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Studying polymer solutions with particle-based
models linked to classical density functionals:
co-non-solvency

Jianguo Zhang, Debashish Mukherji, Kurt Kremer * and
Kostas Ch. Daoulas *

We demonstrate the potential of hybrid particle-based models, where interactions are introduced

through functionals of local order parameters, in describing multicomponent polymer solutions. The link

to a free-energy-like functional is advantageous for controlling the thermodynamics of the model. We

focus on co-non-solvency – the collapse of polymer chains in dilute mixtures with two miscible good

solvents, having different affinities towards the polymer. We employ a simple model where polymers and

solvents are represented, respectively, by worm-like chains and single particles. Non-bonded

interactions are captured by a polynomial which is third order in local densities and can, therefore,

describe liquid–vapour coexistence. The parameterisation of the functional benefits from an elementary

mean-field approximation to the statistical mechanics of the model. The model provides a framework

for Monte Carlo simulations using a particle-to-mesh algorithm. Studies with conventional generic

bead-spring and all-atom models have demonstrated that co-non-solvency is caused by preferential

binding of the better solvent (termed cosolvent) with polymer. Hence, segmental loops bridged by

cosolvent molecules are formed, initiating polymer collapse. The mesoscopic hybrid model differs

conceptually from the conventional microscopic descriptions. Yet, it reproduces the same co-non-solvency

mechanism supporting its universality. Films of adsorbed ternary solutions, showing co-non-solvency in the

dilute regime, are considered at high concentrations. In this case, chains do not collapse. The properties of

loops and tails of the adsorbed polymer agree with early theoretical predictions obtained for concentrated

binary solutions.

1 Introduction

Many fundamental studies and technological applications of
soft matter involve polymers mixed with several solvents.
To understand theoretically complex interrelationships1 between
structure, processing, and properties of multicomponent polymer
solutions, molecular simulations are commonly required. These
interrelationships often involve length and time scales which
can be addressed only using mesoscopic descriptions: molecular
models where large groups of actual chemical units are mapped
on a single effective particle. Drastic coarse-graining reduces
significantly the degrees of freedom and softens the interactions,
making them comparable to the thermal energy. Therefore the
computational time remains tractable. The difficulty in defining
the mesoscopic interactions is one of the downsides of drastic
coarse-graining. Standard bottom-up strategies2,3 require refer-
ence data from computationally expensive simulations based

on detailed models. Moreover, performing reference simulations
of polymer solutions with new and complex formulations,4–6

often requires adjustments of existing atomistic force fields.
Finally, bottom-up strategies suffer from state-point and repre-
sentability dependent parameterisation.

Top-down coarse-graining of polymer solutions is an alter-
native strategy where mesoscopic models are developed postu-
latively, aiming to reproduce by construction a set of known
properties. Based on this pre-existing (limited) knowledge, top-
down modelling can interpret and predict other features.3

Thermodynamic properties of fluids play a key role in chemical
engineering,7–9 are extensively documented, and can provide
guidelines for top-down modelling. Constructing and improving
force fields using thermodynamic information is a common
practice in atomistic and moderately coarse-grained (CG) models;
the NERD10 and MARTINI11 force fields are typical examples.

Top-down particle-based models linked to continuum free-
energy-based descriptions allow one to introduce systema-
tically12–14 thermodynamic information. These approaches
describe the molecular architecture of different compounds
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similarly to standard CG models. However, non-bonded interactions
are templated by functionals15–20 of local order parameters.
Structurally, these functionals are similar to free energies in
classical density functional theory (DFT) and phase-field models.
Yet, they are conceptually different because they depend on
instantaneous order-parameter fields (and not average). The
functionals are transformed into mesoscopic force fields by
expressing the instantaneous local order parameters through
the coordinates of the CG particles. The hybrid method simpli-
fies the construction of particle-based models with desired
thermodynamics, because the thermodynamic properties are
already determined by the templating functional. Simple mean
field (MF) estimates, Self Consistent Field (SCF) theory, and
classical DFT facilitate the choice of a functional suitable for
reproducing the target thermodynamic behaviour. Importantly,
introducing interactions through functionals of fields of local
order parameters facilitates coupling with other continuum
techniques. For example, hybrid schemes combining21–23 dynamic
SCF theory (based on quadratic density functionals) with the
Lattice Boltzmann method have been used to explore the effect
of hydrodynamic interactions on the kinetics of self-assembly in
block-copolymer-based solutions.22,23

Although the popularity of hybrid models in modelling
Soft Matter is increasing,12–14,24 their potential in modelling
polymer solutions has not yet been fully explored. Currently,
hybrid models of polymer solutions22,23,25–34 are build on
functionals which are polynomials of local densities of different
compounds. Most studies focus on phenomena in the liquid
phase (such as self-assembly) and retain only second-order
terms, which are equivalent to simple Flory–Huggins interactions.
Significantly less studies incorporate polynomials of higher
order, which are necessary to cover a broader range of phase
behaviour.27,35 For example, using third-order density poly-
nomials is the minimum requirement to have coexisting liquid
and vapour phases. The few studies with higher order functionals
usually consider the solvent implicitly. Namely, the ‘‘vapour’’
phase is actually an integrated-out phase12,25,26,28,29 of liquid
solvent at equilibrium with an explicitly described polymer-rich
phase. A single solvent component and an actual vapour phase
have been introduced only in a very limited number of studies to
describe processes in films of polymer solutions, such as drying27

and solvent annealing.32

Here we expand previous studies and investigate whether
simple mesoscopic hybrid models can capture complex pheno-
mena sensitive to the formulation of multicomponent polymer
solutions. We focus on the phenomenon of co-non-solvency,
which occurs when a polymer collapses in mixtures of two
competing miscible good solvents. This phenomenon has been
extensively studied in various experimental setups.36–44 From
the simulation side a rather limited number of studies has been
performed to understand this puzzling phenomenon, including
chemical-specific40,45,46 and generic simulations.47–50 We note
that in some of these studies48 at least one of the solvents was
described implicitly, in a mean-field manner. Co-non-solvency
has also been addressed in a number of works based on
analytical theories.36,49–54 In previous works, two of us have

demonstrated that the collapse of the chain is driven by
preferential binding of the better solvent in the pair (named
in the following cosolvent) with polymer monomers.49,50 The
aggregation of cosolvent molecules onto the chains facilitates
the formation of enthalpically favourable segmental loops.
The process leads to the formation of a compact globule. This
observation of preferential binding is also closely comple-
mented by NMR and AFM experiments.41,44 Co-non-solvency
depends49 on the local structure of the liquid (i.e. energy
density within the solvation shell). In hybrid models soft CG
units overlap, there are many interacting neighbours, and the
liquid structure is captured only on mesoscopic level.18 Further-
more, local liquid packing is affected by the specific method
used to calculate13 the interactions, e.g. particle-to-mesh (PM)
schemes15,18,28,55,56 or density distributions.15–17,19,20 Due to
these simplifications, it is not known beforehand whether
hybrid models reproduce co-non-solvency and, if so, which
features.

First we demonstrate that co-non-solvency can be indeed
reproduced by hybrid models constructed using basic thermo-
dynamic reasoning. We intentionally implement a simple
hybrid model of ternary solutions which (i) describes explicitly
the three components (polymer, solvent, and cosolvent), (ii) is
based on third-order density polynomials, and (iii) is combined
with a rudimentary PM scheme for calculating interactions.
The modelling approach captures qualitatively most of the
known features of co-non-solvency. Subsequently, we use this
model to describe the same ternary solutions, coated on a solid
substrate in the concentrated regime. In these films, we explore
the properties of adsorbed layer and compare them with
analytical predictions known from simple binary solutions.

2 Modelling concept

The modelling approach can be formalised through the cano-
nical configurational partition function:

Z ¼
Y
a

1

na!

ð
dR exp �

X
a

Xna
i¼1

bHbðaÞ rið1Þ; . . . ; ri Nað Þð Þ
" # 

� exp �
ð
drf r̂aðrÞf g½ �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

bHnb

2
6664

3
7775
1
CCCA

(1)

The index a indicates the component type and na denotes
the number of molecules of each component. The coordinates
of the s-th monomer in the i-th molecule are defined by ri(s) and
Na is the total number of monomers in a molecule of component
a. In this work, the three components are defined by a = p
(polymer), s (solvent), and c (cosolvent). The integral

Ð
dR is taken

over the possible realisations of the coordinates of all monomers.
The ansatz is general enough to allow the description of
branch-like polymers and solvents which are composed of several
monomers, i.e. are chain-like. The architecture of molecules of
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component a is described by the effective Hamiltonian of bonded
interactions, Hb(a). The effective Hamiltonian of non-bonded
interactions, bHnb, is expressed through a functional, f, of
local densities, r̂a(r), of monomers belonging to the different
components. In our study, we assume in eqn (1) that the
molecules of each component are comprised of monomers of
a single chemical species, e.g. polymers are homopolymers.
Generalising to molecules with chemically different monomers
is straightforward. The functional f depends on instantaneous
values of densities (indicated by the ‘‘hat’’). Essentially, r̂a(r) are
operators transforming a configuration of particle coordinates, R,
into instantaneous fields of collective variables. To define the
model, in addition to Hb(a) and bHnb, the density operators must
be specified.

3 Simple model for ternary solutions

In this section we describe a simple hybrid model for ternary
mixtures. Though generic, the model is parameterised such
that some thermodynamic properties are qualitatively similar
to actual materials.

3.1 Particle-based description

Polymers are described using the discrete worm-like chain
(WLC) model, also termed57 as ‘‘elastically-jointed chain’’. Each
chain has Np ‘‘monomers’’ placed at the ends and junctions of
the WLC or, equivalently, Np � 1 segments with fixed length b.
The bonded interactions are defined through the Hamiltonian:

bHbðpÞ ¼ �e
XNp�2

s¼1
uiðsÞuiðsþ 1Þ (2)

ui(s) is a unit vector oriented along the s-th segment of the
i-th WLC, and e controls the stiffness of the WLC. In some
applications, the segments of the discrete WLC can represent
groups of microscopic degrees of freedom of an actual polymer.
However, here b and Np bear no physical significance.
Therefore, the discrete WLC encapsulates only two physically-
relevant length scales in the ideal-chain limit: the Kuhn and
the contour lengths. In the remaining part of the paper,
we consider the Kuhn length lk (in the ideal-chain limit) as
the fundamental length scale and express all lengths in terms
of this quantity. The amount of WLC segments contained in
one Kuhn segment, lk/b, is related to e via:

lk

b
¼ 2

ln
1� exp �2eð Þ

1� e�1 þ 1þ e�1ð Þ exp �2eð Þ

� � (3)

This equation follows from a well-known relationship57

between the persistence length lp and e, considering that lk = 2lp

when e c 1.
Solvent and cosolvent molecules are represented by single

beads, so that Ns and Nc equal unity. Therefore there are no
bonded interactions associated with these two species.

3.2 Non-bonded interactions

We define non-bonded interactions through a third-order
polynomial of local densities:

f fr̂aðrÞg½ � ¼ 1

2

X
a

X
b

nabr̂aðrÞr̂bðrÞ

þ 1

3

X
a

X
b

X
c

oabcr̂aðrÞr̂bðrÞr̂cðrÞ
(4)

The coefficients nab and oabc are invariant to index permuta-
tion. The third-order density dependence can describe liquid/
vapor coexistence and is, therefore, essential for studying
polymer films with a free surface. At a first glance, f in
eqn (4) cannot penalise the formation of interfaces because it
is a local functional. In fact, locality of f is not an issue for
studying films of polymer melts or concentrated solutions: the
explicit description of polymer connectivity via the WLC model,
creates surface tension through the loss of conformational
entropy at the liquid/vapor interface. This entropy loss is
equivalent58 to augmenting f by a Lifshitz term,59 which
depends on the square-gradient of polymer density. The simple
simulation method in our study does not allow the implemen-
tation of local f when liquid/vapor interfaces can form for pure
solvent or cosolvent (which are monomeric liquids). More
clarifications follow in the next section.

When required, interactions with the substrate are
described using the generic potential:60

bUðzÞ ¼
�L exp � z2

2l2

� �
if z4 0

þ1 otherwise

8><
>: (5)

where, z is the distance from the substrate. Here the interacting
particle can be a WLC monomer, solvent, or cosolvent molecule.
The parameters L and l determine, respectively, the strength and
the range of bU(z).

3.3 Simulation method

The hybrid model provides a framework for Monte Carlo (MC)
simulations. We use the canonical ensemble and place the
solutions into a simulation box with edges Lg, g = x, y, z. The
length of Lg as well as the amount of polymer, solvent, and
cosolvent molecules in the box, are specific to the studied
system and will be discussed during the presentation of
results in Section 4. Bulk solutions are modelled with periodic
boundary conditions (PBC) in all three directions. When model-
ling films, there are no PBC along z-direction: the box is sealed
at z = 0 and Lz with the potential bU(z) and an enthalpically
neutral hard wall, respectively.

A MC algorithm requires the calculation of energies from
particle coordinates. Calculating the bonded energy and the
energy from interactions with the substrate is straightforward
by direct substitution of coordinates into eqn (2) and (5).
However, the calculation of non-bonded interactions requires
instantaneous fields of densities. We obtain these densities
from the coordinates of the particles, distributed in continuum
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space, through a PM scheme. The simulation box is discretised
through a cubic lattice with cell-size DL. The densities r̂a(c) at a
grid-node, with coordinates c, are calculated from:

r̂aðcÞ ¼
Xna
i¼1

XNa

s¼1

PðriðsÞ; cÞ
DL3

(6)

The function P(ri(s),c) assigns the monomers to the nodes of
the grid. Here to obtain a simple model, we employ a PM
scheme where each particle contributes only to a single lattice
point. Namely, P = 1 if |r � c|g r DL/2, (g = x, y, z) and P = 0
otherwise. PM algorithms with higher order assignment func-
tions are available,13,28,55,61 where particles contribute to the
density field at several grid points. On the one hand, such
schemes are computationally more expensive. On the other
hand, they effectively make the functional non-local27 and
allow, therefore, the description of liquid/vapour interfaces in
dilute solutions. In addition, higher order PM approaches
mitigate lattice-induced artefacts.

The integral defining Hnb is discretised into a sum over the

Ncell nodes of the lattice, substituting
Ð
dr ¼

PNcell

m¼1
DL3. After this

step, MC sampling becomes straightforward. To sample the
conformations of WLC we employ two standard algorithms: the
slithering snake62,63 (reptation) and the crankshaft64 move,
termed sometimes65 ‘‘flip’’. During the reptation move, a chain
is randomly selected. One segment is removed from a randomly
chosen end of the chain and attached to the opposite end.
We use the simplest version of the reptation algorithm, where
the new orientation of the segment is selected randomly
without bias. Since only one segment is involved, each reptation
move can propagate the chain by maximum one bond length b.
The rotation angle65 in the crankshaft (flip) move is chosen
randomly from the interval [�p,p]. For solvent and cosolvent
molecules we use small random displacements: each of the three
Cartesian coordinates of the displacement vector is randomly
chosen from the interval [�Dl,Dl], where Dl = lk/5. Since these
displacements were sufficient for the purposes of our study, we
did not attempt to optimise sampling, e.g. by considering larger
Dl. The new density rnew

a (c) in the cells affected by the MC move
is calculated considering the coordinates of the displaced parti-
cles of species a at their proposed and old positions. Taking into
account, the old density rold

a (c) in the same cells, the difference
in the nonbonded energy DHnb is obtained. Depending on the
particle species changes of energy due to bonded interactions
and substrate potential (when present) are calculated, as well.
After all changes in energy are available, the Metropolis accep-
tance criterion is applied. In films (no PBC along z direction) the
MC move is rejected straightaway if the displaced monomer,
solvent, or cosolvent particles are found outside the boundaries
of the box.

The lattice spacing sets the range of interactions and is a key
parameter in PM schemes.18,61 We choose DL comparable to
the length of the Kuhn segment, which is the fundamental
length scale of our model, setting DL = 1.05.

3.4 Parameterisation strategy

To define bHb(p) we set the stiffness of the WLC to e = 2.99
which, according to eqn (3), leads to lk/b C 5. This empirical
choice ensures that the number of particles per lattice cell in
the liquid phase is on the order of 20 (cf. data provided further
in the text). Because of this rather large number of interacting
neighbours, the behaviour of the model in the liquid phase can
be qualitatively estimated through elementary MF and the
coefficients of the polynomial f follow from simple physical
arguments.

Rudimentary MF approximation to the full statistical-
mechanical description of the hybrid model given by eqn (1),
leads to a Helmholtz free energy of homogeneous phases:27

bF
V
¼
X
a

ra
Na

ln
ra

NaZa

� �
� 1

� �
þ f fraðrÞg½ � (7)

The composition of the phase is described by the densities of
polymer monomers, rp, solvent rs, and cosolvent rc particles.
In the following we use special notation to indicate the compo-
sition of liquid and vapour phases: ra(l) and ra(v). The density of
liquid phases of pure components will be indicated by �ra(l). The
first term in eqn (7) is the entropic part, where Za represents
the single-molecule partition function of each component.
Similarly to the standard Flory–Huggins model, this MF treat-
ment assumes that Za do not depend on composition. Hence,
only translational entropy is present. From the simple
Helmholtz free energy one can estimate observables such as
pressure, P =�qF/qV, chemical potentials, ma = qF/qna, and response
functions, e.g. isothermal compressibility, 1/kT = �VqP/qV.

To parameterise f we use the observables:

bP ¼
X
a

ra
Na
þ 1

2

X
a

X
b

nabrarb þ
2

3

X
a

X
b

X
c

oabcrarbrc

(8)

bma ¼ ln
ra

NaZa

� �
þ
X
b

nabNarb þ
X
b

X
c

oabcNarbrc (9)

bkT�1 ¼
X
a

ra
Na
þ
X
a

X
b

nabrarb þ 2
X
a

X
b

X
c

oabcrarbrc

(10)

The thermodynamic observables for pure components or binary
mixtures are obtained from these equations as a special case,
setting the densities of the missing components to zero.

We first determine naa and oaaa controlling the thermo-
dynamics of pure components. For this purpose, we consider
liquid/vapor phase equilibrium in pure polymer, solvent, and
cosolvent, fixing a priori the density and the compressibility
of the liquid phase. We postulate that the density of WLC
monomers �rp(l) in the pure polymer liquid should be represen-
tative of classical polymer melts. It is convenient to express the
monomer density as �rp(l) C (lk/b)no, where no is the number of
Kuhn segments found in the characteristic volume lk

3. The
quantity no is a well known material parameter, which is related
to rheological properties66 and is often written equivalently as
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lk/p ( p is the packing length). For many polymers66 1 r no r 10
and we choose no = 4.17, which corresponds to a standard
polymer – atactic PMMA. For lk/b = 5, the number density of
monomers in the polymer liquid is �rp(l) = 20.85. Because our
study is generic, we assume that solvent and cosolvent have
different interactions with the polymer but are identical with
respect to all other properties. Moreover, this simple choice
guarantees that solvent and cosolvent are miscible in the entire
range of molar compositions, which is the typical for solvent
mixtures where co-non-solvency is observed.36,50 For simplicity
we also assume that the number density of particles in the
liquid phases of pure solvent and pure cosolvent is the same as
for the polymer. That is, we set �rs(l) = �rc(l) = �r(l), where �r(l) =
20.85. Hereafter we set T = 400 K, which is representative of
temperatures where polymers are found in molten state.

Liquids are characterised by low compressibilities, i.e. typi-
cally kT B 10�9–10�10 Pa�1. However, hybrid models with small
compressibility pose significant challenges to PM schemes. The
intrinsic width of the interface of a polymer liquid (melt or
solution) with its vapor is on the order of the Edwards correla-
tion length x. In melts the Edwards correlation length67–69 xm,

is given by xm=lk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTkTno=12

p
while in solutions

x=lk ¼ xm
�
lk
ffiffiffiffiffi
xp
p

. Here xp is the volume fraction of polymer

segments. Using these expressions it is straightforward to
estimate that kT B 10�9 Pa�1 leads to x B 10�2 � lk. Therefore,
realistic compressibilities lead to interfaces which are signifi-
cantly narrower than DL and lattice-related artefacts are
expected. To broaden the interfaces, we use for liquid polymer,
solvent, and cosolvent kT = 10�8 Pa�1. Increasing the compres-
sibility by an order of magnitude mitigates lattice-related
artefacts, while the density contrast between vapor and liquid
phases remains high (cf. discussion in Section 3.5).

Using �rp(l) and kT as an input, naa and oaaa are estimated
from the single-component limit of eqn (8)–(10). The calculations
for the polymer are simplified considering that the pressure in
polymer melts at equilibrium with their vapor is negligibly small
and can be therefore approximated by zero.70 Substituting P = 0
and rp = �rp(l), eqn (8) and (10) are solved with respect to npp and
oppp. For the solvent and the cosolvent the vapor pressure is not
known and the complete condition of phase equilibrium is
required, given by P(�r(l)) = P(rsat

a(v)), m(�r(l)) = m(rsat
a(v)), and kT

�1(�r(l)) =
kT
�1. Unknowns in these equations are naa, oaaa, and the saturation

density of the vapor phase rsat
a(v) (here a = s or c). The parameters naa

and oaaa obtained from the solution of the equations are listed in
Table 1, while rsat

a(v) C 0.5.
Next we specify the parameters determining polymer–

solvent and polymer–cosolvent interactions: npa, opaa, and oppa.
The coefficient npa plays a key role in controlling the affinity of
the solvent (cosolvent) to the polymer. The value nps = �0.36508
used to reproduce good solvent conditions is included in
Table 1. This choice is based on trial simulations exploring
the parameter space around npa = (npp + naa)/2. At this reference
point, the Flory–Huggins parameter w, to a first approximation,12

equals zero, i.e. good solvent conditions are guaranteed. We note
that this approximation neglects effects of composition on w from
the third-order density terms in f. A more rigorous treatment of

composition effects on w can be found elsewhere.32,70 In general,
the isothermal compressibility kT obtained via eqn (10) will depend
on composition. We reduce the dependency of kT on composition
by suitable choice of opss and opps. Details are provided in the
Appendix.

Because the solubility of polymer in cosolvent is higher than
in solvent, npc o nps. The magnitude of npc required to observe
co-non-solvency can be estimated45,49 from ternary mixtures
of disconnected polymer monomers, solvent, and cosolvent
particles. At infinite dilution, rp - 0, the excess chemical
potential of monomers follows from eqn (9) as a function of
composition of the mixture:

bmp(ex)(xc) = nps�r(l)(1 � xc) + npc�r(l)xc + opss�r(l)
2(1 � xc)2

+ 2opsc�r(l)
2(1 � xc)xc + opcc�r(l)

2xc
2 (11)

The composition is described via the volume fraction of the
cosolvent xc = rc/�r(l). Based on eqn (11) we define a difference
of excess chemical potentials Dmp(ex)(xc) = mp(ex)(xc) � mp(ex)(0).
Observations in conventional particle-based simulations
empirically suggest45,49 that co-non-solvency occurs first
when Dmp(ex)(1) is somewhere between �2 and �4kT. Setting
npc = �0.84 leads to Dmp(ex)(1) C �6.8kT which, as will be
demonstrated in Section 4.1, reproduces co-non-solvency. Note
that for each choice of npc the parameters opcc and oppc are
determined as in the case of solvent, i.e. they cancel the
dependency of kT on composition. Table 1 lists these para-
meters for npc = �0.84.

Because solvent and cosolvent particles are identical to each
other (except from their interactions with the polymer) we set
ossc = oscc = osss = occc. The single parameter related to
simultaneous interactions of the three different species is
determined via the combination rule opsc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
opssopcc
p

.

Regarding the interactions with the substrate, we set for
solvent and cosolvent particles L = 0. For the interactions between
the monomers and the substrate we employ L = 0.32 and l = 0.6.
With this choice, the adsorption energy per unit area is estimated
(roughly) to Eads=kT ’ �rpðlÞ

Ð
bUðzÞdz ’ �5lk�2. For a typical

Kuhn segment length lk = 1.5 nm, this estimate leads to Eads/kT C
�2.1 nm�2 which is comparable to magnitudes reported for actual
materials.60,71,72

3.5 Limitations of the generic hybrid model

We expect straightaway that the hybrid model introduced in the
previous sections has a number of limitations.

Table 1 Representative set of parameters for non-bonded interactions

Parameters Values Parameters Values

npp �0.291745 osss 0.0135882
nss �0.474503 occc 0.0135882
ncc �0.474503 opps 0.0111569
nps �0.36508 opss 0.0122297
nsc �0.474503 ossc 0.0135882
npc �0.84 oscc 0.0135882
oppp 0.0103696 opcc 0.0197092
oppc 0.0186364 opsc 0.0124173
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While the generic third-order density polynomial in eqn (4)
is sufficient for our qualitative study, it is too simple to
reproduce accurately the thermodynamics of most real systems,
e.g. their equations-of-state. Such limitations have been dis-
cussed, for example, when modelling35 alkane oligomers mixed
with CO2 or water on corrugated substrates.73 Various more
complex free-energy models are available and are a basic
tool for describing the thermodynamics of actual materials.74

Applying density functionals based on these models in hybrid
modelling has significant potential but remains largely unexplored.
For instance, the Sanchez–Lacombe equation-of-state has been
only recently applied in hybrid modelling of homopolymer
melts.75 In the past, third-order density polynomials have been
applied70 to systems forming hydrogen bonds. In this case they
are analogous to Flory–Huggins models with negative Flory–
Huggins parameters. A fundamental restriction of this approach
is that it cannot capture the saturation of hydrogen bonds.76

This problem can be addressed using association models that
introduce hydrogen bonding as an explicit reaction between
particles. MF treatments of association models allow the for-
mulation of free energies of systems with hydrogen bonds.76–78

In this case, the determination of the free-energy part which is
related to the association of the particles presents a difficult
combinatorial problem. This complication is avoided in hybrid
simulations because they operate with ensembles of multiple,
correlated chains. Therefore, it is possible79 to describe associa-
tion introducing reversible bonds between particles, e.g. through
appropriate MC moves, similarly to standard particle-based
simulations of equilibrium polymers.80

The parameters of the model are determined to satisfy MF
equations linking them to thermodynamic observables used
as an input. MF-based parameterisation is straightforward but
does not allow one to completely control the thermodynamic
properties of the hybrid model. The reason is that hybrid
simulations incorporate fluctuations and correlation effects
which MF neglects. Therefore, for a given set of parameters,
the thermodynamic properties in hybrid simulations usually
differ from their MF counterparts. Such deviations will be
reported in Section 4. Therefore, the parameters of our model
are reported in Table 1 with high accuracy only to facilitate
the reproducibility of calculations discussed in Section 3.4.
In practice, to obtain a hybrid model with qualitatively pre-
dictable thermodynamics, parameters (as those presented in
Table 1) can be truncated – the MF-based parameterisation is
anyway approximate. A simple rule of a thumb is to truncate the
parameters such that after back-insertion into MF equations
they reproduce the target quantities, e.g. densities, with an
accuracy 0.1%.

As has been discussed in Section 3.4, making the liquid
more compressible (increasing kT) mitigates artefacts such as
pinning of interfaces to the lattice. While this ansatz is suffi-
cient for our generic qualitative study, we expect that reprodu-
cing actual vapour/liquid equilibria (VLE) of polymer solutions
will require models with smaller kT. To identify the inter-
dependence of compressibility and VLE, let us assume that
the densities of the liquid and vapor phases of a pure solvent

�rs(l) and rsat
s(v), that are at equilibrium with each other at given

temperature, are experimentally known. The coefficients nss

and osss, necessary to reproduce this VLE point with a third-
order density functional, are obtained by solving the set of two
linear equations P(�rs(l)) = P(rsat

s(v)) and m(�rs(l)) = m(rsat
s(v)) (in this

case nss and osss are the unknowns, cf. eqn (8) and (9)).
Substituting these coefficients into eqn (10) delivers, within
the model of a third-order density functional, the relationship
between compressibility and density contrast of liquid and
vapor phases:

bkT�1 ¼
�rsðlÞ
ð1� xÞ2 �5� 2 lnðxÞð1þ 2xÞ þ 4xþ x2

	 

(12)

where x = rsat
s(v)/�rs(l). Based on eqn (12), we illustrate how realistic

VLE data can lead to low kT considering acetone as an example.
For this standard organic solvent, two representative VLE
points obtained81 from atomistic simulations (based on the
OPLS force-field) are: (i) MWs�rs(l) C 778 kg m�3 and MWsr

sat
s(v) C

1.46 kg m�3 at T = 300 K, and (ii) MWs�rs(l) C 657 kg m�3 and
MWsr

sat
s(v) C 18.2 kg m�3 at T = 400 K. MWs C 0.058 kg mol�1

stands for the molecular weight of the acetone (in contrast to
the other parts of our paper, in the example for the acetone the
number densities are expressed in mol m�3 for consistency
with ref. 81). Eqn (12) delivers for these two VLE points kT C 4 �
10�9 and 9 � 10�9 Pa�1, respectively. Liquids with kT B 10�9 can
be modelled82 by combining density functionals with density
distributions defined in continuum space, which avoids a PM
discretisation. Multibody Dissipative Particle Dynamics16,17,83 is
an example of such strategies.

4 Results and discussion
4.1 Bulk solutions

Before modelling co-non-solvency in ternary systems, we verify
that our model reproduces characteristic behaviour of polymer
solutions in single good solvent. We start from the dilute
regime performing canonical MC simulations in cubic boxes
with edge length L, containing ns solvent particles and a single
polymer chain with Np = 661 (equivalent to 132 Kuhn segments).
To model dilute bulk solutions, the total density in the box, r0,
must be sufficiently high to exclude coexisting liquid and vapor
phases. A first choice is to set r0 equal to the liquid density, �rs(l),
used for the MF parameterisation of bHnb. However, as has been
discussed in Section 3.5 the thermodynamics in the particle-based
simulations differs from the approximate MF solution. Therefore
setting r0 = �rs(l) leads to the formation of small vapor ‘‘bubbles’’
motivating us to work with somewhat higher densities, r0 C
22.56. Fig. 1 presents the log–log plot of the polymer structure
factor, S(q), calculated from simulations in the dilute regime. The
intermediate q range follows the scaling S(q) B q�5/3 (blue line), as
expected for polymer chains in good solvent (dilute regime).
At larger q, S(q) B q�1 (red line), manifesting the rod-like behavior
of the chain on length scales comparable to the Kuhn segment.
For these simulations we set L = 23, which is more than three
times larger than the radius of gyration, Rg(0) C 6.5, of the
polymer in the dilute solution.
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We increase gradually the concentration replacing solvent
particles by polymer chains containing an equivalent amount
of monomers. This procedure preserves the total number

density fixed to r0 C 22.56. The main panel of Fig. 2 presents
the average gyration radius Rg as a function of polymer volume
fraction xp (the average monomer number density normalised
by r0). As expected for polymers in good solvent, Rg becomes
smaller as xp increases and converges to the value for the melt
(xp = 1). We compare our results with the scaling law84 Rg/Rg(0)=
(xp/xp*)�f in the inset of Fig. 2. The overlap concentration is
defined as xp* = 3Np/4p(Rg(0))

3r0, and f = (2neff � 1)/(6neff � 2).
The scaling exponent neff = 0.56, obtained by fitting the data for
concentrations 1 o xp/xp* o 10, is not that far (B5% smaller)
from the theoretically expected neff = 0.588. The boundaries
between dilute, semidilute, and concentrated regimes are not
sharp but rather smooth crossovers.85 A plausible explanation
for the observed deviation from neff = 0.588 is that the system in
Fig. 2 is found mostly in a crossover region. In fact neff = 0.56 is
within the range 0.54 r neff r 0.63 reported in recent Brownian
dynamics simulations85 targeting crossover behaviour.

To verify that the hybrid model captures co-non-solvency, we
perform hybrid simulations of ternary solutions in the dilute
regime. The polymer has Np = 661 monomers and the initial
configurations of ternary solutions with different composition
are generated by replacing in the dilute polymer/solvent mix-
tures (cf. beginning of this section) some of the solvent particles
with cosolvent. These configurations serve as an input for
MC simulations. Fig. 3a presents the Rg as a function of xc

for npc = �0.84 and two examples of weaker interactions:
npc = �0.7 and �0.56. For npc = �0.84, the behavior of Rg

manifests the formation of a collapsed globular state at xc C
0.01. The inset in Fig. 3a illustrates the transition more clearly,
focusing on the region 0 r xc r 0.1. The contraction of the
polymer is substantially less pronounced for npc = �0.7 and
becomes insignificant for npc = �0.56. Fig. 3b presents the
probability distribution r(Rg) for the three considered values of
npc at xc C 0.01. For npc = �0.84, r(Rg) is a narrow, strongly
peaked function. In contrast, for npc = �0.7 and �0.56, the
distribution r(Rg) is broad manifesting a significant conforma-
tional freedom of the polymer chain. Note that the smallest Rg

for which r(Rg) 4 0 is located near Rg C 2. This observation can
be rationalised considering the properties of the polymer liquid

Fig. 1 Single-chain structure factor, S(q), for a WLC polymer with Np =
661 monomers in a dilute mixture with solvent. The universal scaling laws
S(q) B q�5/3 and q�1 expected for wavevectors probing (respectively) the
length scales of the self-similar structure of the coil and the Kuhn segment
are shown with blue and red lines.

Fig. 2 Main panel: average radius of gyration Rg of WLC polymers with
Np = 661 monomers in mixtures with solvent as a function of volume
fraction of polymer monomers, xp. Inset: Reduced radius of gyration Rg/R0

g

as function of reduced concentration xp/xp*. Here R0
g is the radius of

gyration in the dilute regime and xp* is the overlap concentration. The fit
with the scaling law Rg/Rg(0) = (xp/xp*)�f (see text for details) is shown with
red dashed line.

Fig. 3 (a) Average radius of gyration, Rg, of a single WLC polymer (Np = 661) in a ternary mixture as function of cosolvent concentration xc. Three
different strengths, npc, of polymer/cosolvent interactions are considered; for all cases the polymer/solvent interaction is fixed to nps = �0.36508.
The region of xc where co-non-solvency occurs, is shown enlarged in the inset. (b) Probability distribution r(Rg) of the instantaneous radius of gyration at
xc C 0.01 for the three cases of polymer/cosolvent interactions presented in (a). (c) Excess chemical potential of polymer monomers, bDmp(ex), at infinite
dilution, obtained as a function of xc from the MF eqn (9). The excess chemical potential at xc = 0 serves as a reference point.
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in our model. With Rg = 2 a simple estimate of the density in the
polymer globule leads to 3Np/4pRg

3 C 20.9 which is close to the
bulk density of the polymer melt �rp(l). Conformations with smaller
Rg become unlikely due to the high concomitant density in the
coil, which is penalised by the finite compressibility.

The mechanism of co-non-solvency in the hybrid model
is the same as in the conventional all-atom45 and generic49,50

models. In all cases, the collapse of the chain is dictated by
preferential binding of the cosolvent with the monomers of the
polymer. Due to this binding, cosolvent particles form bridging
contacts with monomers located far from each other along the
contour of the same chain and initiate collapse. Fig. 4a presents
a configuration of a collapsed chain (gray) together with
cosolvent particles (red) in the regime of co-non-solvency
(to improve visibility the solvent is not shown). To make evident
that cosolvent segregates into the polymer-rich region, Fig. 4b
reproduces the same snapshot showing only cosolvent particles.
We emphasise that the collapse of the chain is not induced by the
change of interactions between the components of the mixture
as a function of composition (equivalent to a composition
dependent Flory–Huggins parameter). As an illustration,
Fig. 3c presents bDmp(ex)(xc) for npc = �0.56, �0.7, and �0.84
(black, red, and green lines). The plots demonstrate50 that
good-solvent conditions apply to the entire composition range;
in fact the affinity of the solvent/cosolvent mixture for the
monomers increases as cosolvent is added.

Fig. 5 demonstrates the normalised average radius of
gyration49,50 %Rg = Rg/Rg(xc = 0) of the chain as a function of xc

for npc = �0.84 and several chain lengths, equivalent to Nk = 10,
33, and 132 Kuhn segments. We observe that the range of
concentrations where chain reopening occurs broadens as the
length of the polymer increases. This observation follows the
behaviour reported in conventional particle-based models of
co-non-solvency49,50 and has been explained through the larger
flexibility of longer polymers to create loops.49,50

Interestingly, in standard particle-based simulations45,49 of
systems showing co-non-solvency, such as poly(N-isopropyl-
acrylamide) (PNIPAM) in aqueous alcohol mixtures, the chain
remains collapsed at a broader range of concentrations, xc,
comparing to the hybrid model. This quantitative difference
may originate from the longer range of interactions in the
latter, defined by the lattice spacing. Generally, it is not easy

to conclude how many cosolvent molecules participate in a
bridging event in the PNIPAM polymer. However, we expect that
in the hybrid model the contribution of a cosolvent molecule to
bridging is more pronounced because it interacts with all
polymer monomers located in the same lattice cell. Therefore
the enthalpic gain from bridging contacts saturates in the
hybrid model at lower xc. The polymer coil then swells again
to increase conformational entropy. We observe in Fig. 3a that
in hybrid simulations the window of concentrations, where
the chain is collapsed, becomes more narrow as the contrast
between solvent and cosolvent is reduced (npc is closer to nps =
�0.36508). This observation matches the trends reported in
standard particle-based simulations50 and experiments.36,37

To verify that our simulations of co-non-solvency are free
from pronounced mesh-related artefacts, we have calculated
the average density of the polymer chain with respect to its
center-of-mass (COM) in the expanded, xc = 0, and collapsed, xc

= 0.01, states. A two-dimensional contour plot of the average
density on a plane intersecting the COM is presented for these
two states in Fig. 6a and b, respectively. The contour plot for the
expanded chain is noisy due to strong fluctuations. In contrast,
as has been already demonstrated in Fig. 3b, the fluctuations
of chain conformations are significantly suppressed in the
collapsed state, leading to a smooth distribution. In both cases

Fig. 4 (a) Configuration of a collapsed WLC (gray) with surrounding
cosolvent particles (red) in the regime of co-non-solvency. To improve
visibility, solvent particles are not shown. (b) The snapshot from (a) is
reproduced showing only cosolvent particles, to make evident the segre-
gation of cosolvent into the polymer-rich region.

Fig. 5 Normalised radius of gyration %Rg = Rg/Rg(xc = 0) as a function of
cosolvent concentration xc for three different chain lengths expressed in
number of Kuhn segments Nk. For clarity, a small region of xc is enlarged in
the inset.

Fig. 6 Contour plots of the average polymer density on a plane inter-
secting the COM of a single WLC in dilute solutions. (a) Expanded state in
binary solutions (equivalent to xc = 0). (b) Collapsed state in ternary
solutions at xc = 0.01 (regime of co-non-solvency).
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the isodensity lines are approximately circular, indicating that
there is no strong influence of the grid on the interfaces.

The structure of the collapsed chain is examined in more
detail in Fig. 7, presenting the average profiles of the densities
of the three components, rp(r) (polymer), rs(r) (solvent), and
rc(r) (cosolvent), as well as the total density of the system, rt(r).
The profiles are calculated as functions of distance r from the
COM of the WLC. Due to the strong preference of cosolvent for
the polymer and increased compressibility of the model, we
observe that in the vicinity of COM the total density rises by
B20%. In agreement with Fig. 4, there is a significant increase
in the density of cosolvent particles inside the collapsed coil.
In simulations of co-non-solvency with standard particle-based
models, the interface between the collapsed polymer and the
surrounding solution is sharp.45,49 However, rp(r) in Fig. 7 has a
rather broad decay, comparable to 2DL. We believe that this
broadening can be explained considering the lattice-based
definition of interactions in the hybrid model. Within this
approach, monomers are free to move within a single lattice
cell. This translation contributes a scale BDL to interface
broadening. In fact, some registration of monomers within a
lattice cell is expected13,61 due to self-interactions, but is not
sufficiently strong to cancel translational freedom.

Observing the same mechanism of co-non-solvency in the
hybrid model and in standard particle-based models supports
strongly its generic nature. Here we employ a hybrid model
based on a third-order functional but we expect that using
quadratic density functionals should be sufficient to observe
co-non-solvency. Hybrid models with quadratic functionals are
equivalent to using short-ranged pairwise potentials.18 In this
scope, our expectation is corroborated by early simulations47

where co-non-solvency was captured using a lattice model of
polymer solutions with simple nearest-neighbor interactions.
The advantage of having a third-order density polynomial is
that the model can be directly transferred to studies of polymer
films exposed to solvent vapour.

4.2 Films of binary and ternary solutions

In this section, we transfer the hybrid model parameterised
to describe co-non-solvency in bulk dilute solutions (nps =
�0.36508 and npc = �0.84) to study films in the concentrated

regime. Unlike bulk solutions, the amount of polymer, solvent,
and cosolvent molecules in the simulation box is now chosen to
allow coexistence of liquid and vapor phases. Rectangular boxes
are employed where the lateral dimensions depend on the
length of the considered polymer chains; for Np = 166 we use
Lx = Ly C 11 while for Np = 661 we set Lx = Ly C 23. These
choices ensure that the lateral dimensions are approximately
two times larger than Rg(0). In all cases, Lz C 105. The initial
configurations have a ‘‘two-slab’’ structure. The first slab is
comprised of 400 stretched WLC (for all considered Np) and
is placed on the hard substrate. The second slab contains
randomly mixed solvent and cosolvent particles and is placed
on top of the polymer layer. The remaining part of the box is
empty. The thickness of the two slabs is consistent with the
density �r(l). During equilibration, these initial configurations
evolve into adsorbed films of polymer solutions at equilibrium
with solvent/cosolvent vapor. A typical equilibrated configuration
is presented in Fig. 8a. For test cases initial configurations with
different geometry were realised, to verify that the results are not
affected by the initial setup.

It is instructive to compare the vapour/liquid equilibria (VLE)
in simple MF treatment of our model and actual simulations. For
polymers with Np = 166, we consider adsorbed films of binary
polymer/solvent and polymer/cosolvent mixtures with different
compositions. Fig. 8b shows a representative density profile
orthogonal to the substrate for a polymer/solvent film. During
simulations we have not observed evaporation of polymer mole-
cules from the film, in agreement with Section 3.4 where the
vapour pressure of the polymer was approximated by zero. Setting
rp(v) C 0, the MF VLE for polymer/solvent mixtures are obtained
solving the set of equations ms(rp(l),rs(l)) = ms(rs(v)) and P(rp(l),rs(l)) =
P(rs(v)). The MF predictions for the total density, rt = rp(l) + rs(l),
and the polymer density, rp(l), in the liquid phase as a function of
rs(v) are presented in Fig. 9a with black solid and dashed lines,
respectively. The MF VLE for polymer/cosolvent mixtures are
calculated in a similar way and are presented in Fig. 9a with red
solid and dashed lines. The densities rt and rp(l) in the bulk of
the films as a function of ra(v) in simulations are shown with
black (polymer/solvent) and red (polymer/cosolvent) symbols.

Fig. 7 Density distributions, ra(r), as a function of distance from the COM
of a collapsed chain in the state of co-non-solvency. Here a = t denotes
the total density of the system, while the densities of polymer, solvent, and
cosolvent are specified by a = p, s, and c.

Fig. 8 (a) Configuration of a film of a binary solution, where polymer
chains and solvent particles are shown with gray and blue colours,
respectively. (b) Main panel: density profiles for a polymer/solvent (P + S)
film containing 65% of polymer. Inset: Density profiles for a polymer/
solvent/cosolvent (P + S + C) film containing 65% of polymer.
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The maximum dilution of the films that can be realised in our
simulations is limited by the saturation density of the vapour
phase, rsat

a(v). Above rsat
a(v) solvent (cosolvent) droplets form, which

cannot be described by the local functional of the current model.
In simulations, the volume fraction of the polymer in the film at
rs(v) C rsat

s(v) is about 65% (for this estimate we use the approx-
imate MF value rsat

a(v) B 0.5). Films with cosolvent can be diluted
to lower concentrations before rsat

c(v) is reached, due to higher
affinity of cosolvent towards polymer. However, for symmetry, we
introduce the 65% limit in these simulations as well.

For similar composition of the liquid phase, i.e. comparable
polymer concentration, the deviation between VLE in MF and
simulations is smaller in polymer/cosolvent than in polymer/
solvent films. In other words, the deviation becomes smaller
the better the solvent is. This observation suggests that the
deviations in the VLE are largely due to the insufficiency of the
MF approximation in describing the thermodynamics of the gas
phase. To support this statement, we present in Fig. 9b the
chemical potential bm(rs(v)) of the solvent in the vapour phase as
a function of rs(v) calculated from MF eqn (9) (line) and grand
canonical MC simulations with the hybrid model (symbols). The
deviations between rs(v) corresponding to the same chemical
potential in MF and simulations increase as the gas phase
becomes more dense. For small rs(v) the two descriptions are
close to each other because the vapour phase is well approximated
by the ideal-gas limit. Fig. 9b explains why the VLE in MF and
simulations match each other better in polymer/cosolvent than in
polymer/solvent films. To achieve low polymer concentrations in
polymer/cosolvent films, small vapour pressures are sufficient.

In this case the vapour in both MF and simulations is close to
an ideal gas. In contrast, the dilution of polymer/solvent films
requires higher vapour pressures, where the ideal-gas limit is not
applicable and MF fails.

Overall, Fig. 9a demonstrates that in polymer/solvent films,
rt depends only weakly on composition. However, in polymer/
cosolvent films (where cosolvent interacts strongly with polymer)
rt increases rapidly by about 14% at small concentrations of
cosolvent in the film (corresponding to low rc(v)). rt decreases
slowly from this maximum value, as the film is diluted further.
Exploratory MF calculations demonstrate that the change of rt with
composition can be reduced for a model with realistic compressi-
bility (data not shown). Of course, performing simulations with
such a model requires more advanced techniques, comparing
to the zero-order PM scheme in our study (cf. Section 3.5).

We consider ternary mixtures with different amounts of
solvent and cosolvent to obtain films with various compositions
and degrees of dilution. The example shown in the inset of
Fig. 8b illustrates that the density profiles of these films are
similar to the case of binary systems. Fig. 10 quantifies the
dimensions of the polymer chains as a function of distance z of
their COM from the substrate, in films of binary and ternary
mixtures containing B65% polymer with Np = 166. Specifically,
Fig. 10 presents the components of the root mean-square
radius of gyration parallel, R8

g(z), and perpendicular, R>
g (z), to

the substrate. Both quantities are normalised to the radius of
gyration of the bulk melt. Although all films contain the same
percentage of polymer, the films containing cosolvent are
thinner. In these films, following Fig. 10, the polymer/vapor
interface is located at z C 30 as opposed to z C 40 in the
polymer/solvent film. This difference stems from the increase
of the density in mixtures with cosolvent, as has been already
discussed in connection with Fig. 9a. Polymers located close to
the substrate and the polymer/vapor interface show an expected
behaviour:64,86 the normalised R>

g (z) is significantly smaller
than unity indicating ‘‘flattening’’ of chain conformations.
In all three mixtures, the components of the radius of gyration
indicate the same weak swelling of polymer chains in the bulk
of the film, deviating from unity by about 5%. This behaviour is
in agreement with the high polymer concentration in the films.
Moreover, for films of ternary mixtures containing B65% polymer

Fig. 9 (a) Comparison of vapour/liquid equilibria in polymer/solvent (black
colour) and polymer/cosolvent (red colour) binary mixtures. MF predictions
for the total density, rt, (solid lines) and the polymer density, rp, (dashed
lines) in the liquid phase are presented as a function of vapour density of
solvent, rs(v), or cosolvent, rc(v). The same quantities obtained from simula-
tions are shown with squares and circles. (b) Chemical potential bm(rs(v)) of
solvent particles in the vapour phase obtained as a function of rs(v) from MF
eqn (9) (line) and grand-canonical MC simulations (symbols).

Fig. 10 Components of the average radius of gyration, parallel, R8
g(z), and

orthogonal, R>
g (z), to the substrate. Polymer/solvent (P + S), polymer/

cosolvent (P + C), and polymer/solvent/cosolvent (P + S + C) films are
considered, containing 65% of polymer.
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(or higher) we observe that the chains remain swollen irrespective of
the fraction of the cosolvent. Because polymer coils overlap strongly,
the majority of enthalpically favourable bridges, created by cosolvent
particles, will be between monomers belonging to different chains.
Therefore, the entropically costly looping of chains is avoided and
they do not collapse in the concentrated regime.

We quantify the structure of the film near the substrate using
standard descriptors87 related to the adsorbed polymer layer. The
later is formed by segments belonging to adsorbed chains; a WLC
is defined as adsorbed, if the distance of at least one monomer
from the surface is smaller than DL. Density profiles of segments
belonging to loops, rloop(z), and tails, rtails(z), of adsorbed WLC are
presented in Fig. 11a and b. The plots consider a few representative
films, for Np = 166 and 661, aiming only to illustrate the significant
effect of composition and chain length on the profiles. The main
result appears in Fig. 12a and b, presenting rloop(%z)/rp and rtrain(%z)/rp

calculated in binary and ternary systems, for both Np, in the entire
range of concentrations and compositions addressed in our simula-
tions. Here rp is the density of polymer monomers in the bulk of the
film and %z = z/Rg(m), where Rg(m) is the average radius of gyration in
the pure melt. This normalisation is motivated by the analytical
theory of Semenov et al.88 predicting that in the concentrated regime
and z c Rg(m), the density profiles of loops and tails are described by
the universal dependencies:

rloopð�zÞ
rp

¼
exp ��z2
� �ffiffiffi
p
p

�z3
rtailð�zÞ
rp

¼ 16ffiffiffi
p
p

�z3
exp ��z2

4

� �
(13)

Indeed the collective plots in Fig. 12a and b reproduce a master-
curve behaviour. The tail of the master curves can be described by
eqn (13) (dashed lines) without any fitting parameter – we substitute
for Rg(m) the gyration radius which was obtained from simulations
of melts.

Fig. 11 (a) Density profiles, rloop(z), of segments belonging to loops of
adsorbed chains for a few representative systems as indicated by the
legends. The percentage indicated in the legends, refers to the polymer
volume fraction in the film. (b) Same as (a) but for density profiles, rtail(z), of
segments belonging to tails.

Fig. 12 (a) Universal plot of renormalised density profiles, rloop(z)/rp, of
segments belonging to loops of adsorbed chains as a function of rescaled
distance, %z = z/Rg(m) from the substrate. rp is the density of polymer
monomers in the bulk of the film and Rg(m) is the average radius of gyration
in the pure WLC melt. The plot contains data representative of the chain
lengths and compositions considered in our simulations. The percentage
in the legends indicates the polymer volume fraction in the film. The
analytical theoretical prediction from eqn (13) is shown with dashed line.
(b) Same as (a) but for the case of tails.

Fig. 13 Probability distributions for the length of (a) loops, Ploop(nk), (b) tails,
Ptails(nk), and (c) trains, Ptrains(nk), calculated in binary and ternary solutions
containing WLC with Np = 166. The lengths are expressed in terms of
equivalent number of Kuhn segments nk. The analytical theoretical predic-
tions for large nk from eqn (14), are shown with dashed lines.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
O

ct
ob

er
 2

01
8.

 D
ow

nl
oa

de
d 

on
 7

/1
3/

20
25

 9
:0

5:
06

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sm01358f


This journal is©The Royal Society of Chemistry 2018 Soft Matter, 2018, 14, 9282--9295 | 9293

Fig. 13a–c present the probability distributions for the length of
the loops, Ploop(nk), tails, Ptails(nk), and trains, Ptrains(nk), calculated in
binary and ternary systems with Np = 166. The lengths are expressed
in terms of the equivalent number of Kuhn segments nk. We observe
that in the concentrated regime the dilution has almost no effect on
the statistics of conformations of adsorbed polymers. Motivated by
Fig. 10, we compare the behaviour of probability distributions for
loops and tails for large nk with laws known from adsorbed
homopolymer melts:89,90

Ploop nkð Þ � C1
1

nk3=2
� 1

Nknk1=2

� �
Ptail �

C2

nk1=2
(14)

The pre-factors C1,2 are considered as fitting parameters and
we note that the term BNk

�1nk
�1/2 in Ploop(nk) takes into

account the finite length of the chains. The theoretical predic-
tions are shown in Fig. 13a and b by dashed lines and are found
in good agreement with the simulation data.

5 Conclusions and outlook

We have demonstrated that a hybrid model, based on a simple
density functional and a rudimentary (zero-order13) PM scheme can
reproduce the intriguing phenomenon of co-non-solvency. The
local structure of the liquid in the hybrid model and in standard
microscopic models – where co-non-solvency has been observed
so far – differ significantly. The differences stem from drastic coarse-
graining, the PM calculation of non-bonded interactions, and addi-
tional simplifications, such as higher compressibility. Nevertheless,
the hybrid model reproduces the basic mechanism of co-non-
solvency proposed45,49,50 in standard simulations. We observe that
the collapse of a polymer chain in a solvent/cosolvent mixture, at
small concentrations of cosolvent, is induced by preferential binding
of cosolvent with polymer monomers. The binding promotes
chain loops to maximise favourable contacts between polymer and
cosolvent. Observing the same mechanism of co-non-solvency in the
hybrid model and in standard particle-based descriptions supports
strongly its universality. The contrast in the affinity of solvent and
cosolvent towards the polymer required for co-non-solvency in the
hybrid model, is comparable to conventional simulations. In hybrid
simulations the chain remains in a collapsed state at a smaller range
of compositions (than in conventional simulations). We also observe
that, for the considered chain lengths, the interface between the
collapsed polymer and the surrounding solvent is broader. We
argue that the lattice-based definition of interactions contributes
substantially to both effects.

The ternary solutions, showing co-non-solvency in the dilute
regime, were also considered at high concentrations. Benefiting
from the fact that the polynomial functional underlying the hybrid
model captures liquid–vapor coexistence,27,35 the concentrated solu-
tions were studied as films adsorbed on solid substrates. This
geometry is relevant for coating applications. For polymer concentra-
tions which are at least an order of magnitude higher than the
overlap concentration, x*, we do not observe co-non-solvency. Due to
substantial overlap of polymer chains, cosolvent molecules create
enthalpically favourable bridges mainly between intermolecular
monomers. Therefore, the collapse of individual polymer

molecules is avoided. We quantified the structure of the
adsorbed layer through standard descriptors.87 The properties
of loops and tails in our ternary solutions match theoretical
predictions obtained for concentrated binary solutions88 and
melts.89,90

Overall, our study illustrates the potential of simple hybrid
models in studying complex phenomena in multicomponent poly-
mer solutions on qualitative level. However, the development of
hybrid models reproducing quantitatively thermodynamic data of
actual polymer solutions requires more complex approaches. For
example, simple MF estimates of the thermodynamic behaviour of
the hybrid model provide approximate guidelines for their parame-
terisation. In general, however, the thermodynamics of the hybrid
model in particle-based simulations will be quantitatively different
from the MF approximation. To reproduce quantitatively target
thermodynamic properties, functionals that are based on more
complex free-energy models74,91 (rather than third-order density
polynomials) and methods for systematic refinement of para-
meters estimated from MF are required.
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Appendix

We determine the parameters opps and opss for polymer–solvent
(or oppc and opcc for polymer–cosolvent) such that the depen-
dence of compressibility on composition is significantly
reduced. The procedure is described here for polymer–solvent
interactions (it is the same for polymer–cosolvent mixtures). For
the binary polymer–solvent mixture, eqn (10) is reduced to:

bkT�1 ¼
rp
Np
þ rs þ npprp2 þ nssrs2 þ 2npsrprs þ 2oppprp

3

þ 2osssrs
3 þ 6oppsrp

2rs þ 6opssrprs
2

(15)

Here we assume that the total density r0 = rp + rs of the mixture
remains constant, i.e. does not depend on
composition. Defining the volume fraction of polymer by xp,
we substitute rp = r0xp and rs = r0(1� xp) into eqn (15) to obtain:

bkT�1 ¼ 2opppr0
3 � 6oppsr0

3 þ 6opssr0
3 � 2osssr0

3
� �

xp
3

þ 6oppsr0
3 � 12opssr0

3 þ 6osssr0
3

�
þ nppr02 � 2npsr0

2 þ nssr02
�
xp

2

þ �6osssr0
3 þ 6opssr0

3 � 2nssr0
2

�
þ 2npsr0

2 � r0 þ
r0
Np

�
xp

þ 2opssr0
3 þ nssr02 þ r0

(16)

The last three terms on the RH side of eqn (16) express the
bkT

�1 of pure solvent liquid. This quantity equals the bkT
�1 of

the mixture, i.e. the LH side, when the terms which are
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proportional to powers of xp are zero. Therefore to remove the
dependency of the compressibility on composition, opps and
opss must satisfy the conditions: 2opppr0

3 � 6oppsr0
3 �

6opssr0
3 � 2osssr0

3 = 0 (s1), 6oppsr0
3 � 12opssr0

3 + 6osssr0
3 +

nppr0
2 � 2npsr0

2 + nssr0
2 = 0 (s2), and �6osssr0

3 þ 6opssr0
3 �

2nssr02 þ 2npsr02 � r0 þ
r0
Np
¼ 0 (s3). Only two of these condi-

tions are linearly independent because s1 + s2 + s3 = C, where

C ¼ 2opppr0
3 þ nppr02 þ

r0
Np

� �
� 2osssr0

3 þ nssr02 þ r0
� �

.

Inspecting the expression for C we observe that this constant is
actually the difference between bkT

�1 for the solvent and the
polymer. These are chosen to be the same in our model,
therefore C = 0. Solving s1 and s2 delivers opps and opss.
We clarify that cancelling the dependency of bkT

�1 on xp

through this approach is only approximate, because, in fact,
the total density r0 of the mixture is affected by composition.
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