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Electrostatic interaction of particles trapped at
fluid interfaces: effects of geometry and
wetting properties

Arghya Majee, (2 *3° Markus Bier (2 *°° and S. Dietrich®

The electrostatic interaction between pairs of spherical or macroscopically long, parallel cylindrical
colloids trapped at fluid interfaces is studied theoretically for the case of small inter-particle separations.
Starting from the effective interaction between two planar walls and by using the Derjaguin approxi-
mation, we address the issue of how the electrostatic interaction between such particles is influenced
by their curvatures and by the wetting contact angle at their surfaces. Regarding the influence of
curvature, our findings suggest that the discrepancies between linear and nonlinear Poisson—Boltzmann
theory, which have been noticed before for planar walls, also occur for spheres and macroscopically
long, parallel cylinders, though their magnitude depends on the wetting contact angle. Concerning the
influence of the wetting contact angle 6 simple relations are obtained for equally sized particles which
indicate that the inter-particle force varies significantly with 0 only within an interval around 90°. This
interval depends on the Debye length of the fluids and on the size of the particles but not on their
shape. For unequally sized particles, a more complicated relation is obtained for the variation of the
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|. Introduction

Colloidal particles trapped at a fluid interface usually adopt
configurations which are energetically more favorable com-
pared to those occurring in the adjacent bulk phase(s)."”” This
can be exploited for a wide spectrum of systems ranging from
micrometer down to nanometer in size and from biological to
industrial processes, including the stabilization of Pickering
emulsions,? the transport of drugs and nutrients in biological
systems,* the formation of artificial cells,” oil recovery, water
purification, mineral processing, maintaining proper foami-
ness of cosmetic and food products,> and the fabrication of
various nanostructured devices.*” The trapping phenomenon
depends on the wetting properties, the size, and the shape
of the colloidal particles, because it hinges on the particle-
mediated reduction of the fluid-fluid interfacial area, and
consequently on the net reduction of the free energy of the
system.”
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inter-particle force with the wetting contact angle.

On a mesoscopic level, the wetting properties of a colloidal
particle are described best by the contact angle 0 of the fluid-
fluid interface with respect to the particle surface (see Fig. 1).
Following the standard convention, we measure 0 inside the
more polar phase. For oil-water systems this implies that a
particle is hydrophilic if 6 < 90°, hydrophobic if § > 90°, and
neutrally wetted for 6 = 90°. Within the continuum model, the
equilibrium contact angle 0 of a particle is determined solely by
energies associated with the three interfaces (two particle-liquid
and one liquid-liquid) according to the well-known Young
equation.*® In general, particles, which are partially wetted by
both fluid phases, attach most stably to an interface because
the corresponding trapping energy often exceeds several orders
of kgT.>°

Wetting properties are crucial not only for the adsorption of
a single particle at an interface, but also for the interaction
between several of them. For example, whereas very hydro-
phobic silica particles (6 > 129°) form well-ordered monolayer
structures (with inter-particle separations of several particle
diameter) at octane-water interfaces, less hydrophobic (0 < 115°)
particles fail to do so.'*** This can be attributed to different
strengths of the repulsive electrostatic force, which acts mainly
through the oil-phase because the electrostatic field is well
screened inside the aqueous phase at the high salt concentra-
tions used. Moreover, the capillary interaction due to the over-
lap of the interface deformation field around each particle also

This journal is © The Royal Society of Chemistry 2018
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Fig. 1 Cross-sectional view in the y = 0 plane of a system with two
spherical or parallel cylindrical colloids (yellow discs) floating at a fluid
interface indicated by the horizontal line. The projection of the center of
the left particle onto the interface is chosen as the center (0, 0, 0) of the
Cartesian coordinate system used to describe the system. The fluid
medium below the interface is called medium “1" and the one above the
interface medium “2". The particles are chemically identical, such that the
contact surfaces with one of the media carry the same charge densities
and the same wetting contact angles 0. The particles may differ in size with
radius Ry on the left and R, on the right particle. The horizontal distance of
the particles is characterized by the width L of the gap between both
particles as depicted by the vertical dashed lines. The equilibrium heights
of the centers of the left and right particles from the interface are given by
|D4| and |D5|, respectively, with 0 € [0, n] determining the sign of D; and D,
according to the relations D; = —Rycos0 and D, = —R, cos 0.

depends on the contact angle 0. However, here we disregard
deformations of the interface, which can be significant if the
particle surfaces are rough'® or the particles are large (radius =
10 um),"*"® and we focus only on the electrostatic interaction
between the colloids.

Whereas the electrostatic interaction between particles
trapped at a fluid interface has been studied extensively since
the pioneering studies by Pieranski*® and Hurd,”" most of the
investigations deal with the case of particles situated far away
from each other. At long distances the electrostatic pair-
interaction takes the particularly simple form of an interaction
between two electric dipoles, which are generated by the asym-
metric counterion distribution at the particle surfaces in con-
tact with the two fluid phases. It has been shown that in this
case the linearization of the Poisson-Boltzmann (PB) theory is
applicable.*® Recent studies, directed towards the opposite
limit of small inter-particle separations, have been performed
within the linearized PB theory®>* or by considering a flat
plate geometry>>**?® in order to simplify the problem. Whereas
the former approximation is often violated at short separations,
the latter represents the ideal situation of a contact angle of
exactly 90° and the absence of particle curvature. However, in
reality, the contact angle 0 can vary significantly to either side
of 90°>'%'%2¢ and whether the particle curvature plays any
important role at short inter-particle separations still remains
to be addressed within the nonlinear PB theory.

Accordingly, in this contribution, we investigate the electro-
static interaction between spherical and parallel cylindrical
colloids with an arbitrary contact angle appearing at a fluid
interface. As long as the size of the particles is sufficiently larger
than both the length scale of the interaction and the inter-particle
separation, which is usually the case for short inter-particle
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separations we are interested in, one can apply the Derjaguin
approximation (DA) using results of the corresponding case of
planar walls.>” Having recently solved this two-plate problem
exactly (i.e., without using the superposition approximation)
within the nonlinear PB theory,>® we proceed one step further
and compute the force between a pair of spheres or parallel
cylinders. A similar approach has already been employed and
proved to be valid in this context.’®*® However, the present
study differs from those treatments in several aspects. Whereas
ref. 28 deals with macroscopically long cylinders trapped at an
oil-water interface and having a constant surface potential,
which is most suitable for metallic particles, we consider
dielectric particles described by constant charge densities at
their surfaces. Moreover, to keep our analysis general and to be
consistent with experimental observations,**** we consider the
particle surfaces to be charged in both fluid phases, which is
not the case in ref. 28. On the other hand, ref. 29 describes the
interaction between spherical particles by using the superposi-
tion approximation, which has been shown to be qualitatively
wrong for small inter-particle separations,®* and it discards any
interaction between the particle-water surface of one particle
and the particle-oil surface of the other particle. As explained in
the next section, this latter contribution to the interaction
energy is included in our calculation via the line contribution.

II. Model and formalism

As depicted in Fig. 1, we consider two particles with radii R,
and R, placed at a fluid-fluid interface described by a three-
dimensional Cartesian coordinate system. The projection of the
center of the left particle onto the interface is chosen as the
origin (0, 0, 0) of the coordinate system. The particles are either
two spheres or two macroscopically long, parallel cylinders with
axes in y-direction; their cross-sections in the plane y = 0 are
shown in Fig. 1. The fluid-fluid interface is indicated by the
horizontal line at x = 0. Although the particles can differ in size,
they are taken to be chemically identical such that the surfaces
of both particles in contact with the same fluid phase carry the
same surface charge density, and that the contact angle 0 is the
same for both particles. This is a simplifying assumption
because chemically identical particles in general need not to
be equally charged.*® In equilibrium the centers of the left and
the right particle are located at x = D; and x = D,, respectively.
Depending upon the contact angle 0 € [0, «t], both D; = —R; cos 0

. T .
and D, = —R, cos 0 can be negative (for 6 < E; the case considered

in Fig. 1) as well as positive (for 0 > g) In between the particles a

gap of width L occurs (see the vertical dashed lines in Fig. 1) so
that the horizontal center-to-center distance is L + R; + R,. The
fluid phase below (above) the interface occupying the half-space
x < 0 (x > 0) is denoted by medium “1” (“2”). Both fluids are
modeled as structureless, continuous media with dielectric
constant ¢; = & &, I € {1, 2}, where ¢, is the relative permittivity
of medium i and ¢, is the vacuum permittivity. The ionic
strength of added salt in medium i € {1, 2} is denoted by I,.
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The corresponding Debye screening length in each medium is given

by ki ' = /e /(8nlpl;) where /g = €/(dncoksT) is the vacuum

Bjerrum length with e > 0, kg, and T being the elementary charge,
the Boltzmann constant, and the absolute temperature, respectively.
Within our description at the mean-field level, the length scale of
interest is the Debye length as both the local charge density and the
electrostatic interaction vary on this scale. Phenomena which occur
on smaller length scales, e.g., the structuring of liquids on the
molecular length scale, are not considered. Here we consider
medium “2” to be the less polar phase in the sense that x, ' >
x1 '. With this the criteria for the applicability of the DA are that
both radii R, and R, have to be much larger than «, ' and L.
Within the DA, one basically decomposes the two interacting
particles into infinitesimal surface elements. Assuming that the
elementary surface pieces, which face each other, interact like flat
parallel surfaces, the total interaction between the two curved
objects is obtained via integration over the whole surface. Here,
however, the particle surfaces are homogeneously charged only
separately inside each medium, the properties of which in general
differ. As a result, a three-phase contact line is formed where a
particle surface intersects the fluid interface; two such contact
lines on opposing particles interact as well. But this does not
introduce any additional constraint for applying the DA. In the
spirit of the DA, each of these two contact lines can be divided in
infinitesimal pieces and the total contribution due to the line
interaction can be obtained as long as the interaction between two
parallel lines is known. Therefore, in order to apply the DA, one
needs to know the interaction of parallel flat surfaces dipped into
medium “1” or medium “2” and the interaction between two
parallel three-phase contact lines. These are exactly the quantities
we calculated in ref. 25 numerically by solving the nonlinear PB
equation. To be more precise, the relevant quantities, as defined in
ref. 25, are w, {r), which is the interaction energy per total surface
area between two parallel, planar surfaces dipped at a distance r
into medium 7 € {1, 2}, and w,(r), which is the interaction energy
per total line length between two parallel three-phase contact lines
at a distance r. Please note that the interaction of the surface of
one particle in contact with medium “1” and that of the other
particle in contact with medium “2” is included in the line
contribution w,(r). In order to tackle the problem efficiently, we
first fit simple functions to the numerical data for w, (1), ®,(7),
and w,(r) obtained by full minimization of the nonlinear PB grand
potential. It turns out that a reasonably good fitting can be
obtained by superposing exponential contributions as follows:

3
0,1(r) = 3 arexp(~bi), &)
i=1
3
0,2(r) = Z ciexp(—dr), (2)
i=1
and
4
w:(r) =Y giexp(—hir). 3)
i=1
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For two flat plates, all interactions decay exponentially in
the limit of large separations: w,(r — o) ~ exp(—«;) and
w.(r » o) ~ exp(—k,r) (note the convention r, ' > x; '). Asa
result, when fitting the data over a sufficiently large interval of r
(i.e., a few Debye lengths), the slowest of the decay rates b; in
eqn (1) equals «; and the slowest of the decay rates d; in eqn (2)
as well as the slowest of the decay rates #; in eqn (3) equal «,.
All three interactions, i.e., , 1, @, ,, and o, result in forces onto
the particles, which can be obtained by taking the negative
derivative with respect to the appropriate distance between the
facing surface or line elements, followed by integrating over
the particles. Due to the geometry of the problem, the electro-
static force between the particles acts only in the horizontal
z-direction. Please note that the movement of the particles in
the vertical x-direction is suppressed by the steep and strong
trapping potential.” In the following, we denote the z-component
of the electrostatic force, which the left particle in Fig. 1 exerts
on the right one, by F(L), and we decompose it, according to
F(L) = Fy(L) + Fy(L) + F3(L), into the surface contribution
Fi(L) due to the surface interaction w,; in medium “1”, the
surface contribution F,(L) due to the surface interaction w,, in
medium “2”, and the line contribution F;(L) due to the line
interaction w,.

I1l. Results and discussion

In this section we discuss the variation of the force F(L) between
the particles as function of the particle sizes (radii R; and R,), the
particle separation L, and the contact angle 0. For our discussion
we consider two typical experimental setups and in each case the
results for a pair of spheres as well as a pair of parallel cylinders
are presented. Between the two systems considered below, the
data for flat wall interactions for water-lutidine interfaces are
taken from ref. 25 and those for water-octanol interfaces are
newly generated here. We mention that all numerical examples
presented here have been chosen such that the conditions for
applying the DA are satisfied. Consequently, systems featuring
oil with very low dielectric constants, such as decane or octane,
have been excluded because the corresponding Debye length
1, ! is too large for them to satisfy the condition Ry, R, > K, *,
even for micron size colloids.

A. Water-lutidine interface

First, we consider a system consisting of polystyrene particles
placed at a water-lutidine (2,6-dimethylpyridine) interface at
temperature 7 = 313 K. The added salt is NaI with bulk ionic
strengths I; = 1 mM and I, = 0.85 mM. The relative permit-
tivities are ¢, = 72 for the water-rich phase (medium “1”) and
&ro = 62 for the lutidine-rich phase (medium *2”). The chemi-
cally identical particles are assumed to be similarly charged;
the magnitude of the surface charge density in contact with the
aqueous phase is ¢; = 0.1e nm~> and that in contact with the
oil-phase is o, = 0.01e nm™>. Differences in the solubilities of
the ions in the two fluids result in a potential difference
between the bulk of the two media, which is called the Donnan

This journal is © The Royal Society of Chemistry 2018
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potential or Galvani potential difference,*® and which, for our
system, is assumed to be 1kg7/e. These numbers correspond to
a standard set of parameters as used in ref. 25. They are either
taken or estimated from various experimental studies.*'”~*

1. Spheres. In the case of two interacting spheres at a fluid
interface, after performing the surface and line integrations, for
the three distinct, lateral force contributions the following
expressions are obtained:

_ na; (D) — Dz)2
- ,ZI_(L+L) e"p{‘b" (“%Rl +Rz>>}
R R

2

bi

3 e (D) — D,)*
Ry

Ry

/ di
X |:1 + erf((Dle + D2R1) m)

where erf(x) denotes the error function,*® and

)

4)

)

(5)

4

F(L)=> &

i=1

2 2
%exp{ —h; (L + % + QD—I;) } (6)
(RT " R*)

with D; = —R, cos 0 and D, = —R, cos 0. Variations of the total
force F(L) = Fy(L) + F5(L) + F5(L) in the units of 10%x,/p with the
scaled separation x;L for different system parameters are
shown in Fig. 2. Here f§ = 1/(kgT) is the inverse thermal energy.
As one can infer from Fig. 2(a), for equally-sized spheres
(R = R, = R) with a contact angle of 0 = 90°, the effective force
scales linearly with the size of the particles and decays expo-
nentially with increasing separation between the particles. Both
the linear scaling with R and the exponential decay with L can
be directly inferred from the inset of Fig. 2(a) where the ratio
of the dimensionless force fF/x; to the scaled radius xR is
plotted as a function of the scaled separation «,L using a semi-
logarithmic scale, revealing data collapse. The exponential
decay is expected to occur in the sense that all effective
interactions decay exponentially for a pair of interacting flat
plates, which remains unaffected while using the DA, and the
linear scaling with R is a direct consequence of the DA. Fig. 2(b
and c) display the variation of the scaled force with contact
angle 0 for equally-sized particles. As one can see, for k,R =
100 (b), the force increases with decreasing contact angle but
de facto it varies only within the interval 80° < 6 < 100°. A
similar phenomenon is observed for k4R ~ 30 (c) albeit with
variation in a slightly broader interval 75° < 0 < 105°. Fig. 2(d
and e) show the variation of the force with contact angle 0 as
function of separation distance x,L for unequally-sized spheres.
For the relatively small size-asymmetry in Fig. 2(d), the force
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between the particles can increase in a certain range of separa-
tion between the particles as the contact angle 0 is decreased
slightly from 90° downwards. Otherwise the force is weaker
than the one obtained for a neutral wetting situation 6 = 90°.
For the larger size-asymmetry in Fig. 2(e), the force becomes
weaker as soon as the contact angle 0 differs from 90°. However,
in both cases, as considered in Fig. 2(d and e), the force between
the particles decreases upon increasing 0 in the interval 0 > 90°.
Finally, in Fig. 2(f), we compare the force obtained within the
linearized and the nonlinear PB theory for equally sized spheres.
As one can see from the plot, the forces differ by almost an order
of magnitude even at large separations such as x;L x~ 6 for
0 = 90°. It turns out that with increasing contact angle 0 this
difference diminishes; see the inset of Fig. 2(f), where both
curves are of almost the same magnitude. This is expected since
the portion of the particles immersed in the more polar phase,
for which the electrostatic interaction is stronger because
K1 & Ky [k & 0.1059 nm™ !, k, ~ 0.1053 nm '] and g; > a,,
decreases with increasing contact angle. Note that this situation
differs from the one in ref. 11 and 12 in which k; » k,. A
similar discrepancy appeared while comparing the interactions
within the linear and nonlinear theory for parallel flat surfaces.>®
Thus taking into account particle curvature does not significantly
change this result.

All these observations are in accordance with the force
expressions given in eqn (4)-(6). For micron-sized particles
considered here, in most of the cases the line contribution
to the total interaction is negligible. Therefore, the total force
F(L) is dominated by the surface contributions Fy(L) (eqn (4))
and F,(L) (eqn (5)). For # = 90°, which is the case con-
sidered in Fig. 2(a), one has D; = D, = 0. Moreover, with R, =

3
R, =R, eqn (4) and (5) reduce to F; (L) = % > a;exp(—b;L) and
i=1

R3
F(L) = %Zc,- exp(—d;L), respectively, which transparently
i=1

explain the linear variation of the force with the particle size
R (the coefficients a; and ¢; do not depend on R) and its
exponential decay as function of the separation L. The decay
rate in the limit of large distances is determined by the smaller
of the two Debye lengths ;" and x, " (please note that for our
system x; ' & i, *). For Ry = R, = R with an arbitrary contact angle
0, one has D; — D, = 0 so that the dependence on 0 appears in
eqn (4) and (5) only through the terms involving the error functions,
which reduce to 1 — erf (- cos 0/b;R) and 1 + erf (— cos 0v/d;R),
respectively. Since the error function levels off to |erf(x)| ~ 1 for
|x| = 2, the variation of the force with respect to 6 in eqn (4)
saturates once the slowest decay rate b;, which in the present
case is k;, satisfies the inequality

|cos 0| =

2
VR @

Similarly, in eqn (5) the saturation is obtained once the slowest
decay rate d;, i.e., k, satisfies the inequality

|cos 0] =

2
ViR ®)
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Fig. 2 Variation of the lateral component of the force F(L) due to the electrostatic interaction between a pair of spherical colloidal particles,
expressed in units of 10°k,/, as function of their scaled separation ;L for (a) equally sized (R, = R, = R) spheres of varying radius with contact angle
0 =90°, (b) equally sized (x;R ~ 100) particles with varying 6, (c) equally sized (k1R ~ 30) particles with varying 0, (d) unequally sized (2x1R; = k1R, ~ 100)
particles with varying 0, (e) unequally sized (10x1R; = k3R> ~ 300) particles with varying 0, and (f) equally sized (k;R ~ 100) particles with 6 = 90°
within linear and nonlinear PB theory. As shown by panel (a) and its inset, the force increases linearly with increasing R and decays exponentially with
increasing separation x1L. Panels (b) and (c) suggest that, for equally sized spheres, the force increases significantly with decreasing contact angle 6 only
within an interval around 90°. Outside this interval the force remains de facto constant and the interval of 0, across which the force actually varies,
widens upon decreasing x;R. For unequally sized spheres, if the size asymmetry is moderate, the force may increase as well as decrease if the contact
angle deviates from 90° (panel (d)). However, if the size contrast is high, the force becomes weaker once 0 is slightly shifted away from 90° in either
direction (panel (e)). From panel (f) and the inset therein one can infer that the discrepancy between the linear and the nonlinear results diminishes

with increasing 6.

Note that once the slowest decay rates b; and d; satisfy these
conditions, all the other decay rates will do so, too. For x;R =
100 (and therefore, kR ~ 100 as k; X k), both eqn (7) and (8)
predict that the force varies appreciably only within the interval
78° < 0 < 102° which one precisely observes in Fig. 2(b).

. T, .
Decreasing the contact angle 0 from 5 implies that the particles

9440 | Soft Matter, 2018, 14, 9436-9444

become more hydrophilic. Consequently, the contribution F;(L)
to the total force increases while F,(L) decreases upon decreas-
ing 0. Finally, at 0 ~ 78° the former attains a non-zero finite
value and the latter vanishes (please note the different signs in
front of the error functions in eqn (4) and (5)). On the other

hand, increasing the contact angle 6 from g implies that the

This journal is © The Royal Society of Chemistry 2018
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particles become more hydrophobic. As a result, the contribution
F,(L) increases and F;(L) decreases with the former attaining a
non-zero finite value while the latter is vanishing at § ~ 102°.
Upon decreasing k4R, the interval of 6 over which the force varies
broadens as can be inferred from Fig. 2(c). For unequal particles
sizes, ie., for R; # R,, the dependence on 0 in eqn (4) and (5)
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originate from both the exponential and the error function. For
moderate size-asymmetry, like the one considered in Fig. 2(d),
a competition between these two functions determines the varia-
tion of the force with 6. However, for the extremely asymmetric
case considered in Fig. 2(e), the difference D; — D, is large and the
exponential terms dominate as soon as 0 differs slightly from 90°.
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g f 0000 e —
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Fig. 3 Variation of the z-component (see Fig. 1) of the force F(L), per length L, in the y-direction, due to the electrostatic interaction between a pair of
parallel cylindrical colloids, expressed in units of 10%¢,%/f, as function of their scaled separation «yL for (a) equally sized (R; = R, = R) cylinders of varying
radius with contact angle 0 = 90°, (b) equally sized (k;R ~ 100) particles with varying 0, (c) equally sized (k1R ~ 30) particles with varying 0, (d) unequally
sized (2k1R; = K1R> ~ 100) particles with varying 0, (e) unequally sized (10x1R; = k1R> ~ 300) particles with varying 0, and (f) equally sized (k1R ~ 100)
particles with 0 = 90° within linear and nonlinear PB theory. As shown by panel (a) and its inset, the force increases o v/R with increasing R and decays
exponentially with increasing separation k1L. Panels (b) and (c) suggest that, for equally sized cylinders, the force increases significantly with decreasing
contact angle 0 only within an interval around 90°. Outside this interval the force remains de facto constant and the interval of 0, across which the force
actually varies, widens upon decreasing k31R. For unequally sized cylinders, if the size asymmetry is moderate, the force may increase as well as decrease if
the contact angle deviates from 90° (panel (d)). However, if the size contrast is high, the force becomes weaker once 0 is slightly shifted away from 90° in
either direction (panel (e)). From panel (f) and the inset therein one can infer that the discrepancy between the linear and the nonlinear results diminishes

with increasing 0.
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2. Cylinders. For macroscopically long, parallel cylinders,

the expressions for the lateral force contributions, expressed
per length L, in the y-direction, are given by:

b; (D) — Dy)?
R I )

X |:1 - erf((Dle + Dle)

bi
2R1R2(R1 +R2) ’
©)

B(L) _
L,
X |:1 +erf<(D1R2+D2RI)”2R1R2 R] +R2 >:|
10
and
4 D? Dy
= ihi L+—4— 11
;g exp{ < +2R1+2R2)} (11)

We note that for geometrical reasons these expressions are
slightly different from those obtained for spheres in eqn (4)—(6).
In particular, the contact lines for cylinders are just straight
lines and in order to obtain F5(L) there is no need to use the DA.
Fig. 3 shows the variation of the z-component of the total force
F(L) = F1(L) + F5(L) + F5(L), per length L, in the y-direction and in
units of 10%x,/f, which the left cylinder exerts on the right one
as function of the scaled separation «,L for the sizes R; and R,
and for the contact angle 0. Except for a few features, the findings
are qualitatively the same as those obtained for spheres in Fig. 2.
For example, for R; = R, = R and 6 = 90°, the force between two
cylinders also decays exponentially with varying separation L
between them and increases with increasing size R, but for the
cylinders the increase is proportional to v/R; see Fig. 3(a) and the
inset therein. This is evident from the prefactors of the exponen-
tial functions in eqn (9) and (10). The variation of the force with
respect to 0 as well as eqn (7) and (8) remain the same as for the
spheres, because the 6-dependent terms in eqn (9) and (10) have
exactly the same form as in eqn (4) and (5). This behavior is
confirmed by Fig. 3(b-e). Finally, the comparison of the effective
force for 0 = 90° within linearized and nonlinear PB theory reveals
a significant discrepancy between the predictions of the two
approaches, which becomes smaller for larger contact angles 0,
i.e., as the portion of the particles, dipped into the more polar
phase, decreases (see Fig. 3(f)).

B. Water-octanol interface

Water and lutidine, which are immiscible for sufficiently high
temperatures, form a special system in that the bulk properties,

e., the relative permittivities and the bulk ionic strengths,
and consequently the Debye screening lengths, are not very
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different for the two fluid phases. In contrast to that, in the
present subsection we consider another system with silica
particles trapped at a water-octanol interface. At room tem-
perature 7'= 300 K these two fluids differ starkly with respect to
their bulk properties with ¢, ; = 80 for water and &, = 10.3 for
octanol. The partitioning of ions at such an interface leads to
highly contrasting bulk ionic strengths: for 7; = 10 mM one has
I, = 2.9 x 10°* mM; the corresponding resulting Donnan
potential equals 3.8kzT/e.*>** Under these conditions, the
inverse Debye length in the water phase is x; ~ 0.324 nm ™"
and the one in the oil phase (octanol) is x, ~ 0.015 nm™'. The
magnitude of the surface charge densities in contact with the two
fluid phases also differ significantly; we consider ¢; = 0.01e nm™>
and o, = 0.0005¢ nm 2111245

The resulting interactions between the particles are shown
in Fig. 4 for a pair of spheres (panels (a) and (c)) as well as for a
pair of cylinders (panels (b) and (d)). From Fig. 4(a and b) one
can infer that the total force F(L) between equally sized particles
increases with increasing radii (R; = R, = R), both for spheres
and cylinders. Whereas for spheres this increase is linear in the
particle size (see the inset in Fig. 4(a)), in the case of cylinders it
scales o v/R (see the inset in Fig. 4(b)), which is evident from
the data collapse in the insets. Although the line interaction
becomes relatively more important in the case of the water-
octanol system — due to a greater mismatch of the system para-
meters (ionic strengths, permittivities, and charge densities)
compared to those of the water-lutidine system - these findings
suggest that for micron-sized particles the interaction is still
dominated by the surface parts. Fig. 4(c and d) show the varia-
tion of the inter-particle forces F(L) as function of the wetting
contact angle 6 for spheres and cylinders, respectively. At very
short separations, the force varies only within a narrow interval
85° < 0 < 95°. However, at relatively large separations it varies
within a wider interval 75° < 0 < 105° of the contact angle.
These findings are also in accordance with eqn (7) and (8). For
the system considered here, eqn (7) predicts that Fy(L) varies
appreciably within the interval 86° < 6 < 94° whereas, accord-
ing to eqn (8), F»(L) varies within the interval 71° < 0 < 109°.
At very short separations, the total force is dominated by the
surface contribution in medium “1” (aqueous phase) due to
higher surface charge densities at the particle surfaces. There-
fore, if 0 is decreased from 90°, i.e., when the particles become
increasingly hydrophilic, the force increases, followed by satura-
tion at around 6 = 85°, as predicted by eqn (7). On the other
hand, if 0 is increased beyond 90° the particles become more
hydrophobic. Up to 0 ~ 95° for which F, vanishes, the total
force decreases as F; decreases. Beyond that, a slight increase of
the total force is observed due to F, which, as predicted by
eqn (8), increases up to 0 ~ 109°. As the separation between the
particles is increased, in medium ‘“1” the interaction decays very
fast due to a strong screening by the higher amount of salt
present. Consequently, at relatively large separations the total
force is dominated by the surface contribution in medium “2”
(oil phase) and, within the interval 75° < 6 < 105°, it increases
monotonically with increasing contact angle. It is important to
note that eqn (7) and (8) are derived by using the fact that the

This journal is © The Royal Society of Chemistry 2018
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Fig. 4 Panel (a): Variation of the lateral component of the force F(L), expressed in units of 103;:1/[3, due to electrostatic interaction between a pair of
equally sized (R; = R, = R) spheres of varying radius with contact angle 90° as function of their scaled separation kL. The force increases linearly with
increasing size of the particles which is evident from the data collapse in the inset. Panel (b): Variation of the z-component (see Fig. 1) of the force F(L), per
length L, in the y-direction, expressed in units of 11%/p, due to electrostatic interaction between a pair of equally sized cylinders of varying radius with
contact angle 90°, as function of their scaled separation k;L. Contrary to what one observes for spheres, the force between cylinders is proportional to
V/R. Panel (c): Variation of the lateral component of the force F(L), expressed in units of 10%x,/, due to electrostatic interaction between a pair of equally
sized (k1R =~ 800) spheres with various contact angles 0, as function of their scaled separation xL. Panel (d): Variation of the z-component of the force
F(L), per length L, in the y-direction, expressed in units of K12/, due to electrostatic interaction between a pair of equally sized (i;R ~ 800) cylinders for
various contact angles 0, as function of their scaled separation x4L. Both for spheres and cylinders the force varies within a narrow interval of the contact
angle at very short separations. The force increases if the particles are more hydrophilic within this interval of 6. At relatively large separations, however,
this interval slightly broadens but the force increases if the particles become more hydrophobic.

error function erf(x) saturates for |x| 2 2, with the most
significant variation occurring only for |x| < 1.5. Therefore,
the variation of F,(L) within the intervals 71° < 6 < 75° and
105° < 0 < 109° are very slow and hardly visible. Since here the
silica particles are considered to be weakly charged, the discre-
pancy between the linear and the nonlinear PB theories become
less significant. Still, the forces within the two approaches
differ by a factor of 2 even at separations k;L ~ 10 for 0 = 90°.

V. Conclusions

To conclude, by using the Derjaguin approximation and a
fitting procedure for numerical results for the effective inter-
action between parallel, planar surfaces in contact with two
demixed fluids in between, we have calculated the force due to
the electrostatic interaction between pairs of spheres or cylin-
ders at close distance from each other at a fluid-fluid interface.

This journal is © The Royal Society of Chemistry 2018

The comparison between the results obtained within linear and
nonlinear PB theory shows that the former overestimates the
force both for spheres and for cylinders, even at distances of
several Debye lengths. Concerning the results within the non-
linear theory, we have investigated the effects of varying the
sizes and the contact angle of the particles. Our general study is
applicable also to pairs of particles which differ in size. For
equally-sized spheres and cylinders the force always decays
exponentially with increasing separation, and it scales ocR for
spheres and oc v/R for cylinders, where R is the common radius
of the particles. Importantly, for equally-sized particles (both
spherical and cylindrical) we have found an interval around the
contact angle of 90°, beyond which the force de facto does not
vary. We have also obtained simple relations (eqn (7) and (8))
involving the Debye lengths of the two media and the radii of
the particles for calculating the width of this interval. These
robust results can be expected to be useful for describing
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more general or complex particle interactions at fluid inter-
faces, which is important for various application perspectives of
such systems.
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