used in the x, y and z directions of the device (Fig. 4), respectively." should read "A Neumann type, a Periodic type and a Dirichlet type boundary condition are used in the x, y and z directions of the device (Fig. 4), respectively." The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers. a State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China. E-mail: jinglu@pku.edu.cn b State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China ^c Nanophotonics and Optoelectronics Research Center, Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, P. R. China ^d School of Physics and Telecommunication Engineering, Shaanxi Sci-Tech University, Hanzhong 723001, P. R. China e School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, P. R. China. E-mail: panfeng@pkusz.edu.cn f Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China