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witterionic membranes with
superior antifouling and antibacterial properties
prepared via surface-initiated free-radical
polymerization of poly(cysteine methacrylate)†

Luis Valencia,a Sugam Kumar,a Blanca Jalvo,a Andreas Mautner, b

German Salazar-Alvareza and Aji P. Mathew *a

This article proposes a strategy to prepare membranes that combine the network characteristics of micro/

nanocellulose with grafted zwitterionic poly(cysteine methacrylate) (PCysMA) to develop fully bio-based

membranes with antifouling properties. The surface characteristics of the membranes were studied,

together with static adsorption of bovine serum albumin (BSA) and S. aureus for evaluating the

antifouling properties of the membranes. Experimental data revealed a homogeneous modification that

resulted in excellent antifouling properties with a reduction of 85% in biofilm formation and enhanced

antimicrobial activity. Moreover, we introduced a novel method to determine the pore size of

membranes in the wet-state and assess the antifouling performance in situ by synchrotron-based SAXS.

This allowed us to observe in real-time the decrease in pore size upon adsorption of BSA during

filtration, and how this phenomenon is strongly suppressed by grafting of PCysMA. The importance of

this work lies in introducing a simple method to yield cellulosic membranes with superior antifouling

properties, which could significantly increase their potential for water treatment applications.
Introduction

The non-specic adsorption of proteins and unwanted adhe-
sion of cells to surfaces of materials, commonly referred to as
surface fouling, is a problematic phenomenon associated with
medical implantation, biosensing, and membrane perfor-
mance.1–3 For this reason, the development and optimization of
new approaches for designing both biocompatible and non-
fouling surfaces has attracted considerable academic and
industrial interest during the past few decades, especially in the
elds of biomedical and environmental engineering. Non-toxic
functional polymer brushes are effective in prevention of
fouling, due to their large energetic barrier, constituted by the
balance between volume extrusion, conformational entropy,
and segment interactions of the polymer brushes that must be
overcome for proteins to be adsorbed.4–6 Moreover, polymer
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brushes can also provide mechanical and chemical robustness
with long-term stability.

The most widely used polymer brush for antifouling prop-
erties is poly(ethylene glycol) (PEG) and its derivatives, which
offer high resistance to nonspecic protein adsorption and cell
adhesion. However, these materials have limitations, especially
in long-term use, because they can be oxidized under physio-
logical conditions, which can lead to activation of comple-
mentary responses.7,8 Therefore, over the past decade, diverse
research activities have been devoted to designing alternative
non-fouling biomaterials. For example, zwitterionic polymers
have emerged as a promising candidate because of their good
chemical stability, low cost and excellent anti-fouling activity.
These antifouling properties arise from their electrical
neutrality with equivalent positively and negatively charged
groups, and through a hydration layer formed by solvation of
the charged groups, assisted by hydrogen bonding, which
creates a physical and energetic barrier.8 Polymers incorpo-
rating zwitterionic molecules such as phosphorylcholine,9 sul-
fobetaine10,11 and carboxybetaine12 have been reported to be
promising for anti-biofouling surfaces. However, to the best of
our knowledge, relatively little work has been focused on poly-
mers containing amino acid motifs as side chains, in particular
those containing cysteine.

In addition to the antifouling behaviour, cysteine has been
reported to be a potent metal chelator, presenting a unique
J. Mater. Chem. A, 2018, 6, 16361–16370 | 16361
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affinity to metal cations.13 The primary group responsible for
cation binding is the thiol group of the constituent cysteine, but
it also occurs through complex formation between the amine
and carboxylate moieties (N, O-chelation).13 On the other hand,
the high reactivity of cysteine has also been proven to affect
several enzymatic reactions in vitro and many microorganisms
in various metabolic functions.14,15 In the present study, zwit-
terionic polymer brushes based on poly(cysteine methacrylate)
(PCysMA) were graed from nanocellulose-based membranes
by means of surface-initiated free radical polymerization. Static
adsorption tests with bovine serum albumin (BSA) and bacteria
were performed to evaluate the antifouling properties of the
modied membranes. Moreover, a novel method to determine
the pore size of membranes in the wet-state and to assess the
antifouling performance in situ is introduced by means of
synchrotron-based SAXS. Data collected from the results indi-
cate that PCysMA-graed nanocellulose membranes are highly
stable and possess excellent antifouling properties.

Experimental section
Materials

High-purity cellulose from sowood bers (Norwegian spruce)
with high cellulose content (95% cellulose, 4.5% hemicellulose
and 0.1% lignin content as provided by Domsjö Fabriker AB,
Sweden) was used as the starting material to produce cellulose
nanobers. L-Cysteine (97%), potassium persulfate (KPS),
dimethyl sulfoxide (99%), uorescein diacetate (FDA), dodecyl
sulfate (SDS), Bovine Serum Albumin (BSA), phosphate buffered
saline (BioUltra), dimethylphenyl phosphine (DMPP) (99.0%),
3-(acryloxy)-2-hydroxypropyl methacrylate (99%), 3-(trimethox-
ysilyl) propyl methacrylate (MPS), and propylamine (99%) were
purchased from Sigma Aldrich and were used as received. SYTO
was purchased from Thermo Fisher Scientic and used as
received.

A detailed description of the extraction of nanocellulose and
synthesis of monomer cysteinemethacrylate15 is given in the ESI
(S1.1 and S1.2).†

Manufacturing of membranes

The membranes were prepared by vacuum ltration of
a mixture containing 2 wt% suspension of cellulose and 1 wt%
suspension of CNF in a 1 : 0.12 ratio using a Buchner funnel
setup having an area of 143 cm2. The membranes were dried at
room temperature for 2 days under a load of 5 kg. The thickness
of the membranes was determined using scanning electron
microscopy to be around 200 mm.

Graing of PCysMA brushes on the nanocellulose membranes
via SI-FRP

A two-step process was employed: covalent surface immobili-
zation of the initiator and subsequent surface-initiated free-
radical polymerization (SI-FRP). In a typical procedure, three
membranes (around 0.15 g each) were submerged in 20 mL of
cyclohexane contained in a 50 mL glass vessel covered by
a rubber septum under a nitrogen atmosphere. 1 mL (4 mmol)
16362 | J. Mater. Chem. A, 2018, 6, 16361–16370
MPS was injected into the reaction system, followed by 0.260mL
(3.1 mmol) of n-propylamine, and the mixture was stirred for
24 h at 60 �C. The membranes were washed extensively with
cyclohexane, ethanol and water (3� each) to remove any trace of
reagent and dried under reduced pressure at room temperature.
For the surface initiated-polymer graing, the modied
membranes were submerged in a 50 mL aqueous solution
containing cysteine methacrylate, inside a 50 mL glass vessel
covered with a rubber septum under a nitrogen atmosphere.
The temperature was raised to 70 �C and a solution of KPS
(30 mg, 0.11 mmol) was injected to initiate the gra polymeri-
zation. Aer 2 h the membranes were removed, washed
repeatedly with ethanol and water in a sonication bath, and
dried overnight under reduced pressure at 50 �C. A schematic
illustration of the functionalization of the membranes is shown
in Fig. 1.
Surface characterization of the membranes

BET analysis. The specic surface area and average pore
diameter in the dry state were determined from nitrogen
adsorption measurements at 77 K using the BET and BJH
models, respectively. The measurements were performed using
a Micromeritics ASAP 2000 instrument and samples were
degassed at 100 �C for 10 h in dry N2 prior to measurements.

Attenuated total reectance-Fourier-transform infrared
spectroscopy. The chemical composition of the surface-
modied nanopapers was analyzed using a Varian 610-IR
FTIR spectrometer equipped with a Ge/KBr beamsplitter and
DTGS and linearized MCT broadband detectors. All measure-
ments used an automatic signal gain, 32 scans and 4 cm�1

resolution. The spectra were recorded in the range of 400–
4000 cm�1 and baselines were manually corrected consistently
for all spectra.

FT-IR microscopy imaging. Infrared measurements of the
modied membranes were performed using a Bruker FT-IR
microscope, HYPERION 3000, coupled to a research spectrom-
eter, VERTEX 80. The HYPERION 3000 microscope was equip-
ped with two types of detectors: a single element MCT-detector
(Mercury Cadmium Telluride) for the conventional mapping
approach and a multi-element FPA-detector (Focal Plane Array)
for imaging. The multi-element FPA-detector consists of 64 �
64 elements, which allows simultaneous acquisition of 4096
spectra covering a sample area of 32 � 32 mm (for ATR detec-
tion). A 20� germanium ATR-lens was used to achieve a lateral
resolution of 0.25 mm2 per pixel. For processing the images,
baseline correction and atmospheric compensation were used.

X-ray photoelectron spectroscopy. The surface graing
structures of the zwitterionic membranes were characterized by
XPS. Analysis was performed with an Axis Ultra DLD electron
spectrometer (Kratos Analytical Ltd., U.K.) using a mono-
chromatized A1 Ka radiation source operating at 150 W and an
energy of 20 eV for individual photoelectron lines. All the
binding energies were referenced to the C 1s hydrocarbon peak
at 284.6 eV. The high-resolution C 1s spectrum was tted using
a Shirley background subtraction and a series of Gaussian peaks
(Gaussian Inc., USA).
This journal is © The Royal Society of Chemistry 2018
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Fig. 1 Schematic illustration of the surface-initiated polymer grafting of P(CysMA) on the nanocellulose-based membrane.
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Surface z-potential. The surface charge of the membranes
was investigated by measuring the zeta-potential (z-potential) as
a function of pH using a SurPASS electrokinetic analyzer (Anton
Paar, Graz, Austria). The membranes were characterized in an
adjustable gap cell at a gap width of 100 mm. An electrolyte
solution (1 mmol L�1 KCl) was pumped through the cell and the
pressure steadily increased to 300 mbar. The pH was controlled
by titrating 0.05 mol L�1 HCl and 0.05 mol L�1 KOH into the
electrolyte solution. The z-potential was determined from the
measured streaming current.

Atomic force microscopy. Topographical surface images of
the nanopapers were examined by AFM (Nanoscope V, Veeco
Instruments, Santa Barbara, CA, USA) in tapping mode. All
images were analyzed using Scanning Probe Image Processor
(SPIP) soware.

Contact angle. The wettability of the pristine and modied
cellulose nanopapers was measured and calculated in static
mode with a KSV instrument, CAM 200, equipped with a Basler
A602f camera. All measurements were performed at a tempera-
ture of 23 �C and a relative humidity of 40 � 5% RH.

Water permeability and ux

The water permeability of the membranes was measured in
a dead-end cell (Sterlitech HP4750 stirred cell, USA). Prior to the
measurements, membrane discs with a diameter of approx.
50 mm were cut from the membranes and placed in the dead-
end cell on a stainless steel porous support disk and water
was passed through the membranes at 23 �C at a head pressure
of 0.5 MPa maintained by compressed air ow. The quantity of
water that passed through the membrane for a dened time
interval was measured and the ux was calculated (L h�1 m�2)
for the active ltration area (14.6 cm2).

Antibacterial and antifouling performance

The antibacterial properties of the membranes were assessed
using the strain Staphylococcus aureus CECT 240. The anti-
fouling capability of the modied and unmodied samples was
studied in two different and complementary ways: on the one
hand, biolm formation of S. aureus and, on the other hand,
protein adsorption using a solution of bovine serum albumin
(BSA). Bacterial viability and biolm assays were tested using
different uorescence techniques. For these tests, exponentially
grown cultures of S. aureus on nutrient medium were diluted to
an OD600 of 0.0138 (108 cells per mL). Diluted cultures were
placed on the membranes inside polystyrene 24-well plates and
This journal is © The Royal Society of Chemistry 2018
incubated without stirring for 24 h at 37 �C. Aerwards, the
membranes were carefully washed with distilled water to
remove planktonic and loosely attached cells.

Fluorescein diacetate (FDA), a uorogenic substrate that
permits the detection of enzymatic activity, was used for the
relative quantication of the biolm formation. The uores-
cence was measured in a uorometer/luminometer, Fluoroskan
Ascent FL. 200 mL of FDA (0.02% (w/w) in DMSO) were spread
over the entire surface of the samples. Aer 15 min of pre-
incubation at 25 �C, FDA was excited at 485 nm and its emis-
sion recorded at 538 nm.

The visualization of the bacterial cells and biolms was
performed by confocal microscopy 24 h aer inoculation using
a Leica Microsystems Confocal SP5 uorescence microscope
(Leica Microsystems, Germany). Viable and non-viable bacteria
were tracked using a Live/Dead BacLight Bacterial Viability Kit.
For membrane staining, the surface of each specimen was
covered with 30 mL of stain (a 0.5 : 1 mixture of SYTO 9 and PI in
DMSO). For green uorescence (SYTO 9, intact cells), excitation
was performed at 488 nm and emission recorded at 500–
575 nm. For red uorescence (PI, dead cells), the excitation/
emission wavelengths were 561 nm and 570–620 nm, respec-
tively. Incubation was performed in the dark for 15–30 min at
room temperature. For matrix visualization, the biolms were
stained with 200 mL of FilmTracer SYPRO Ruby per lm, incu-
bated in the dark for 30 min at room temperature, and rinsed
with distilled water. For matrix staining, the excitation/
emission wavelengths were 450 nm and 610 nm, respectively.
Biolm formation was also visualized by SEM. A process of
dehydration and drying with ethanol at different concentrations
was carried out to analyse samples in contact with microor-
ganisms by SEM.

BSA adsorption was performed using PBS solution as
a buffer. The proteins were dissolved in 0.01 M PBS solution at
a concentration of 1 mg mL�1. The membranes were equili-
brated with PBS overnight and then immersed in the protein
solution for 2 h at 37 �C. Aer that, the membranes were rinsed
with PBS solution three times. In one batch of samples, the
adsorbed proteins were removed by immersing the membranes
in 1 wt% sodium dodecyl sulfate (SDS) solution for 1 h at 37 �C
under slight shaking conditions. In the other batch of samples,
the proteins were kept on the membranes for their confocal
microscopy visualization in order to study the antifouling
properties of the membranes. For both characterizations, the
proteins were quantied and visualized using a Qubit Protein
Assay Kit in a uorometer/luminometer, Fluoroskan Ascent FL,
J. Mater. Chem. A, 2018, 6, 16361–16370 | 16363
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and with a Leica Microsystems Confocal SP5 uorescence
microscope, respectively. For BSA characterization, the
excitation/emission wavelengths were 485 nm and 592 nm,
respectively.

In situ SAXS measurements

To examine the evolution of the pore structures in both the
unmodied and modied cellulose membranes in real time,
synchrotron-based SAXS experiments were performed. The
SAXS experiments were carried out at micro- and nano-focus X-
ray scattering (MiNaXS) beamline P03 at synchrotron source
PETRA III, DESY, Germany. The X-rays of wavelength (l)
0.09 nm with a beam size of about 20 � 20 mm2 were made
incident on the samples. The scattering patterns were recorded
using a 2D-pixel detector (Pilatus 300 K), and the radial aver-
aged intensity I(Q) was calculated for different wave vector
transfers, Q (Q ¼ (4p sin(q))/l, where 2q is the scattering angle).
The sample to detector distance was 1.5 m and the transmission
of the X-rays across the membrane is monitored simultaneously
by a PIN diode during the scanning experiment. The samples
were scanned at ve different sample positions and it was found
that the samples were acceptably homogeneous. The anti-
fouling properties of the modied and unmodied membranes
were investigated by comparing the SAXS data of the two,
measured in real time with the ow of the BSA protein solution
(1 wt%). In SAXS, one measures the intensity of the scattered X-
rays as a function of the wave vector transfer (Q). For a dilute
system of monodisperse, identical scatterers (particles/pores),
the scattering intensity can be given as16,17

I(Q) ¼ fV(Dr)2P(Q) (1)

where f is the volume fraction and V is the volume of the
scatterers. (Dr)2 ¼ (rs � rm)

2 is the excess scattering length
density or the contrast factor representing the difference in the
electron density of the scatterers (rs) and matrix (rm). P(Q)
represents the intra-particle structural factors (square of the
form factor) and provides information about the shape and size
of the scatterers. Any structural modications appearing in P(Q)
lead to Q dependent changes in the scattering pattern while
other parameters such as number density (volume fraction) of
the scatterers and the composition (contrast factor) of the
samples alter the scale of scattering intensity (like a multipli-
cative factor) without changing the scattering prole.

The structural parameters are thus obtained by tting the
I(Q) using the P(Q) of different suitable models, employing
a nonlinear least-squares tting program. The expression of
P(Q) for spherical scatterers of radius R can be given as18

PðQÞ ¼ 9

�
sinðQRÞ �QR cosðQRÞ

QR3

�2
(2)

For a dilute ensemble of polydisperse particles, the intensity
(eqn (1)) is modied as

IðQÞ ¼ fðDrÞ2
ð
VðRÞDðRÞPðQ;RÞdR (3)
16364 | J. Mater. Chem. A, 2018, 6, 16361–16370
where D(R) represents the size distribution of the scatterers,
which is described by a log-normal distribution. However, for
some non-particulate, randomly distributed, two-phase
systems, the SAXS intensity can be modelled by the following
Debye–Anderson–Brumberger (DAB) equation19 where x is the
correlation length.

I ¼ I0�
1þQ2x2

�2 (4)

Results and discussion

Fig. 1 shows the processing route for zwitterionic membranes
prepared by surface-initiated polymer graing of poly(cysteine
methacrylate) (PCysMA).

Two different zwitterionic membranes were prepared (ZM-1
and ZM-2), with variation of the graing yield, in order to
investigate the inuence of this factor on the structural prop-
erties of the membrane, and their antifouling performance. The
main properties of the membranes are summarized in Table 1.

A two-step functionalization strategy was followed: rst,
immobilization of a methacrylate group by means of a silylation
reaction followed by surface-initiated free-radical polymeriza-
tion of CysMA. The successful modication was conrmed by
the intense change in the water contact angle of the membranes
aer each stage. Aer immobilizing the initiator, the hydro-
philic surface of neat cellulose turned hydrophobic with
a contact angle value of 128.1� (see Fig. S2†), which suggests the
consumption of the surface hydroxyl groups. Then, upon poly-
mer graing of CysMA, the water contact angle decreased to 54.
5� and 66. 2� for ZM-1 and ZM-2, respectively (see Table 1),
which suggests the uniform polymer graing of hydrophilic
PCysMA.

Surface characterization of the membranes

The chemical composition of the surface of the membranes was
characterized by ATR-FTIR, and the resultant spectra are shown
in Fig. 2a. Compared with the pristine cellulose membrane, the
modied membranes showed an additional IR signal between
1700 and 1760 cm�1 that correlates with the characteristic
stretching vibration of C]O from PCysMA. This indicates that
the polymer brushes were successfully graed from the cellu-
lose membrane surface. Moreover, the higher peak intensity for
ZM-2 reaffirmed the higher graing yield. In addition, FT-IR
mapping of ZM-2 was performed to provide information
regarding the distribution of polymer brushes on the surface,20

and the results are displayed in Fig. 2b. ZM-2 was solely used for
the analysis, chosen due to the higher degree of functionaliza-
tion. At rst sight, different regions, shown as different colours,
were observed in the FT-IR mapping image; however, we found
that they do not indicate a lack of effective functionalization,
but rather indicate the surface roughness of the membranes.
This was demonstrated by analysing the FT-IR spectra at each of
the different spots, shown also in Fig. 2b, where the peak cor-
responding to the carboxyl group of PCysMA at 1700 cm�1 was
found in all regions. These observations highlight the
This journal is © The Royal Society of Chemistry 2018
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Table 1 Main characteristics of the nanocellulose-based membranes

Sample
[M]0

a

(mmol)
Surface
areab (m2 g�1)

Pore
diameterc (nm)

Permeate uxd

(Lmh bar�1)
Graing densitye

(mg cm�2)
Contact angle
(�)

Unmodied — 2.40 4.74 11 742 — 28.3
ZM-1 2.23 2.22 4.40 11 228 0.91 � 0.18 54.4
ZM-2 4.47 2.10 4.23 10 960 1.41 � 0.13 66.2

a Monomer concentration. b BET specic surface area. c BJH desorption pore diameter. d Measured at 1 bar pressure, using 200 mL of water.
e Determined by the weight difference between the modied membrane and the virgin membrane divided by the surface area of the virgin
membrane.

Fig. 2 Chemical composition of the membranes: (a) FTIR spectra and
(b) FTIR mapping. The mapped area corresponds to a surface of 32 �
32 mm.
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effectiveness of the graing technique utilized here, which
yields a rather homogeneous graing density throughout the
surface of the membrane, as well as the applicability of high-
resolution FT-IR imaging to study polymer graing. The
homogeneity of the modication on the membranes was also
corroborated by EDS spectroscopy (Fig. S4 and S5†).

Zwitterionic membranes were characterized by XPS to reveal
the chemical structure of the polymer gras. High resolution C
1s and O 1s spectra of both unmodied and ZM-2 membranes
were deconvoluted to conrm the proper polymer graing on
the surface. Furthermore, N 1s and S 2p and Si 2p XPS spectra
were acquired from ZM-2. The results are shown in Fig. 3 and
Table S1.†

The C 1s high-resolution spectrum (Fig. 3b) of the unmodi-
ed membrane suggests three main chemical environments of
carbon, as reported before for cellulosic materials: a major peak
at 286.8 eV corresponding to C–O bonds, a distinguished peak
at 285 eV corresponding to C–C bonds and the third one at
288.3 eV corresponding to O–C–O bonds.18 Furthermore,
a fourth small population at 289.6 eV was also observed, cor-
responding to the carboxyl groups present readily in the cellu-
lose bres prior to modication. In the case of ZM-2, we tted
the XPS high-resolution C 1s spectra using ve Gaussian
This journal is © The Royal Society of Chemistry 2018
distributions, introducing another population at 291 eV, cor-
responding to the methacrylate group (O]C–O) of PCysMA.
Furthermore, a large increase in the integral area of the peak at
286.4 eV was observed, which is due to the superposition of
additional peaks corresponding to C–NH3+ and C–COOH, which
are in that region as well.

Two types of O 1s photoemission signals at 532.6 and
534.3 eV, respectively, were observed for ZM-2 (Fig. 3c), in
contrast to the unmodied membrane, which had a mono-
modal distribution at 533.2 eV. This also conrmed the pres-
ence of the carboxylate form derived from PCysMA at a binding
energy of around 534 eV. Moreover, the N 1s spectrum (Fig. 3d)
of ZM-2 was tted using two components centered at 400.0 and
402.0 eV, which revealed C–NH2 and C–NH3+ species, respec-
tively.15 With this, we estimated that about 1/3 of the surface
primary amine groups were protonated at pH 7, at which the
sample was prior to drying. On the other hand, the high-
resolution S 2p spectrum (Fig. 3e) was deconvoluted into two
components, S 2p3/2 at 163.5 and S 2p1/2 at 164.5 eV. The relative
intensities of these components were approximately 2 : 1, as
expected. In addition, the BE of the Si 2p (Fig. 3f) signal at
around 102 eV is indicative of Si–O species, found in siloxanes,
Si (–R) O, where R is a hydrocarbon chain, proving the presence
of the immobilized siloxane initiator.15

The pH dependence of the surface charge of the PCysMA-
graed membranes was evaluated and the results are shown
in Fig. 4. We observed that at acidic pH the amines on the
surface were protonated and ionized yielding positive z-poten-
tial, while a negatively charged surface was present at basic pH
values.

Both types of functional groups were ionized at pH 5.3,
where the zeta potential value was zero (isoelectric point, iep),
providing the most non-fouling behavior resulting from the
zwitterionic character. On the other hand, the unmodied
cellulosic membrane exhibited a slight negative charge, char-
acteristic of cellulose surfaces. The isoelectric point of the
PCysMA-graedmembranes was very close to the value reported
for cysteine (5.07), and it is worth highlighting that the iep at pH
5.3 almost matches the pH of the skin (about 5.5), which could
suggest their high potential in areas such as wound dressing
applications. Moreover, the topography of the membranes was
examined using tapping AFM and the 3D micrographs are
shown in Fig. 5. A signicant change in the topography of the
membranes was observed upon graing of PCysMA brushes,
compared to the unmodied membrane which exhibited
J. Mater. Chem. A, 2018, 6, 16361–16370 | 16365
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