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Diffusiophoretically induced interactions between
chemically active and inert particlesy

Shang Yik Reigh, (2 *? Prabha Chuphal,*° Snigdha Thakur*® and
Raymond Kapral (2 *©

In the presence of a chemically active particle, a nearby chemically inert particle can respond to a
concentration gradient and move by diffusiophoresis. The nature of the motion is studied for two cases:
first, a fixed reactive sphere and a moving inert sphere, and second, freely moving reactive and inert
spheres. The continuum reaction—diffusion and Stokes equations are solved analytically for these
systems and microscopic simulations of the dynamics are carried out. Although the relative velocities of
the spheres are very similar in the two systems, the local and global structures of streamlines and the
flow velocity fields are found to be quite different. For freely moving spheres, when the two spheres
approach each other the flow generated by the inert sphere through diffusiophoresis drags the reactive
sphere towards it. This leads to a self-assembled dimer motor that is able to propel itself in solution. The
fluid flow field at the moment of dimer formation changes direction. The ratio of sphere sizes in the
dimer influences the characteristics of the flow fields, and this feature suggests that active self-assembly
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1 Introduction

Both living organisms and inanimate objects can respond to
the presence of chemical gradients by moving either towards or
away from high concentrations of chemical species. In the
biological realm organisms are observed to orient or move in
response to chemical agents. For instance, E. coli bacteria are
found in glucose-rich regions indicating that they search for
food and tend to migrate toward it,"* sperm cells are known to
follow concentration gradients of chemoattractants secreted
by the oocyte for fertilization,” and there are many other
examples."* The ability to sense chemical gradients is not
restricted to living organisms. It is well known that colloidal
particles can respond to chemical gradients and move to higher
or lower concentration regions through diffusiophoretic
mechanisms.”>”® In this and other phoretic mechanisms, the
gradient of some field across the colloidal particle gives rise to
a body force, which, because of momentum conservation,
induces fluid flow in the surrounding medium that causes
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of spherical colloidal particles may be manipulated by sphere-size changes in such reactive systems.

the particle to move. The motions of motors propelled by self-
phoretic mechanisms® > have also been observed to be affected by
the presence of chemical gradients; for example, experiments have
shown that bimetallic-rod and Janus motors preferentially move
towards higher hydrogen peroxide concentrations.'*** As well,
simulations of sphere-dimer motors in a microfluidic channel®
and in bulk solution'® show that these motors respond to
concentration gradients.

In this article, we investigate the dynamics of a pair of
small colloidal particles, one of which is chemically active
and converts fuel to product, while the other is nonreactive.
Further, we suppose that the interactions of the fuel and product
molecules with the colloidal particles are the same for the reactive
particle but different for the nonreactive particle, so that the
nonreactive particle can respond to the chemical gradient
produced by the catalytic particle as a result of diffusiophoresis.
We consider interactions such that diffusiophoresis causes
motion towards high product concentrations, and situations
where the reactive particle is either fixed or free to move.

These specific choices are only a few among several other
possibilities. For instance, the interaction potentials may be
chosen so that either or both colloidal particles may be diffusio-
phoretically active with different responses to gradients.'” Also,
either particle may be fixed or free to move, or their inter-
nuclear separation can be fixed as in a sphere-dimer motor.'82°
All of these situations are potentially interesting to study.
A study, based on a continuum description of the fluid, of
the dynamics of a pair of colloidal particles each of which could
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be Janus particles or active or inert is related to the work
presented here.>** In order to investigate the dynamical
properties of the spheres we use deterministic continuum
theory as well as coarse-grain microscopic simulations. The
particle-based simulations include fluctuations relevant for
experimental studies of small active colloidal particles in
solution,> and automatically account for chemical-gradient,
hydrodynamic and direct intermolecular interactions between
the spheres without imposing specific boundary conditions.>*

The diffusiophoretic mechanism for the motion of a
colloidal particle in an external concentration gradient is well
known.>"® By choosing the fixed reactive particle in our study to
be diffusiophoretically inactive, it serves simply as reactive source
that produces concentration gradients in the system.*™® The
nonreactive colloidal particle responds to this chemical gradient,
which is analogous to an external chemical gradient, but presents
some additional features as a result of pinning and reaction.
We may contrast this case with that when the reactive sphere is
free to move. The reactive particle again only generates concen-
tration gradients in the system but when the two spheres closely
approach we show that they form a self-assembled sphere-dimer
motor that moves autonomously in solution, and we find that
substantial changes in the flow fields occur at the moment of the
dimer formation.

On a basic level, investigations of the mechanisms that give
rise to the concentration and fluid flow fields that are respon-
sible for the dynamics provide insight into the relative roles
of chemical and hydrodynamic interactions, a topic that is
important for studies of the collective dynamics of active
particles.”*” In this connection, recent experimental and
computational studies have considered mixtures of chemically
active and inactive spherical particles that exhibit interesting
self-assembly and emergent dynamics.?*>° As in the present
study, the dynamics of such mixtures will depend on both
hydrodynamic and chemical, temperature, or electric fields
that exist in the system.>"?*3173%

In Section 2 we present continuum solutions for the reaction-
diffusion and Stokes equations for this problem, and Section 3
describes the particle-based simulation method. Sections 4 and
5 discuss the physical phenomena that are observed for fixed
and freely moving catalytic spheres, respectively. The conclusions
of the investigation are given in Section 6.

2 Continuum theory

We consider two spheres, a catalytically active sphere S; with
radius R; and a catalytically inactive sphere S, with radius R,.
These spheres, shown in Fig. 1, are taken to be separated by a
distance L in three dimensional space. Two solute species A
(reactant) and B (product) take part in the irreversible chemical
reaction A + S; — B + S; on the catalytic sphere. Since we
consider the case where catalytic sphere has no phoretic
mobility, the interaction potentials of these species with
the catalytic sphere are assumed to be the same, U; o = Uy 3,
while they are different for the noncatalytic sphere, U, o # U, 5,
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Fig. 1 Two spheres, one catalytically active (S;) and the other catalytically
inactive (S,), are shown. The S; sphere, as a source of concentration
gradients, converts species A (reactant) to B (product) in the reaction,
A+ S; - B + S5, which generates inhomogeneous concentration fields
around the S, sphere. The S, sphere moves by the diffusiophoretic
mechanisms due to the asymmetry of the concentration field in its vicinity.
The numbers in the color bar indicate the normalized concentration of
products (B). (The figure is constructed from simulation data described in
the text. The sphere separation distance is L/o = 3.5.)

where U;; is the interaction potential between the sphere 7 and
the solute species I.

In this circumstance the concentration gradient in the
system arising from chemical activity on S; will induce a body
force on the noncatalytic sphere S,. The diffusiophoretic
mechanism will then operate and lead to a mean velocity
component along the line of centers between the two spheres
due to the axial symmetry of the system. In the continuum
description our interest is in the value of the mean velocity that
results from this mechanism, as well as the forms of the
concentration and fluid velocity fields that accompany it.

The two-sphere system can be solved in a bispherical
coordinate system.>®*®° The bispherical coordinates are
0,1, ¢),where0 < 0 <m,—o0 <n < w,and 0 < ¢ < 21
as shown in Fig. 2. In Cartesian coordinates (x, y, z), the relations,
x = ¢sin0cos ¢/(coshn — cos0), y = &sinOsin ¢/(coshn — cos 0)
and z = ¢ sinh#y/(coshn — cos 0) are satisfied with a scale factor ¢
(>0)."° The surfaces of the S; and S, spheres are represented by
the parameters # = 17;(>0) and 5 = n,(<0), respectively. Inversely,
from the values of the radii of the S; and S, spheres, R; and R,,
and any separation distance, L, which is greater than the sum of
their radii, the bispherical coordinate parameters, &, 7, and 7,

are found by ¢= \/(L2 —R2 - R22)2 — 4R12R22/2L, n =

ln{é/Rl + 1+(§/R1)2}, and n2:—ln{é/R2+\/l+(£/R2)2}.

2.1 Concentration field

We assume the Péclet number is small so that fluid advection may
be neglected and the steady-state concentration field of species A,
Ca, can be found from the solution of the diffusion equation,

VZCA = 0, (1)

This journal is © The Royal Society of Chemistry 2018
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Fig. 2 Bispherical (0, n, ¢) and Cartesian (x, y, z) coordinates for two
spheres. The catalytic sphere S; (red) with radius R; and noncatalytic
sphere S, (blue) with radius R,, separated by a distance L, can be specified
by variables n = 11 and n = 1, respectively. The system is axisymmetric in
the angle ¢ about the z axis that lies along the line connecting the centers
of the two spheres. The hat notation is used to indicate unit vectors.

subject to the radiation and reflecting boundary conditions,
U)y=n, = koca(n = 11),
U'ﬁ)w:riz =0, 2)

on the S; and S, spheres, respectively. Here J = —DVc, is the
diffusion flux of species A, D is the common diffusion constant
of A and B, and k, = ko/(4nR,>), where k, is the intrinsic reaction
rate coefficient. There are only A particles infinitely far from the
spheres so that cy(r > o0) = ¢,.

The total concentration ¢, = ¢, + cg is conserved in the
reaction-diffusion system with the boundary conditions on the
surfaces of the spheres and infinity, and we can write ¢, = ¢, — cg
locally; thus, we can eliminate c, and consider only cg.
In bispherical coordinates, the concentration of B is now given by

cg(0,1) = —/coshn — u i {Ane(’”%)” + Bye (2 Pu(),
n=0
3)

where P,(u) is a Legendre function and p = cosf. The 4, and B,
coefficients may obtained by following the same procedure used to
obtain the solution for sphere dimers.*

2.2 Particle velocity, streamlines and flow field

We examine two situations, the first where the catalytic sphere
is fixed in space by an external force and the second where it
free to move and the system is force-free. Different velocity
fields arise in these cases and give rise to dynamics corres-
ponding to physically different phenomena.

2.2.1 Fixed catalytic sphere. We suppose that the catalytic
sphere S, is fixed in space by external force and the noncatalytic
sphere S, is able to move in the solution. The concentration
field around the S; is asymmetric as given by eqn (3); hence,

This journal is © The Royal Society of Chemistry 2018
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a flow is generated at the surface of the S, sphere by the
diffusiophoretic mechanism.”® The slip velocity is the fluid
velocity at the outer edge of a boundary layer beyond which the
interaction potentials vanish, and is given in the body-fixed
frame of the sphere by

Ve = k(I — AR)-Veg, (4)

where I is the unit dyadic, i the surface normal vector,

o T J , [e—ww)/(km _ e—Uz‘A<r>/<ksr>}dr, 5)
- Jo

is the diffusiophoretic factor, with i the shear viscosity, kg the
Boltzmann constant, and T the temperature.®**

The Reynolds number is assumed to be small so that viscous
forces dominate inertial forces and the fluid flow field outside
of the boundary layer is found by solving the Stokes equation
with the incompressibility condition,

Vp =iV, V=0, (6)
subject to the boundary conditions in the laboratory frame of
reference,

Vyy, = 05 Wy, = (V4 V)=, )

where p is the pressure, v the fluid velocity field, and V the
velocity of the noncatalytic sphere.

Introducing the stream function , which is related to the
flow velocity by v = ¢/p x Vi), where p = & sin 0/(cosh y — 1), one
may replace the Stokes equation with the incompressibility
condition in terms of stream functions by***°

E'()) = 0, 8

where E* = E*(E*) and E” = (cosh y — p)/&*[0/dn{(cosh n — p)d/dn} +
(1 — p*)0/ou{(coshn — w)d/du}]. This equation has an exact
solution given by*®

b= (coshy — )3 S Waln) Val), )

n=1

where W,(i) = a, cosh(n — )i + b, sinh(n — Y + ¢, cosh(n + )y +
dysinh(n + 3)p and V,(1) = Py_1(1t) — Puea(1). The unknown
coefficients a,, b,, c¢,, and d, in eqn (9) are determined by
boundary conditions at the outer edges of the boundary layers
around the S; and S, spheres, ie. eqn (7). In the laboratory
frame where the motor moves with velocity V, these boundary
conditions are given in terms of the stream function by

1
l//|r’:r]1 = 0’ <l// +§p2 V) - = 0!
_ (10)
0 0 1 0
o =0 )| el
Ul n=m n n=mn; n=n
Soft Matter, 2018, 14, 6043-6057 | 6045
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By writing y = Z W.(n)Va(p) in eqn (9), we can replace the
n=1

boundary conditions, eqn (10) in terms of y by

oy
Ky =0 51 =0,
1=n an n=n
o ari-@)
Xl”I:ﬂZi _m 7]:’72,
e S
o _ &¥(1—2)sinhy n Ae\"2)" (11
on n=n, 4(coshn — p)3/2 =M, - ; n "
)
ey [ L=
dpP,
+ (coshn — p) (1 — p?) d,u}

n=m

Here, 1//coshy — u can be expressed in a series of Legendre
function P,, (1 — u®)P, and uV, are rewritten by Gegenbauer
functions V,_; and V.4, and (1 — p*)dP,/du is rewritten by
V,.2%%%*! Then, we may expand the right sides of eqn (11) for
1 =1, in a series of V,, as

Z Z’i n+1) e(”%)’“ 3 e("%)’“

Ly=n, = f 2n+1 | 2n—1 2n+3 "

8X 2 V > n(n + 1) |: (n—l) M <H+§)V/2 (12)
e - Vi
o, 2\@; el p) e\"t2

+ ﬁxi D,V,.

n=1

Since both sides of eqn (12) are expanded in a series of
Gegenbauer function V,, we can determine the unknown
coefficients of W,(y) in eqn (9) from the following equations:

oo a2
oo ()

oo} (-2
oo (-3
{3l D @ elesde),

oo (D) o )
sy s (D Lo (4 }] <o,
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(2n—1) {an sinh{ <n - %) 172} + b, COSh{ (” - %) ’72}}
+ (2n+3) {cn sinh{ (n + %) 112} +d, cosh{ (n + %) nzH

—@n—1)(2n+ 3)yn{e("%)”z - e(”%)”z } + 28Kk,
(13)

where y, = f,V and f, is given in Table 1 in the Appendix. The
solution of the above equations for the unknown coefficients
Qny by, Cyy dy, is expressed by

A,X=7y,Y! (14)

) e, Z,
where X {@pybpyCydy), YO Y2y vio YL, and
Z = {zM,22),23) 2}, The elements of the vectors are given
in Table 1 in the Appendix. The solution for two inactive
spheres can be obtained easily by taking x = 0, which gives
X = 7,Y9/4,. In this case, one colloidal sphere (S,) with
constant velocity V moves to the other sphere (S,) fixed in space.

The forces (Fy,F,) on the individual spheres (S;,S,) are given
by integrating the stress on the surface of the boundary layer,
F; = J'SiH,-,z -ndS; (i = 1, 2), where I, , = Z-I1; and I is the stress
tensor. The system is symmetric around the azimuthal angle ¢
and only the force in the z-direction needs to be considered.
The analytic expressions for the force exerted on the spheres by
the fluid are given in Stimson and Jeffery*®

2V/2m 1 &
F = f”“Z(z + 1) (an + by + cu + dy),
(15)
Fy = Ng’”‘z (2n+ 1)(an — by + cn — dy).

The velocity can be found from these force expressions.
Since no external force is applied to the S, sphere, although
the S; sphere is fixed in space by an external force, the total
force on the S, sphere at the outer edge of the boundary layer is
zero, F, = 0. Noting that y, = f,V, one can find the following
expression for velocity of the noncatalytic sphere,

NgES

(2n +1)0,27/4,

- Kg g (16)

(2n + 1)ﬁ1F1(1+)/Aﬂ

Ngks

Also, the force F; exerted on the fixed catalytic sphere by the
fluid found here is used for the plots in Fig. 10.

2.2.2 Freely moving catalytic sphere. We now suppose that
both spheres are free to move and construct the solutions for
this force-free case. Letting the velocities of the S; and S,
spheres be WV and V¥, respectively, one may replace the
boundary conditions in eqn (7) by

= (V(l))n:m’ Vy=n, = (V(Z) + vs)n:nz' (17)

v’7:’71

This journal is © The Royal Society of Chemistry 2018
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Then the boundary conditions for the stream function are

P
(v+3°)

9 L2y
8n(l//+2p v

=0,

n=n;

n=n;

where ©®, =0, @, =1,and i = 1, 2.
In this case, the boundary conditions for streamlines in

eqn (18) are rewritten in terms of y = Z W,(n)V,(u) by

n=1

~ o aro(i- )
Ky, = 2(coshyy — p)1/2

’

n=n;

o
on

n=n;

_EVW(1 - p?) sinhy
" 4(coshn — p)3/2

RO

n=0

n=n;

+ Bne*(”%)”} {,m+ (coshy — u)(1 — 1)

dp,
2

du

As discussed previously, we may expand the right sides of
eqn (19) in a series of Gegenbauer function V, as

) B ey & n(n+1) e¥(nf%)l7[ e¥(n+%)m
Lo, = =5 ; M+l | 2n—1  2nt3 | ™
o _ SRS n(n+1) ¥(nfl)ﬂ,- ¥(n+§)'1i
%nzn,_izﬁgznﬂ {e A L

+ (éK i ¢n Vr1> @iy
n=1

(20)

where the upper and lower signs are taken for i = 1 and 2,
respectively.

Since both sides of eqn (20) are expanded in a series of V,,,
we can determine the unknown coefficients of W, (i) in eqn (9)
from the following equations:

1 . 1
ay cosh{ (n —E)n,} + b, smh{ ('l - 5)771‘}
3 . 3
+ ¢y cosh{ (n +§> 11,} +d, smh{ (” +i>ni}

= 0 {(211 +3)et(2)m (2 = 1)e¥(”+%)’~},

This journal is © The Royal Society of Chemistry 2018
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Paper

+ 26K®,0;,
(21)

where y{) = £, and the upper and lower signs correspond to
i =1 and 2, respectively.

The solution of the above equations for the unknown
coefficients a,, b,, c,, d, is given by

1
3 (22)

where X = {ay,bpCnd,t, YO = {FH ¥y y7h, v =
Y2 Y0, Y0 v®) and z = {z0,22,20,2"}. The elements of the
vectors are given in Table 1 in the Appendix. Applying the force-
free conditions on both the spheres, F; = F, = 0 in eqn 15,
one can find the solution for the velocities of the S; and S,
spheres as

AnX = V,(/Il) Y(O) + VSIZ) Y(e) - éK(p”Z,

y — _ ,
A ) o) — (f0))
(23)
o _ SO B — g g(ﬂ’
A D) A ) — (A 0)
where
SO =37 @n 4 1)f I /A,,,
n=1
' (24)

1 (o]
#E) — ()
B = Kzé E 2n+1)o,=, /A,,.

n=1

The solutions for two inactive spheres moving with constant
velocities V™ and V) along the axisymmetric direction can be
obtained easily by setting « = 0, which gives X = (;\)¥ + y2¥9)/4,,.
Also, the solutions for the sphere-dimer can be obtained by setting
W = ) = v, which gives 4,X = 7,Y — 1éx®,Z, where Y = Y + Y
and y, = ygll) = ygf). This expression is consistent with the formula
given earlier.>**>

3 Microscopic dynamics

The analytical results for continuum theory are exact given
the formulation of the problem on which they are based.
In particular, they rest on the deterministic continuum descrip-
tion of the fluid and solute concentration as described by the
Stokes and diffusion equations, supplemented with boundary
conditions on the fluid velocity and concentration fields. The
former boundary condition accounts for the fluid dynamics
and the latter boundary condition describes chemical reactions

Soft Matter, 2018, 14, 6043-6057 | 6047
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on the sphere. The fluid viscosity, diffusion constant and reaction
rates of chemical species are specified as input parameters to
solve the equations. The Reynolds and Péclet numbers are
assumed to be small.***°37-*8 This is an appropriate description
for a large macroscopic particle. However, in many experiments,
the active particles have micrometer or nanometer dimensions
and for such systems thermal fluctuations should be taken
into account.>*?>27293% 1n addition, as one moves to small
nanometer™ or even Angstrom'> scales the assumptions of
continuum dynamics may no longer apply.

The coarse-grain particle-based simulations do not make
such assumptions. The input parameters are the inter-
molecular potentials and multiparticle collision parameters
for the solvent.>* The resulting dynamics then yields all other
properties such as the transport coefficients of the system,
and other dimensionless numbers that characterize the
system. One can show that on long distance and times scales
the continuum hydrodynamic and diffusion equations are
recovered,*® but the dynamics is not restricted to this limit.
Consequently, it is of interest to examine the extent to which
the continuum model can capture the active dynamics of
these small particles.?®**

The coarse-grain microscopic dynamics we employ com-
bines molecular dynamics (MD) with multiparticle collision
(MPC) dynamics.***> More specifically, the fluid is composed
of N point particles of mass m with positions r; and velocities
v;, where i = 1,...,N;. There are no explicit intermolecular
potentials among these fluid particles and their interactions
are accounted for by multiparticle collisions. The dynamics
consists of two alternating steps: streaming and collision.
In the streaming steps of duration #, all particles in the system
move by Newton’s equations of motion with forces deter-
mined by the sphere-sphere and sphere-solvent intermolecular
potentials. At each collision time the solvent particles are
sorted into cubic cells of side length a, which is larger than
the mean free path, and their relative velocities are rotated
around a randomly oriented axis by a fixed angle « with respect to
the center-of-mass velocities of each cell. The velocity of particle i
after collision is given by vt + h) = vem(t) + Z(0)(V{E) — Vem(t)),

Ne¢
where Z(o) is the rotation matrix, vem = Y v; / N is the center-of-
=1

mass velocity of the particles in the cell to which the particle i
belongs, and N, is the number of particles in that cell. A random
shift of the collision lattice is applied at every collision step to
ensure Galilean invariance.”® The dynamics locally conserves
mass, momentum and energy.>!

The spheres interact with the fluid particles through repul-
sive Lennard-Jones (L]) potentials, U = 4¢[(a/r)"* — (a/r)°] + ¢ for
r < 2% and U = 0 for r > 2"°¢ with energy ¢ and distance o
parameters. In addition, repulsive L] potentials are employed to
take into account excluded volume interactions between the
two spheres with ¢4 denoting the value of ¢ in this case. In order
to make only the noncatalytic sphere hydrodynamically active,
we choose the interaction energies of the A and B molecules
with the S; catalytic sphere to be the same (¢4 = €5 = ¢) and those
with the S, noncatalytic sphere to be different (g < &a = ¢).

6048 | Soft Matter, 2018, 14, 6043-6057
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Setting ¢z < &5, so that the A particles are more strongly
repelled from the S, sphere than the B particles, causes it to
move towards the S; sphere; hence B plays the role of chemo-
attractant. An irreversible chemical reaction A — B takes place
on the S; sphere with intrinsic reaction rate k, whenever A
encounters S;. Collisions of A or B particles with the S, sphere
do not lead to reaction. To maintain the system in a steady
state, the B particles are converted to A at a distance dj, (= Ly,/2)
far from the spheres.

All quantities are reported in dimensionless units where
length, energy, mass and time are measured in units of the
MPC cell length a = 0/2, ¢, the solvent mass m, and a\/m/e,
respectively. The cubic simulation box with linear dimension
Ly, = 50 and periodic boundary conditions in all dimensions is
divided into L,*> = 50° cubic cells. Multiparticle collisions are
carried out in each cell by performing velocity rotations by an
angle « = 120° about a randomly chosen axis every collision
time /2 = 0.1. The average solvent number density is ¢, = 10 and
the temperature is kg7 = 1. The MD time step is At = 0.01.
The energy parameters for the S, sphere-fluid repulsive LJ
potentials are ¢4 = 1.0 and ¢z = 0.1 for A and B, respectively,
while ¢, = eg = 1.0 for the S; sphere. The size parameters are
o =2 and o, = 4 to give effective sphere radii of R, = R, = 2"°q.
The sphere mass is taken to be M = 4na>c,/3 corresponding to
neutral buoyancy. The intrinsic reaction rate constant for the
A +S; —» B + S; reaction can be estimated from simple
collision theory so that ko ~ /kgT/2nm ~ 0.4. The transport
properties of the fluid depend on A, o, and N.. The fluid
viscosity is it = mN.v = 7.9, where v is the kinematic viscosity,
and the common A and B diffusion constant is D = 0.0611. The
Schmidt number is S. = v/D = 13 > 1, which ensures that
momentum transport dominates over mass transport, the
Reynolds number Re = ¢,Va/ii < 0.1, implying that viscosity
is dominant over inertia, and the Péclet number Pe = Va/D < 1,
diffusion being dominant over fluid advection.

The parameter values given above are used as input to
obtain the analytic solutions in the continuum theory. For
example, the factor « in eqn (5) is obtained from the repulsive
cut-off L] potentials with the energy parameters ¢4 and ¢g
given in simulations, along with the viscosity from the micro-
scopic model. Using the analytical continuum solutions and
simulations of the microscopic equations of motion, we can
discuss the physics underlying dynamics of these two-sphere
systems. Since the phenomena depend on whether the catalytic
sphere is fixed or free to move, we discuss these two cases
separately.

4 Dynamics with a fixed catalytic
sphere

The process by which a noncatalytic sphere responds to the
chemical gradient produced by a fixed catalytic sphere and is
captured by it has been studied earlier.*”*® Here we reexamine
this process by making use of analytical solutions and exten-
sive simulations of the microscopic model. The dynamical

This journal is © The Royal Society of Chemistry 2018
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Fig. 3 The velocity V of the noncatalytic S, sphere as a function of the
separation L between the S, and S; catalytic spheres. The black solid line is
the exact solution calculated from continuum hydrodynamic theory in
eqgn (16) and the black dashed line is the approximate velocity V, from
eqn (27) that is valid for large L. The red circles with error bars are the
results of microscopic simulations. Averages were obtained from 80
realizations of the dynamics.

processes that enter this seemingly simple process involve
effects that govern the velocity of the noncatalytic sphere and
lead to its eventual capture. At large radial distances between
the spheres the concentration of product B in the vicinity of S,
is low and so is its velocity. As the distance decreases the
concentration of B increases leading to an increased velocity
but as the spheres approach closely more complex interactions
lead to the capture event. We are able to probe the details of
the mechanism responsible for the capture process through
an analysis of the concentration and fluid flow fields that
accompany the dynamics.

The velocity of the S, sphere, V, is plotted in Fig. 3 as a
function of the distance L separating the centers of the two
spheres. The figure shows the expected increase in velocity as
the S, sphere approaches the S; sphere until, at a short
distance, it begins to decrease as the capture event takes
place. The figure compares the simulation results with the
exact analytical continuum theory result in eqn (16). The
results are also compared with an approximate theory where
the two spheres are assumed to be separated by a large
distance. In this case, the concentration field may be approxi-
mated by calculating it in the absence of the S, sphere*””*® as
follows. Taking the origin of a spherical polar coordinate
(r1,01,¢1) at the center of the S; sphere in Fig. 2, the B species
concentration field may be obtained from the solution of the
diffusion eqn (1) subject to the radiation boundary condition
in eqn (2) as

coko R
eg(r) = o+ ko)1 (25)

where kp = 4nR,D is the Smoluchowski rate coefficient. This
far-field concentration field can be also obtained from the
approximation of the exact solution of the two spheres in large
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distance, ¢y = —v2¢ S (A, + B,) /r+ 0(1/r%),*° where a new
n=0

spherical polar coordinate (r, 3, ¢) in Fig. 2 is chosen sharing
the origin, by taking the limit of #, - —oo (R, — 0) and
L — oo and noting that the n = 0 term is sufficient.

The approximation to the propulsion velocity of the S,
sphere may be then found by averaging the slip velocity like
eqn (4) at the edge of the boundary layer of the S, sphere®'**°
in a coordinate system (5, 0,, ¢,) where the origin is at the
center of the S, sphere. The result is

1
Vy=—— -2dS-.
a 41'ERzszZVS “e

(26)

Here, 2 is a unit vector along the line of centers of the two
spheres and defines the z-axis of the spherical polar coordinate
system. Using the relation r*> = r,> + L* — 2r,Lcos0,,
one obtains cg(r,) from eqn (25) and hence an approximate
expression for the sphere velocity for distances L > R, given by

Va o 2KC‘0]€0R1

= 30ko + kp) L2 (27)

As expected, the approximate and exact theories agree for large
sphere separations where both have a L™> power law behavior,
but significant deviations are seen a short distances. The
discrepancies between the microscopic simulations and exact
continuum theory may be due to the use of soft potential
functions and features of microscopic dynamics taking place
in the boundary layer which are not captured by the simple
boundary conditions in the continuum model, which likely
manifest themselves more strongly at large separations where
the product concentrations and gradients are small.

In the microscopic simulations the colloidal particles
undergo Brownian motion as a result of thermal fluctuations,
as well as directed motion due to diffusiophoresis. Fig. 4
shows some examples of noncatalytic sphere trajectories.
At large distances (L/c > 8) the noncatalytic sphere exhibits
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Fig. 5 Capture time t as a function of the initial separation L between the
spheres. The black solid line with squares is the exact continuum solution
and the dashed line is the approximate result. The red circles denote the
simulation results obtained from averages over 80 realizations.

small thermal fluctuations in its displacement which are
less than its radius, as well as larger random displacements.
When L/c < 6, diffusiophoretic interactions are stronger and
the deterministic component of the motion dominates. Thus,
fluctuations lead to a dispersion of capture times seen in
Fig. 4, and only the average in Fig. 5 can be compared to the
deterministic theory.

The capture time, 7, which is defined by the time it takes
the S, sphere, initially at L, to reach the S; sphere, ie., the
spheres are separated by a distance equal to the sum of their
radii, R; + R,. The time 7 can be calculated easily by integrating
the velocity (eqn (27)) to obtain the simple expression,
t = (ko + kp)(L® — (Ry + Ry)®)/(2KcokoRy). Fig. 5 shows how
varies with L. The exact continuum solutions agree well with
simulations, while here are discrepancies with the approximate
theory.

The concentration and fluid velocity fields vary during the
capture process, and these variations play a role in determining
the details of the capture mechanism. The B species concen-
tration fields and their gradients on the surface of the S, sphere
are shown in Fig. 6. The concentration field decays as 1/r at
long distances®® but again there are discrepancies in the
magnitude of the field close to the S, sphere. Such discrepan-
cies might be expected because the dynamics in the finite-size
boundary layer cannot be simply represented by the conti-
nuum boundary conditions. It is interesting that the tangen-
tial gradient of this field on the surface corresponds very
closely to that of the continuum model. Consequently, even
though the microscopic nature of the concentration fields is
manifest in the boundary layer, the gradient, which deter-
mines the propulsion, is accurately given by the continuum
theory. As a result many of the other observable properties are
accurately given.

The velocity fields generated by the moving S, sphere present
a more interesting and complex structure as a function of L.
Fig. 7 shows the streamlines and flow fields in the laboratory
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d(ca/co)/08, on the surface of the noncatalytic S, sphere (Ro/e = 2V) for
L/ = 2.5 (left column) and L/ = 5 (right column), respectively. The angle
0, is the polar angle in spherical polar coordinates where the origin is at the
center of the S, sphere.

frame of reference. The streamlines are plotted by setting y
equal to a constant. At large separations, we see that the fluid
near the head of the S, sphere (portion closest to the S;
sphere) is pushed to the lateral directions (in the xy plane)
with respect to the axisymmetric z axis, and executes broad
fluid circulation near the S; sphere. Fluid also flows towards
the rear of the S, sphere. The flow near the S, sphere shows a
puller-like behavior; i.e., fluid enters from the front and back
and is expelled from the sides.***° (A pusher-like behavior can
be also seen in our system if g > &,.) As the two spheres
approach each other (L/o ~ 3.5) the circulating flows between
and to the sides of the spheres reduce in size and disappear,
leaving a puller-like flow pattern. Near the contact distance
(L/o ~ 2.5), the fluid is pushed from the back to the front of
two spheres.

That the flow patterns are affected by the pinning of the
catalytic sphere are clearly seen in the plots of the far field
streamlines in Fig. 8. The flow near the spheres resembles that
due to stresslet fields (similar to that for L/ ~ 3.5 and ~5 in
Fig. 7), but at distances far from the spheres (see Fig. 8(b) and
(c)) the flow resembles a drift flow (Stokeslet).” When the
separation between the spheres is large (Fig. 8(d), L/ ~ 7.5),
the flow circulation (stresslet fields) expands to occupy a larger
portion of space, but a drift flow (Stokeslet) again appears when
viewed at large distances from the spheres. These far-field flows
are characterized quantitatively by calculating the magnitude of
fluid velocity v = /vi2 + v,2, where v = V40 +v,1,"° as shown in
= 7.5, one sees a 1/r*> decay,
characteristic of stresslets, for distances up to approximately
rla ~ 20, but eventually the flow velocity decays asymptotically
as 1/r. As the separation distance decreases, it is notable that
the flow velocity increases, the stresslet contribution disappears,
and the Stokeslet contribution increases. The asymptotic

Fig. 9. For example, at L/o
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Fig. 7 Streamlines and flow fields in the laboratory frame of reference. In
the left column, streamlines are shown near the two spheres with flow
directions indicated (black arrows) and, in the right column, the flow fields
(white arrows) and their magnitudes (color maps), v = /v + »? are
presented. The first, second, third rows are for L/ = 2.5, 3.5, 5. In the
color maps, the magnitude of the fluid velocity v is scaled by the sphere
velocity V, where V = 0.053, 0.023, 0.011 for L/o = 2.5, 3.5,5, respectively.
The red and blue circles indicate the S; catalytic and S, noncatalytic
spheres.

expressions are found by introducing the spherical polar
coordinates (r, 9, ¢) in Fig. 2, where two coordinate systems
share the origin, and expanding the variables ¢ and 7 in terms
of 1/r. Then one may obtain asymptotic expressions for flow
velocity up to ¢(1/r%) as

vo ~V/2sin 9{3Q cos 9/(2&r) — @>(1 — 3cos® 9) /171,

(28)
vy ~V2(2 = 3sin® 9){Q,/(2¢r) + @y cos 817},
where Q= i (2n+ 1) (ay + cn) and

n=1
Q=3 (2n+ D{(n—1/2)by + (n+3/2)d,}. The details are
n=1

given in the Appendix.
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Fig. 9 The magnitude of fluid velocity, v = \/v¢> + v, for 3 = n/2 as a
function of distance r, where the spherical polar coordinates (r, 9, ¢) are
taken with a common origin in Fig. 2. The black, red, green, blue, brown,
magenta lines (from top to bottom) correspond to the separation
distances, L/g = 2.5, 3.5, 5, 7.5, 10, 15, respectively.

Since the fluid between the spheres flows from the S; to S,
spheres with a broad circulation pattern, one may expect
that the force the fluid exerts on the fixed catalytic sphere is
in the same direction; i.e., an attractive force. (If g > ¢, then
the flow directions are reversed and one has a repulsive force.)
The force is given by eqn (15) and is plotted in Fig. 10, along
with the simulation result. In the microscopic simulations,
the force is calculated by summing the forces on the catalytic
sphere due to all of the fluid particles. The continuum theory
and simulations agree very well. The force is almost zero for
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Fig. 10 The force on the catalytic sphere exerted by fluid. The black solid
line and red circles correspond to the continuum theory and simulations,
respectively. Negative values (—z direction in Fig. 2) imply the force is
attractive.

large L, and becomes more negative (attractive) as L decreases,
reaching its largest negative value at L/c ~ 2.5, near the
contact distance, L/c ~ 2.25. If L decreases further, the force
take positive (repulsive) values.

5 Dynamics with a moving catalytic
sphere

We now consider the situation where both spheres are free to
move. The concentration fields produced by the catalytic
sphere are unchanged from the fixed-sphere case. Using the
continuum theory, the velocities of both spheres can be
computed from eqn (23) and they are plotted in Fig. 11, along
with the simulation results. The continuum theory and micro-
scopic simulation results are in good agreement. Now the S;
and S, spheres move towards each other, but with different
velocities as shown in the figure. The velocity of the S, sphere
is much larger than that of the S; sphere, and the velocity
difference ¥'® — vV is shown in the inset of the figure. For
comparison, this difference is compared with that for a fixed
S, sphere, V= V") = 0, (dashed line in the inset). Although the
S, sphere moves by the diffusiophoretic mechanism, the
motion of the S; sphere is induced by the fluid flow generated
by the S, sphere.

Note that although the velocities of the two spheres have
opposite signs (— for S; and + for S,) as they approach, the sign
of the S; velocity changes so that both sphere velocities are
positive (+z) as the two spheres meet to form a self-propelled
sphere-dimer that moves with the S; sphere at its head (see
Movie 2, ESIf).">?° In contrast to the sphere-dimer motors
previously studied that are made from spheres with a rigid
bond, this sphere-dimer motor self-assembles from isolated
spheres to form a bound pair with a bond length that may
fluctuate around a mean value depending on parameters used.
Once the sphere dimer is formed by self-assembly it behaves
like the sphere-dimer with a fixed bond length. Similar
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Fig. 11 Plot of the velocities VY and V2 of the S; and S, spheres in a
force-free system. The solid blue and red lines denote the continuum
theoretical values of V' and V*2, respectively, while the circles with
error bars are the microscopic simulation results. The inset shows the
velocity difference /2 — VI (solid lines) and, for comparison, the velocity
of the S, sphere (dashed line) when the S; sphere is fixed in space
(egn (16)).

motion of two spheres was observed in a numerical study of a
thermocapillary system consisting of a solid particle and a gas
bubble.>”

The streamlines and flow field are shown in Fig. 12 (left two
columns) in the laboratory frame of reference. When L is
relatively large (L/o = 5), the streamlines are roughly similar
to those when the S; sphere is fixed but there is no local fluid
circulations at small distances from the spheres and no drift
flow at large distances. The fluid flow near the S, sphere
exhibits a puller-like pattern and near the S; sphere fluid is
simply dragged to the S, sphere. As discussed above, this
difference is attributed to the contributions of Stokeslets in
a forced system and these effects are pronounced at small
L (L/o = 2.3, 3.5). The streamlines in a force-free system do not
significantly change at small separations, while those in a
forced system are more distorted in the direction of the
applied external force (Fig. 7). The quantitative variations of
streamlines and flow fields can be seen by plotting the
magnitudes of flow velocity as displayed in Fig. 13 (left panel).
The flow velocity of force-free spheres decays as a 7> (stress-
let) in a distance /¢ ~ 5 for various values of L, and this
power-law behavior remains unchanged at long distances.
However, the flow velocity in a system with sphere S, fixed
exhibits a 7~ 2 decay for distances /¢ ~ 5 when L/c = 5, and it
shows a r~' decay (Stokeslet) for L/c = 2.5, although the
velocity in all cases eventually decays a " at long distances

(Fig. 9).

Flow field comparison

It is interesting to compare the properties of the flow fields for
the freely moving catalytic and noncatalytic spheres separated
by a distance L with those for a sphere-dimer with a rigid bond
of length L. We refer to the spheres in the former case as

This journal is © The Royal Society of Chemistry 2018
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Fig. 12 The streamlines and flow fields for the unlinked two spheres (left two columns) and for the linked two spheres (right two columns) in the
laboratory frame of reference. The first, second, third rows correspond to the separation distances L/o = 2.3, 3.5, 5, respectively. In the color maps, the
flow velocity (v) is scaled by the velocity of noncatalytic spheres (V/?) and dimers (Vp), where V2 = 0.039, 0.022, 0.011 and Vp = 0.053, 0.019, 0.0084 in
L/e = 2.3, 3.5, 5, respectively. The red and blue circles indicate the catalytic and noncatalytic spheres.

unlinked spheres and those in the latter case as linked spheres.
We consider the unlinked spheres to be the linked when the
spheres form a dimer by self-assembly. The streamlines and
flow fields just before and after the spheres self-assemble to
form a sphere-dimer motor are shown in Fig. 12 (first row). It
is notable that the flow directions for the unlinked spheres
(first panel in this row) are completely reversed after the
spheres self-assemble to form a sphere-pair (third panel in
this row), although the detailed structure of the flow field
changes near the S, sphere. This implies that a sudden change
in flow field occurs from a puller-like flow pattern to a pusher-
like pattern.

These puller and pusher flow patterns remain unchanged
as L increases (second and third rows in Fig. 12). The magni-
tudes of flow velocity for the unlinked and linked spheres are
compared quantitatively in Fig. 13. Both cases exhibit a 77>
decay in contrast to that for a fixed S; sphere. For small
L (Ll < 3.5), the magnitudes of flow velocity for both linked

This journal is © The Royal Society of Chemistry 2018

and unlinked spheres are very similar; only the flow directions
have opposite signs. The asymptotic expressions are given by
eqn (28) without Q; terms since Q, is zero by the force-free
condition.

Sphere size effects

Lastly, we consider how the flow fields depend on ratios of
the sizes of S; and S, spheres at the moment of dimer
formation. Fig. 14 presents the streamlines for the unlinked
and linked spheres near the contact distance, i.e. just before
and after a dimer formation. When the S; sphere is larger
than the S, sphere (Fig. 14(c) and (d)), the flow directions are
completely reversed, except for local variations near the S,
sphere, similar to that for spheres of equal size: a puller-like
flow pattern changes to a pusher-like pattern. By contrast, if
the radius of the S; sphere is smaller than that of the S,
sphere (Fig. 14(a) and (b)), the character of the far-field flow
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Fig. 13 The magnitude of fluid velocity, v = /vs> + v,2, along the side
direction (3 = n/2) as a function of distance r for the unlinked two spheres
(left) and the linked dimer (right). The spherical polar coordinate (r, 3, ¢) is
taken by setting the origin of the coordinate at the middle of two spheres
as in Fig. 2 and 9. The black, red, and blue lines correspond to the
separation distance, L/g = 2.3, 3.5, 5, respectively.
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Fig. 14 Streamlines before and after dimer formation for different size
ratios of two spheres. The left column ((a) and (c)) shows the streamlines
for unlinked spheres and the right ((b) and (d)) for linked spheres. The first
row ((a) and (b)) and the second ((c) and (d)) correspond to the size ratio
between the S; and S, spheres Ri/R, = 0.5 and 2, respectively. The
separation distances between spheres are L/o = 3.5, where ¢ is for the
small spheres, i.e. g/a = 2.

does not change and is puller-like before and after dimer
formation, although the detailed structure of flow near
the dimer becomes complex and exhibits several local flow
circulations, especially near the S; sphere where fluid is
pushed in the direction of its head. It is interesting to note
that two separated spheres with either size ratio are initially
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attracted and meet to form a dimer, and this dimer may have
one of two counter far-field flow characteristics: either a
puller or pusher depending on the size ratio.

6 Conclusions

Using continuum theory and particle-based simulations, a
detailed study of the chemical and hydrodynamic processes
that govern the dynamics of two spheres, one reactive and the
other nonreactive but able to move toward high product con-
centrations by a diffusiophoretic mechanism, was presented in
this paper. Through an analysis of the concentration and fluid
flow fields the roles played by these chemical and hydro-
dynamic interactions could be determined. For example, when
both spheres are free to move, they are attracted to each other;
the nonreactive sphere moves towards the reactive sphere by
diffusiophoresis while the reactive sphere is simply dragged
by the flow generated by the nonreactive sphere. When the
spheres are in close proximity this motion must cease; the
velocity of the reactive sphere changes its sign since the
nonreactive sphere now drives the pair forward by the same
diffusiophoretic mechanism that operates for a sphere-dimer
motor with a rigid bond. The flow field must reorganize to
accommodate this change and adopts a pusher character.

The characteristics of the flow fields depend on the sphere
sizes. Two separated spheres behave as a puller, regardless of
their sphere size ratio, while the sphere-dimer motor that is
formed can have either puller or pusher characteristics, and
this does depend on the size ratio. Consequently, it should be
possible to construct self-propelled dimers with either of these
flow characteristics by simply manipulating the sphere sizes.
This feature may be used to aid in the understanding of the
collective behavior of many-sphere systems, and to provide a
route to the construction of complex self-assembled structures
in the laboratory.>>*’

The two-sphere dynamics studied in this paper may be
regarded as an elementary process that contributes to the
collective dynamics of mixtures of active and passive
particles>®° and sphere dimers with non-rigid bonds. The
study provides insight into the mechanisms that could lead to
dynamic clusters of various types that not only move but may
also fragment and reassemble. In this connection, situations
not considered in this paper could be of considerable interest
to investigate further. If the interactions are such that the
nonreactive sphere moves to lower product concentrations, in
dilute solution the two sphere will simply avoid each other.
However, in more dense colloidal suspensions they will be
forced to interact and lead to different active collective states,
analogous to the different collective dynamics of forward and
backward moving sphere dimers.*?
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Appendix
Continuum solution information

The table in this Appendix gives the definitions of functions that enter in the continuum solution.

Table 1 The coefficients for the sphere velocity in egn (16) and (23), and the fluid stream functions in eqn (14) and (22). The coefficients
Yo = {W,}),Y(,f),Y(,f),Y(,Z)), Eﬁ,”, Fﬁ,“ have the upper signs and Y = {)",?,Y‘n“),Y(nG),Y(,?’), Eﬁ,”, Fﬁf’ have the lower signs in the equations

n(n+1)

L T P

{e("’%) " 4,1 — (2cosh nz)e("%)'“A,, + e("%) A, e (n3) "B, | — (2coshn,)e” (), B, +e (43 B }

4, = 4sinh2{ (n +%> (m — 112)} (2n + 1)*sinh (5, —1,)
fo=Enln+ 1)/{\6(2,1 —1)@n+ D)2+ 3)}
(Y,E'), Y,@) (2n+3) { (2n + 1)%em="2) sinh(y, —n,) — %(2/1 —1)2n + 1)eTm+m) sinh(y, —n,) + 2~ (r+3) 01-m2) sinh{ <n + %) (m — 112)}
+ (2n — 1)e¥(”+%)(’“+”2> sinh{ <n + %) (m — 112)} - (2n+ l)e*(”’%)““*’“) sinh{ (n + %) (m - 112)}}
(Y,(f), Y,(,4)) = F(2n+3) B(2n + 1)2e =) sinh(iy; — ) — %(211 — 1)(2n + DeTm+m) sinh(y, —n,) + 267(’”%) (=) sinh{ (n + %) (n — ’72)}

- (2n— l)e;("%)(’“*”?) sinh{ <n + %) (m — 112)} +(2n+ 1)e¥(”’%)(’“+’72) sinh{ (n +%) (m — nz)H

1 1 1 1
(Yn(s), Yr(16)> = —(2n-1) 2(2n + 1)%e~ =) sinh(iy, — 1,) +§(2n + 1)(2n + 3)e=t+1) sinh (i, — n7,) + 26 (r43) on =) sinh{ (n +5) (m — 712)}

1 3
—(n+ 3)&("*7) (1) sinh{ <n + %) (ny — ’72)} +(2n+ 1)&(”*7)("1*'72) sinh{ (n - %) (m —n2) }

(Y<7>.Y<8>) = +(2n-1) ;(2n+1)2 ~n=12) sinh(y, —n,)

1
+ %(Zn + 1)(2n 4 3)e™0n+1) sinh(iy, — y,) + 2~ (r43) n—n2) smh{ (n + %) (m — ’12)}

20 = —n s (1= D beosnd (D)o -} + oo 35 d (-2
o] (1 D s o= -0}

2= Gn e o (1D Jeosn{ (o 2)n -} s 3omf (w1}
B S

A (L NESE 8
ol oo}

PRRHEIN AR NS WA SIS
oo

3 1
=2 {—(2;1 -+ 1)ei("+§)><"'+"z> sinh { <n - %) (n — ;12)} 42020 — 1)(2n + 3)et D) ) sinh{ (n + %) (n — n2)}

I\J\'—‘

~ 20+ D)(2n + 3)et () ) sinh{ (n + %) (n — VIz)H
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Table 1 (continued)
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() ) 1
F)(IO) = 16e (n3) o) smh{ (n +§) (m —m

+2(2n + 1) sinh(ny — n,)]sinh(ip; —1,)
RO = A r v -
R = x4 v v
RO = 10— 3P+ ¥ - XD = YD 4 ¥+ 10y

Asymptotics of fluid velocity field

Reminding the fluid velocity is given by the stream function

asv= qs/p x Vi, one gets the velocity components in 0 and #,

(vo, ;) = {(cosh iy — W/(p&)}(—0y/0n, Oy/00) leading to
B coshn dW,, 3sinh _ 3sinhy
o= © 2sin0 {Z Va 2(coshy — p) Z WaVul,
_ Vcoshn — N (2n+1)W,P, Z w,V,
e < “— " " coshn — ’

(29)

From the relations between the bispherical and Cartesian

coordinates as shown in Section 2, one can show that 0=

tan~! {25\/x2 +y2/(x2 +y2+22— 62)} and 5 = tanh™*{2&z/(x* +
y*> + 22 + &%)} In newly introduced spherical polar coordinates
(r, 9, ¢) in Fig. 2, where the origin is shared, the variables 0
and # in large r are approximated by Taylor series as (0,n) ~
(2¢/r)(sin 3,cos 9) + O(1/r*). Then all factors in eqn (29) are
expanded by Taylor series again for large r and the final forms
are expressed by eqn (28) in the main text.
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