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Electrostatic interaction of particles trapped at
fluid interfaces: effects of geometry and
wetting properties

Arghya Majee, *ab Markus Bier *abc and S. Dietrichab

The electrostatic interaction between pairs of spherical or macroscopically long, parallel cylindrical

colloids trapped at fluid interfaces is studied theoretically for the case of small inter-particle separations.

Starting from the effective interaction between two planar walls and by using the Derjaguin approxi-

mation, we address the issue of how the electrostatic interaction between such particles is influenced

by their curvatures and by the wetting contact angle at their surfaces. Regarding the influence of

curvature, our findings suggest that the discrepancies between linear and nonlinear Poisson–Boltzmann

theory, which have been noticed before for planar walls, also occur for spheres and macroscopically

long, parallel cylinders, though their magnitude depends on the wetting contact angle. Concerning the

influence of the wetting contact angle y simple relations are obtained for equally sized particles which

indicate that the inter-particle force varies significantly with y only within an interval around 901. This

interval depends on the Debye length of the fluids and on the size of the particles but not on their

shape. For unequally sized particles, a more complicated relation is obtained for the variation of the

inter-particle force with the wetting contact angle.

I. Introduction

Colloidal particles trapped at a fluid interface usually adopt
configurations which are energetically more favorable com-
pared to those occurring in the adjacent bulk phase(s).1,2 This
can be exploited for a wide spectrum of systems ranging from
micrometer down to nanometer in size and from biological to
industrial processes, including the stabilization of Pickering
emulsions,3 the transport of drugs and nutrients in biological
systems,4 the formation of artificial cells,5 oil recovery, water
purification, mineral processing, maintaining proper foami-
ness of cosmetic and food products,2 and the fabrication of
various nanostructured devices.6,7 The trapping phenomenon
depends on the wetting properties, the size, and the shape
of the colloidal particles, because it hinges on the particle-
mediated reduction of the fluid–fluid interfacial area, and
consequently on the net reduction of the free energy of the
system.2

On a mesoscopic level, the wetting properties of a colloidal
particle are described best by the contact angle y of the fluid–
fluid interface with respect to the particle surface (see Fig. 1).
Following the standard convention, we measure y inside the
more polar phase. For oil–water systems this implies that a
particle is hydrophilic if y o 901, hydrophobic if y 4 901, and
neutrally wetted for y = 901. Within the continuum model, the
equilibrium contact angle y of a particle is determined solely by
energies associated with the three interfaces (two particle–liquid
and one liquid–liquid) according to the well-known Young
equation.8,9 In general, particles, which are partially wetted by
both fluid phases, attach most stably to an interface because
the corresponding trapping energy often exceeds several orders
of kBT.2,10

Wetting properties are crucial not only for the adsorption of
a single particle at an interface, but also for the interaction
between several of them. For example, whereas very hydro-
phobic silica particles (y Z 1291) form well-ordered monolayer
structures (with inter-particle separations of several particle
diameter) at octane–water interfaces, less hydrophobic (y r 1151)
particles fail to do so.11,12 This can be attributed to different
strengths of the repulsive electrostatic force, which acts mainly
through the oil-phase because the electrostatic field is well
screened inside the aqueous phase at the high salt concentra-
tions used. Moreover, the capillary interaction due to the over-
lap of the interface deformation field around each particle also
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depends on the contact angle y. However, here we disregard
deformations of the interface, which can be significant if the
particle surfaces are rough13 or the particles are large (radius \
10 mm),14–19 and we focus only on the electrostatic interaction
between the colloids.

Whereas the electrostatic interaction between particles
trapped at a fluid interface has been studied extensively since
the pioneering studies by Pieranski20 and Hurd,21 most of the
investigations deal with the case of particles situated far away
from each other. At long distances the electrostatic pair-
interaction takes the particularly simple form of an interaction
between two electric dipoles, which are generated by the asym-
metric counterion distribution at the particle surfaces in con-
tact with the two fluid phases. It has been shown that in this
case the linearization of the Poisson–Boltzmann (PB) theory is
applicable.21 Recent studies, directed towards the opposite
limit of small inter-particle separations, have been performed
within the linearized PB theory22–24 or by considering a flat
plate geometry22,24,25 in order to simplify the problem. Whereas
the former approximation is often violated at short separations,
the latter represents the ideal situation of a contact angle of
exactly 901 and the absence of particle curvature. However, in
reality, the contact angle y can vary significantly to either side
of 901 2,10,19,26 and whether the particle curvature plays any
important role at short inter-particle separations still remains
to be addressed within the nonlinear PB theory.

Accordingly, in this contribution, we investigate the electro-
static interaction between spherical and parallel cylindrical
colloids with an arbitrary contact angle appearing at a fluid
interface. As long as the size of the particles is sufficiently larger
than both the length scale of the interaction and the inter-particle
separation, which is usually the case for short inter-particle

separations we are interested in, one can apply the Derjaguin
approximation (DA) using results of the corresponding case of
planar walls.27 Having recently solved this two-plate problem
exactly (i.e., without using the superposition approximation)
within the nonlinear PB theory,25 we proceed one step further
and compute the force between a pair of spheres or parallel
cylinders. A similar approach has already been employed and
proved to be valid in this context.28,29 However, the present
study differs from those treatments in several aspects. Whereas
ref. 28 deals with macroscopically long cylinders trapped at an
oil–water interface and having a constant surface potential,
which is most suitable for metallic particles, we consider
dielectric particles described by constant charge densities at
their surfaces. Moreover, to keep our analysis general and to be
consistent with experimental observations,30–34 we consider the
particle surfaces to be charged in both fluid phases, which is
not the case in ref. 28. On the other hand, ref. 29 describes the
interaction between spherical particles by using the superposi-
tion approximation, which has been shown to be qualitatively
wrong for small inter-particle separations,22 and it discards any
interaction between the particle–water surface of one particle
and the particle–oil surface of the other particle. As explained in
the next section, this latter contribution to the interaction
energy is included in our calculation via the line contribution.

II. Model and formalism

As depicted in Fig. 1, we consider two particles with radii R1

and R2 placed at a fluid–fluid interface described by a three-
dimensional Cartesian coordinate system. The projection of the
center of the left particle onto the interface is chosen as the
origin (0, 0, 0) of the coordinate system. The particles are either
two spheres or two macroscopically long, parallel cylinders with
axes in y-direction; their cross-sections in the plane y = 0 are
shown in Fig. 1. The fluid–fluid interface is indicated by the
horizontal line at x = 0. Although the particles can differ in size,
they are taken to be chemically identical such that the surfaces
of both particles in contact with the same fluid phase carry the
same surface charge density, and that the contact angle y is the
same for both particles. This is a simplifying assumption
because chemically identical particles in general need not to
be equally charged.35 In equilibrium the centers of the left and
the right particle are located at x = D1 and x = D2, respectively.
Depending upon the contact angle y A [0, p], both D1 = �R1 cosy

and D2 = �R2 cosy can be negative (for yo
p
2

; the case considered

in Fig. 1) as well as positive (for y4
p
2

). In between the particles a

gap of width L occurs (see the vertical dashed lines in Fig. 1) so
that the horizontal center-to-center distance is L + R1 + R2. The
fluid phase below (above) the interface occupying the half-space
x o 0 (x 4 0) is denoted by medium ‘‘1’’ (‘‘2’’). Both fluids are
modeled as structureless, continuous media with dielectric
constant ei = er,ie0, i A {1, 2}, where er,i is the relative permittivity
of medium i and e0 is the vacuum permittivity. The ionic
strength of added salt in medium i A {1, 2} is denoted by Ii.

Fig. 1 Cross-sectional view in the y = 0 plane of a system with two
spherical or parallel cylindrical colloids (yellow discs) floating at a fluid
interface indicated by the horizontal line. The projection of the center of
the left particle onto the interface is chosen as the center (0, 0, 0) of the
Cartesian coordinate system used to describe the system. The fluid
medium below the interface is called medium ‘‘1’’ and the one above the
interface medium ‘‘2’’. The particles are chemically identical, such that the
contact surfaces with one of the media carry the same charge densities
and the same wetting contact angles y. The particles may differ in size with
radius R1 on the left and R2 on the right particle. The horizontal distance of
the particles is characterized by the width L of the gap between both
particles as depicted by the vertical dashed lines. The equilibrium heights
of the centers of the left and right particles from the interface are given by
|D1| and |D2|, respectively, with y A [0, p] determining the sign of D1 and D2

according to the relations D1 = �R1 cos y and D2 = �R2 cos y.
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The corresponding Debye screening length in each medium is given

by ki�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er;i
�
8p‘BIið Þ

q
where cB = e2/(4pe0kBT) is the vacuum

Bjerrum length with e 4 0, kB, and T being the elementary charge,
the Boltzmann constant, and the absolute temperature, respectively.
Within our description at the mean-field level, the length scale of
interest is the Debye length as both the local charge density and the
electrostatic interaction vary on this scale. Phenomena which occur
on smaller length scales, e.g., the structuring of liquids on the
molecular length scale, are not considered. Here we consider
medium ‘‘2’’ to be the less polar phase in the sense that k2

�1 4
k1
�1. With this the criteria for the applicability of the DA are that

both radii R1 and R2 have to be much larger than k2
�1 and L.

Within the DA, one basically decomposes the two interacting
particles into infinitesimal surface elements. Assuming that the
elementary surface pieces, which face each other, interact like flat
parallel surfaces, the total interaction between the two curved
objects is obtained via integration over the whole surface. Here,
however, the particle surfaces are homogeneously charged only
separately inside each medium, the properties of which in general
differ. As a result, a three-phase contact line is formed where a
particle surface intersects the fluid interface; two such contact
lines on opposing particles interact as well. But this does not
introduce any additional constraint for applying the DA. In the
spirit of the DA, each of these two contact lines can be divided in
infinitesimal pieces and the total contribution due to the line
interaction can be obtained as long as the interaction between two
parallel lines is known. Therefore, in order to apply the DA, one
needs to know the interaction of parallel flat surfaces dipped into
medium ‘‘1’’ or medium ‘‘2’’ and the interaction between two
parallel three-phase contact lines. These are exactly the quantities
we calculated in ref. 25 numerically by solving the nonlinear PB
equation. To be more precise, the relevant quantities, as defined in
ref. 25, are og,i(r), which is the interaction energy per total surface
area between two parallel, planar surfaces dipped at a distance r
into medium i A {1, 2}, and ot(r), which is the interaction energy
per total line length between two parallel three-phase contact lines
at a distance r. Please note that the interaction of the surface of
one particle in contact with medium ‘‘1’’ and that of the other
particle in contact with medium ‘‘2’’ is included in the line
contribution ot(r). In order to tackle the problem efficiently, we
first fit simple functions to the numerical data for og,1(r), og,2(r),
and ot(r) obtained by full minimization of the nonlinear PB grand
potential. It turns out that a reasonably good fitting can be
obtained by superposing exponential contributions as follows:

og;1ðrÞ ¼
X3
i¼1

ai exp �birð Þ; (1)

og;2ðrÞ ¼
X3
i¼1

ci exp �dirð Þ; (2)

and

otðrÞ ¼
X4
i¼1

gi exp �hirð Þ: (3)

For two flat plates, all interactions decay exponentially in
the limit of large separations: og,i(r - N) B exp(�kir) and
ot(r -N) B exp(�k2r) (note the convention k2

�1 4 k1
�1). As a

result, when fitting the data over a sufficiently large interval of r
(i.e., a few Debye lengths), the slowest of the decay rates bi in
eqn (1) equals k1 and the slowest of the decay rates di in eqn (2)
as well as the slowest of the decay rates hi in eqn (3) equal k2.
All three interactions, i.e., og,1, og,2, and ot result in forces onto
the particles, which can be obtained by taking the negative
derivative with respect to the appropriate distance between the
facing surface or line elements, followed by integrating over
the particles. Due to the geometry of the problem, the electro-
static force between the particles acts only in the horizontal
z-direction. Please note that the movement of the particles in
the vertical x-direction is suppressed by the steep and strong
trapping potential.2 In the following, we denote the z-component
of the electrostatic force, which the left particle in Fig. 1 exerts
on the right one, by F(L), and we decompose it, according to
F(L) = F1(L) + F2(L) + F3(L), into the surface contribution
F1(L) due to the surface interaction og,1 in medium ‘‘1’’, the
surface contribution F2(L) due to the surface interaction og,2 in
medium ‘‘2’’, and the line contribution F3(L) due to the line
interaction ot.

III. Results and discussion

In this section we discuss the variation of the force F(L) between
the particles as function of the particle sizes (radii R1 and R2), the
particle separation L, and the contact angle y. For our discussion
we consider two typical experimental setups and in each case the
results for a pair of spheres as well as a pair of parallel cylinders
are presented. Between the two systems considered below, the
data for flat wall interactions for water–lutidine interfaces are
taken from ref. 25 and those for water–octanol interfaces are
newly generated here. We mention that all numerical examples
presented here have been chosen such that the conditions for
applying the DA are satisfied. Consequently, systems featuring
oil with very low dielectric constants, such as decane or octane,
have been excluded because the corresponding Debye length
k2
�1 is too large for them to satisfy the condition R1, R2 c k2

�1,
even for micron size colloids.

A. Water–lutidine interface

First, we consider a system consisting of polystyrene particles
placed at a water–lutidine (2,6-dimethylpyridine) interface at
temperature T = 313 K. The added salt is NaI with bulk ionic
strengths I1 = 1 mM and I2 = 0.85 mM. The relative permit-
tivities are er,1 = 72 for the water-rich phase (medium ‘‘1’’) and
er,2 = 62 for the lutidine-rich phase (medium ‘‘2’’). The chemi-
cally identical particles are assumed to be similarly charged;
the magnitude of the surface charge density in contact with the
aqueous phase is s1 = 0.1e nm�2 and that in contact with the
oil-phase is s2 = 0.01e nm�2. Differences in the solubilities of
the ions in the two fluids result in a potential difference
between the bulk of the two media, which is called the Donnan
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potential or Galvani potential difference,36 and which, for our
system, is assumed to be 1kBT/e. These numbers correspond to
a standard set of parameters as used in ref. 25. They are either
taken or estimated from various experimental studies.31,37–42

1. Spheres. In the case of two interacting spheres at a fluid
interface, after performing the surface and line integrations, for
the three distinct, lateral force contributions the following
expressions are obtained:

F1ðLÞ ¼
X3
i¼1

pai
1

R1
þ 1

R2

� � exp �bi Lþ D1 �D2ð Þ2

2 R1 þ R2ð Þ

 !( )

� 1� erf D1R2 þD2R1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bi

2R1R2 R1 þ R2ð Þ

s !" #
;

(4)

F2ðLÞ ¼
X3
i¼1

pci
1

R1
þ 1

R2

� � exp �di Lþ D1 �D2ð Þ2

2 R1 þ R2ð Þ

 !( )

� 1þ erf D1R2 þD2R1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

di

2R1R2 R1 þ R2ð Þ

s !" #
;

(5)

where erf(x) denotes the error function,46 and

F3ðLÞ ¼
X4
i¼1

gi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2phi

1

R1
þ 1

R2

� �
vuuut exp �hi Lþ D1

2

2R1
þ D2

2

2R2

� �� �
(6)

with D1 = �R1 cos y and D2 = �R2 cos y. Variations of the total
force F(L) = F1(L) + F2(L) + F3(L) in the units of 103k1/b with the
scaled separation k1L for different system parameters are
shown in Fig. 2. Here b = 1/(kBT) is the inverse thermal energy.
As one can infer from Fig. 2(a), for equally-sized spheres
(R1 = R2 = R) with a contact angle of y = 901, the effective force
scales linearly with the size of the particles and decays expo-
nentially with increasing separation between the particles. Both
the linear scaling with R and the exponential decay with L can
be directly inferred from the inset of Fig. 2(a) where the ratio
of the dimensionless force bF/k1 to the scaled radius k1R is
plotted as a function of the scaled separation k1L using a semi-
logarithmic scale, revealing data collapse. The exponential
decay is expected to occur in the sense that all effective
interactions decay exponentially for a pair of interacting flat
plates, which remains unaffected while using the DA, and the
linear scaling with R is a direct consequence of the DA. Fig. 2(b
and c) display the variation of the scaled force with contact
angle y for equally-sized particles. As one can see, for k1R E
100 (b), the force increases with decreasing contact angle but
de facto it varies only within the interval 801 o y o 1001. A
similar phenomenon is observed for k1R E 30 (c) albeit with
variation in a slightly broader interval 751 o y o 1051. Fig. 2(d
and e) show the variation of the force with contact angle y as
function of separation distance k1L for unequally-sized spheres.
For the relatively small size-asymmetry in Fig. 2(d), the force

between the particles can increase in a certain range of separa-
tion between the particles as the contact angle y is decreased
slightly from 901 downwards. Otherwise the force is weaker
than the one obtained for a neutral wetting situation y = 901.
For the larger size-asymmetry in Fig. 2(e), the force becomes
weaker as soon as the contact angle y differs from 901. However,
in both cases, as considered in Fig. 2(d and e), the force between
the particles decreases upon increasing y in the interval y4 901.
Finally, in Fig. 2(f), we compare the force obtained within the
linearized and the nonlinear PB theory for equally sized spheres.
As one can see from the plot, the forces differ by almost an order
of magnitude even at large separations such as k1L E 6 for
y = 901. It turns out that with increasing contact angle y this
difference diminishes; see the inset of Fig. 2(f), where both
curves are of almost the same magnitude. This is expected since
the portion of the particles immersed in the more polar phase,
for which the electrostatic interaction is stronger because
k1 E k2 [k1 E 0.1059 nm�1, k2 E 0.1053 nm�1] and s1 c s2,
decreases with increasing contact angle. Note that this situation
differs from the one in ref. 11 and 12 in which k1 c k2. A
similar discrepancy appeared while comparing the interactions
within the linear and nonlinear theory for parallel flat surfaces.25

Thus taking into account particle curvature does not significantly
change this result.

All these observations are in accordance with the force
expressions given in eqn (4)–(6). For micron-sized particles
considered here, in most of the cases the line contribution
to the total interaction is negligible. Therefore, the total force
F(L) is dominated by the surface contributions F1(L) (eqn (4))
and F2(L) (eqn (5)). For y = 901, which is the case con-
sidered in Fig. 2(a), one has D1 = D2 = 0. Moreover, with R1 =

R2 = R, eqn (4) and (5) reduce to F1ðLÞ ¼
pR
2

P3
i¼1

ai exp �biLð Þ and

F2ðLÞ ¼
pR
2

P3
i¼1

ci exp �diLð Þ, respectively, which transparently

explain the linear variation of the force with the particle size
R (the coefficients ai and ci do not depend on R) and its
exponential decay as function of the separation L. The decay
rate in the limit of large distances is determined by the smaller
of the two Debye lengths k1

�1 and k2
�1 (please note that for our

system k1
�1 E k2

�1). For R1 = R2 = R with an arbitrary contact angle
y, one has D1 � D2 = 0 so that the dependence on y appears in
eqn (4) and (5) only through the terms involving the error functions,

which reduce to 1� erf � cos y
ffiffiffiffiffiffiffiffi
biR
p� 	

and 1þ erf � cos y
ffiffiffiffiffiffiffiffi
diR
p� 	

,
respectively. Since the error function levels off to |erf(x)| E 1 for
|x| \ 2, the variation of the force with respect to y in eqn (4)
saturates once the slowest decay rate bi, which in the present
case is k1, satisfies the inequality

cos yj j �4
2ffiffiffiffiffiffiffiffiffi
k1R
p : (7)

Similarly, in eqn (5) the saturation is obtained once the slowest
decay rate di, i.e., k2 satisfies the inequality

cos yj j �4
2ffiffiffiffiffiffiffiffiffi
k2R
p : (8)
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Note that once the slowest decay rates bi and di satisfy these
conditions, all the other decay rates will do so, too. For k1R E
100 (and therefore, k2R E 100 as k1 E k2), both eqn (7) and (8)
predict that the force varies appreciably only within the interval
781 r y r 1021, which one precisely observes in Fig. 2(b).

Decreasing the contact angle y from
p
2

implies that the particles

become more hydrophilic. Consequently, the contribution F1(L)
to the total force increases while F2(L) decreases upon decreas-
ing y. Finally, at y E 781 the former attains a non-zero finite
value and the latter vanishes (please note the different signs in
front of the error functions in eqn (4) and (5)). On the other

hand, increasing the contact angle y from
p
2

implies that the

Fig. 2 Variation of the lateral component of the force F(L) due to the electrostatic interaction between a pair of spherical colloidal particles,
expressed in units of 103k1/b, as function of their scaled separation k1L for (a) equally sized (R1 = R2 = R) spheres of varying radius with contact angle
y = 901, (b) equally sized (k1R E 100) particles with varying y, (c) equally sized (k1R E 30) particles with varying y, (d) unequally sized (2k1R1 = k1R2 E 100)
particles with varying y, (e) unequally sized (10k1R1 = k1R2 E 300) particles with varying y, and (f) equally sized (k1R E 100) particles with y = 901
within linear and nonlinear PB theory. As shown by panel (a) and its inset, the force increases linearly with increasing R and decays exponentially with
increasing separation k1L. Panels (b) and (c) suggest that, for equally sized spheres, the force increases significantly with decreasing contact angle y only
within an interval around 901. Outside this interval the force remains de facto constant and the interval of y, across which the force actually varies,
widens upon decreasing k1R. For unequally sized spheres, if the size asymmetry is moderate, the force may increase as well as decrease if the contact
angle deviates from 901 (panel (d)). However, if the size contrast is high, the force becomes weaker once y is slightly shifted away from 901 in either
direction (panel (e)). From panel (f) and the inset therein one can infer that the discrepancy between the linear and the nonlinear results diminishes
with increasing y.
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particles become more hydrophobic. As a result, the contribution
F2(L) increases and F1(L) decreases with the former attaining a
non-zero finite value while the latter is vanishing at y E 1021.
Upon decreasing k1R, the interval of y over which the force varies
broadens as can be inferred from Fig. 2(c). For unequal particles
sizes, i.e., for R1 a R2, the dependence on y in eqn (4) and (5)

originate from both the exponential and the error function. For
moderate size-asymmetry, like the one considered in Fig. 2(d),
a competition between these two functions determines the varia-
tion of the force with y. However, for the extremely asymmetric
case considered in Fig. 2(e), the difference D1� D2 is large and the
exponential terms dominate as soon as y differs slightly from 901.

Fig. 3 Variation of the z-component (see Fig. 1) of the force F(L), per length Ly in the y-direction, due to the electrostatic interaction between a pair of
parallel cylindrical colloids, expressed in units of 102k1

2/b, as function of their scaled separation k1L for (a) equally sized (R1 = R2 = R) cylinders of varying
radius with contact angle y = 901, (b) equally sized (k1R E 100) particles with varying y, (c) equally sized (k1R E 30) particles with varying y, (d) unequally
sized (2k1R1 = k1R2 E 100) particles with varying y, (e) unequally sized (10k1R1 = k1R2 E 300) particles with varying y, and (f) equally sized (k1R E 100)
particles with y = 901 within linear and nonlinear PB theory. As shown by panel (a) and its inset, the force increases /

ffiffiffiffi
R
p

with increasing R and decays
exponentially with increasing separation k1L. Panels (b) and (c) suggest that, for equally sized cylinders, the force increases significantly with decreasing
contact angle y only within an interval around 901. Outside this interval the force remains de facto constant and the interval of y, across which the force
actually varies, widens upon decreasing k1R. For unequally sized cylinders, if the size asymmetry is moderate, the force may increase as well as decrease if
the contact angle deviates from 901 (panel (d)). However, if the size contrast is high, the force becomes weaker once y is slightly shifted away from 901 in
either direction (panel (e)). From panel (f) and the inset therein one can infer that the discrepancy between the linear and the nonlinear results diminishes
with increasing y.
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2. Cylinders. For macroscopically long, parallel cylinders,
the expressions for the lateral force contributions, expressed
per length Ly in the y-direction, are given by:

F1ðLÞ
Ly

¼
X3
i¼1

ai

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pbi

2

R1
þ 2

R2

� �
vuuut exp �bi Lþ D1 �D2ð Þ2

2 R1 þ R2ð Þ

 !( )

� 1� erf D1R2 þD2R1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bi

2R1R2 R1 þ R2ð Þ

s !" #
;

(9)

F2ðLÞ
Ly

¼
X3
i¼1

ci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdi

2

R1
þ 2

R2

� �
vuuut exp �di Lþ D1 �D2ð Þ2

2 R1 þ R2ð Þ

 !( )

� 1þ erf D1R2 þD2R1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

di

2R1R2 R1 þ R2ð Þ

s !" #
;

(10)

and

F3ðLÞ
Ly

¼
X4
i¼1

gihi exp �hi Lþ D1
2

2R1
þ D2

2

2R2

� �� �
: (11)

We note that for geometrical reasons these expressions are
slightly different from those obtained for spheres in eqn (4)–(6).
In particular, the contact lines for cylinders are just straight
lines and in order to obtain F3(L) there is no need to use the DA.
Fig. 3 shows the variation of the z-component of the total force
F(L) = F1(L) + F2(L) + F3(L), per length Ly in the y-direction and in
units of 102k1

2/b, which the left cylinder exerts on the right one
as function of the scaled separation k1L for the sizes R1 and R2

and for the contact angle y. Except for a few features, the findings
are qualitatively the same as those obtained for spheres in Fig. 2.
For example, for R1 = R2 = R and y = 901, the force between two
cylinders also decays exponentially with varying separation L
between them and increases with increasing size R, but for the

cylinders the increase is proportional to
ffiffiffiffi
R
p

; see Fig. 3(a) and the
inset therein. This is evident from the prefactors of the exponen-
tial functions in eqn (9) and (10). The variation of the force with
respect to y as well as eqn (7) and (8) remain the same as for the
spheres, because the y-dependent terms in eqn (9) and (10) have
exactly the same form as in eqn (4) and (5). This behavior is
confirmed by Fig. 3(b–e). Finally, the comparison of the effective
force for y = 901 within linearized and nonlinear PB theory reveals
a significant discrepancy between the predictions of the two
approaches, which becomes smaller for larger contact angles y,
i.e., as the portion of the particles, dipped into the more polar
phase, decreases (see Fig. 3(f)).

B. Water–octanol interface

Water and lutidine, which are immiscible for sufficiently high
temperatures, form a special system in that the bulk properties,
i.e., the relative permittivities and the bulk ionic strengths,
and consequently the Debye screening lengths, are not very

different for the two fluid phases. In contrast to that, in the
present subsection we consider another system with silica
particles trapped at a water–octanol interface. At room tem-
perature T = 300 K these two fluids differ starkly with respect to
their bulk properties with er,1 = 80 for water and er,2 = 10.3 for
octanol. The partitioning of ions at such an interface leads to
highly contrasting bulk ionic strengths: for I1 = 10 mM one has
I2 = 2.9 � 10�3 mM; the corresponding resulting Donnan
potential equals 3.8kBT/e.43,44 Under these conditions, the
inverse Debye length in the water phase is k1 E 0.324 nm�1

and the one in the oil phase (octanol) is k2 E 0.015 nm�1. The
magnitude of the surface charge densities in contact with the two
fluid phases also differ significantly; we consider s1 = 0.01e nm�2

and s2 = 0.0005e nm�2.11,12,45

The resulting interactions between the particles are shown
in Fig. 4 for a pair of spheres (panels (a) and (c)) as well as for a
pair of cylinders (panels (b) and (d)). From Fig. 4(a and b) one
can infer that the total force F(L) between equally sized particles
increases with increasing radii (R1 = R2 = R), both for spheres
and cylinders. Whereas for spheres this increase is linear in the
particle size (see the inset in Fig. 4(a)), in the case of cylinders it

scales /
ffiffiffiffi
R
p

(see the inset in Fig. 4(b)), which is evident from
the data collapse in the insets. Although the line interaction
becomes relatively more important in the case of the water–
octanol system – due to a greater mismatch of the system para-
meters (ionic strengths, permittivities, and charge densities)
compared to those of the water–lutidine system – these findings
suggest that for micron-sized particles the interaction is still
dominated by the surface parts. Fig. 4(c and d) show the varia-
tion of the inter-particle forces F(L) as function of the wetting
contact angle y for spheres and cylinders, respectively. At very
short separations, the force varies only within a narrow interval
851 t y t 951. However, at relatively large separations it varies
within a wider interval 751 t y t 1051 of the contact angle.
These findings are also in accordance with eqn (7) and (8). For
the system considered here, eqn (7) predicts that F1(L) varies
appreciably within the interval 861 t y t 941 whereas, accord-
ing to eqn (8), F2(L) varies within the interval 711 t y t 1091.
At very short separations, the total force is dominated by the
surface contribution in medium ‘‘1’’ (aqueous phase) due to
higher surface charge densities at the particle surfaces. There-
fore, if y is decreased from 901, i.e., when the particles become
increasingly hydrophilic, the force increases, followed by satura-
tion at around y = 851, as predicted by eqn (7). On the other
hand, if y is increased beyond 901 the particles become more
hydrophobic. Up to y E 951, for which F1 vanishes, the total
force decreases as F1 decreases. Beyond that, a slight increase of
the total force is observed due to F2 which, as predicted by
eqn (8), increases up to y E 1091. As the separation between the
particles is increased, in medium ‘‘1’’ the interaction decays very
fast due to a strong screening by the higher amount of salt
present. Consequently, at relatively large separations the total
force is dominated by the surface contribution in medium ‘‘2’’
(oil phase) and, within the interval 751 t y t 1051, it increases
monotonically with increasing contact angle. It is important to
note that eqn (7) and (8) are derived by using the fact that the
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error function erf(x) saturates for |x| \ 2, with the most
significant variation occurring only for |x| t 1.5. Therefore,
the variation of F2(L) within the intervals 711 t y t 751 and
1051t yt 1091 are very slow and hardly visible. Since here the
silica particles are considered to be weakly charged, the discre-
pancy between the linear and the nonlinear PB theories become
less significant. Still, the forces within the two approaches
differ by a factor of 2 even at separations k1L E 10 for y = 901.

IV. Conclusions

To conclude, by using the Derjaguin approximation and a
fitting procedure for numerical results for the effective inter-
action between parallel, planar surfaces in contact with two
demixed fluids in between, we have calculated the force due to
the electrostatic interaction between pairs of spheres or cylin-
ders at close distance from each other at a fluid–fluid interface.

The comparison between the results obtained within linear and
nonlinear PB theory shows that the former overestimates the
force both for spheres and for cylinders, even at distances of
several Debye lengths. Concerning the results within the non-
linear theory, we have investigated the effects of varying the
sizes and the contact angle of the particles. Our general study is
applicable also to pairs of particles which differ in size. For
equally-sized spheres and cylinders the force always decays
exponentially with increasing separation, and it scales pR for

spheres and /
ffiffiffiffi
R
p

for cylinders, where R is the common radius
of the particles. Importantly, for equally-sized particles (both
spherical and cylindrical) we have found an interval around the
contact angle of 901, beyond which the force de facto does not
vary. We have also obtained simple relations (eqn (7) and (8))
involving the Debye lengths of the two media and the radii of
the particles for calculating the width of this interval. These
robust results can be expected to be useful for describing

Fig. 4 Panel (a): Variation of the lateral component of the force F(L), expressed in units of 103k1/b, due to electrostatic interaction between a pair of
equally sized (R1 = R2 = R) spheres of varying radius with contact angle 901 as function of their scaled separation k1L. The force increases linearly with
increasing size of the particles which is evident from the data collapse in the inset. Panel (b): Variation of the z-component (see Fig. 1) of the force F(L), per
length Ly in the y-direction, expressed in units of k1

2/b, due to electrostatic interaction between a pair of equally sized cylinders of varying radius with
contact angle 901, as function of their scaled separation k1L. Contrary to what one observes for spheres, the force between cylinders is proportional toffiffiffiffi
R
p

. Panel (c): Variation of the lateral component of the force F(L), expressed in units of 103k1/b, due to electrostatic interaction between a pair of equally
sized (k1R E 800) spheres with various contact angles y, as function of their scaled separation k1L. Panel (d): Variation of the z-component of the force
F(L), per length Ly in the y-direction, expressed in units of k1

2/b, due to electrostatic interaction between a pair of equally sized (k1R E 800) cylinders for
various contact angles y, as function of their scaled separation k1L. Both for spheres and cylinders the force varies within a narrow interval of the contact
angle at very short separations. The force increases if the particles are more hydrophilic within this interval of y. At relatively large separations, however,
this interval slightly broadens but the force increases if the particles become more hydrophobic.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
N

ov
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 7

/1
9/

20
25

 4
:0

1:
16

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sm01765d


9444 | Soft Matter, 2018, 14, 9436--9444 This journal is©The Royal Society of Chemistry 2018

more general or complex particle interactions at fluid inter-
faces, which is important for various application perspectives of
such systems.
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