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Topological free volume and quasi-glassy
dynamics in the melt of ring polymers

Takahiro Sakaue ab

Motivated by recent observations that non-concatenated ring polymers in their dense solution exhibit a

glass-like dynamics, we propose a free volume description of the motion of such rings based on the

notion of topological volume. We first construct a phenomenological free energy which enables one to

quantify the degree of topological crowding measured by the coordination number. Then we pinpoint a

key role of the cooperative dynamics of neighboring rings, which is responsible for an anomalous

dependence of the global structural relaxation (diffusion) time on ring length. Predictions on molecular

weight dependence of both static (ring size, coordination number) and dynamic (relaxation time,

diffusion coefficient) quantities are in very good agreement with reported numerical simulations.

Throughout the discussion, the entanglement length Ne is assumed to be a unique characteristic length

for the topological constraint, and hence, all the physical quantities are universally described in terms of

the rescaled chain length N/Ne. Finally, we discuss how the dense solution of rings is analogous to yet

different from ordinary glassy systems.

1 Introduction

Despite their ubiquity in biology and potential applicability in
materials science, the behavior of ring polymers remains
largely mysterious in many respects, understanding of which
lags far behind that of the linear polymer counterpart.1,2 The
main source of difficulty arises from the inevitable constraint
that a topological state on inter-ring concatenation and intra-
ring knotting has to be rigorously conserved at any later stage
unless bond breakage occurs. Recent experiments and simula-
tions have raised several puzzles in the dynamics of a dense
solution of non-concatenated rings,3–5 hinting at some analogy
to the glass transition.6,7 The conceived state, dubbed as
topological glass, however, seems to be very different from
ordinary glass in that the large scale dynamical anomaly entails
essentially no motional restriction at the scale of constituents
(monomers). Here, we propose a viewpoint that qualifies rings
as ultra-soft particles, whose effective volume arises from the
topological constraint (TC). In dilute solution, two rings in
unlinked topology feel an entropic repulsion upon close
approach, since the unlinking (non-concatenation) TC reduces
the number of available conformations (Fig. 1(a)). In a dense
solution of unlinked rings, we are naturally led to think of the

free volume of the effective volume of topological origin; as we
shall see this topological free volume is intimately connected
to the coordination number of rings. Bringing these concepts
together, we set up a stage for statistical mechanical analysis,
which yields various predictions in remarkable agreement with
reported observations. It unveils a rational scenario through
which the large scale cooperative dynamics of rings emerges;
the physical picture indeed bears some similarity with ordinary
glassy dynamics, but with a cardinal difference originating
from the ultra soft nature of rings.

2 Topological constraint in linear vs.
ring polymers

To make the nature of the TC in the ring polymer system clear, let
us recall the phenomenon of entanglement in a linear polymer
melt, which is also a consequence of the TC. Consider a melt of
flexible polymers, each of which consists of N monomers of size a.
Because of the screening of excluded-volume interactions, the size
of individual linear polymers is R B aN1/2, and hence the number
of overlapping polymers with any reference polymer defined as

X B R3/(Na3) (1)

is evaluated as X B N1/2.8 A consequence is that the entangle-
ment is inevitable in a dense solution of long polymers. The
modern development of rheology of entangled polymers is based
on the geometrical picture, where a polymer is confined in a
virtual tube made up of the surrounding polymers. The reptation
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model describes the motion of the polymer in the tube, where
the chain ends play a pivotal role, emphasizing the transient
(though long-lived) nature of the TC.8,9

In the ring polymer counterpart, there are now a large
number of indications that the size is much more compact
characterized by the smaller exponent; R B Nn with n = 1/3 for
large N, but with a prefactor substantially larger than a, i.e.,
R/(aN1/3) c 1.11–17 This results in X B const.(c1) indicative of a
qualitatively different TC from the classical entanglement picture
of heavily overlapping threads. Rather it implies a soft particle-like
behavior, which allows some degree of overlapping. Indeed, as
might be intuitively clear, the TC endows any reference ring with
entropic repulsion against surrounding rings which are unlinked
to it10 (Fig. 1(a)). One can then define the length

r p R/X1/3, (2)

which measures the average distance between the neighboring
rings (Fig. 1(b)). This is analogous to the inter-particle distance
r p b/c1/3 in the system of rigid particles (with size b and
particle volume fraction c). Such a consideration suggests an
interesting possibility to investigate the problem of dense ring
polymers under the TC with the concepts developed in the
liquid and glass transition physics.6,7 Unlike the rigid particle
case r 4 b, however, one admits here a strong overlapping
r o R reflecting the ultra-soft nature of the ring (Fig. 1). Note
that numerical and experimental observations suggest that the
exponent n = 1/3 is realized only for very long rings, and many
of the practical cases may fall into a broad crossover character-
ized by some effective exponent bounded as 1/3 o neff o 1/2.

3 Free energy in terms of the
topological volume fraction

The primal control parameter in the problem is the ring length N,
which plays a similar role to the temperature T in the ordinary glass
transition phenomenology. For a systematic study, one therefore

needs a framework, which describes how R and X depend on N.
Here, we utilize the phenomenological free energy, which is
constructed based on the following two observations; (i) as rings
behave like soft particles due to the TC, there should be an
associated topological volume, and (ii) the TC in rings becomes
relevant above some characteristic length scale Ne,18,19 which
implies the ideal chain statistics on a smaller scale, thus

Xe � X(N = Ne) B Re
3/(Nea3) B Ne

1/2, (3)

where Re B aNe
1/2 is the spatial extent of the Ne-strand. Note that

the second observation is akin to an empirical fact admitted
in the entanglement effect in linear polymers,8,9 which is the
reason we employed the symbol Ne for the characteristic chain
length. The simplest free energy in accordance with the above
observations is14,15,20

F

kBT
¼ � ln 1� X

Xc

� �
þ N

Ne

Xe

X

� �1= 3n0�1ð Þ
(4)

where Xc represents the maximum number of overlapping rings
achieved in the large N limit, and n0 C 0.588 is a critical
exponent describing the size of the self-avoiding chain (see the
Appendix for more discussion on the proposed free energy).
The quantity C � X/Xc may be regarded as a topological volume
fraction. To motivate such a usage, let us rewrite eqn (2) for the
inter-ring distance as

r ¼ R

Xc
1=3

� �
X

Xc

� ��1=3
¼ ~RC�1=3 (5)

Now C is bounded as C r 1 by definition, and the comparison
with the rigid particle case qualifies R̃ = RXc

�1/3 and C as the
effective size and the corresponding volume fraction associated
with the TC. The first term in eqn (4) takes a form from the
celebrated van der Waals theory, which represents the reduction
in the free volume, in the present context, reflecting the entropic
repulsion due to the non-concatenation TC. This term favors a
smaller C, and thus leads to ring shrinkage. Contrary to this is

Fig. 1 Schematics of the system of non-concatenated rings. (a) For two rings close to each other (bottom), the number of their possible configurations
is reduced from the free state (top) due to the non-concatenation TC. This produces an entropic repulsion between them.10 (b) Length scales in the
system. The central dot is the center of mass (COM) of a reference ring, whose spatial size R is indicated by a dotted circle. Other black dots inside the
dotted circle denote the COMs of rings overlapping with the reference ring, which defines the number of overlapping rings X, i.e., coordination number. A
shaded circle represents the effective size R̃ of a ring due to the TC. In a particle picture, the average distance r between COMs of neighboring rings is a
key quantity to control the global structural relaxation. In contrast to (c) the short ring case N o Ne, (d) the TC for a longer ring N 4 Ne imposes severe
crowding (larger X, thus, higher topological volume fraction C) in such a way that any ring is caged by its surroundings. As in ordinary crowded systems,
the global structural relaxation requires cage breaking realized by the passage of a ring through its ‘‘gate’’, but the solitary motion of any single ring is
ineffective. However, the gate opening could be achieved by a cooperative motion of M(N) neighboring rings.
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the second term, which represents an entropic penalty asso-
ciated with squeezing a ring while maintaining the unknotting
constraint, and can be derived from the standard scaling
argument (see the Appendix).

Free energy (4) has a desired property F B kBT at N = Ne with
a supplement Ce � Xe/Xc C 0.5, ensuring the onset of the TC at
this length scale in accordance with the above observation (ii).
For longer rings, the optimum X as a function of N can be
derived by minimizing eqn (4). We are thus led to a generic
form X(N) = XeG(N/Ne) with a function G(x) - 1 at x = 1 and
G(x) - Xc/Xe at x c 1. From this, the ring size follows as
R(N) C Re(N/Ne)1/3[G(N/Ne)]1/3. In Fig. 2, we compare predic-
tions from our free energy (with Ce = 0.5) with three sets
of numerical simulation data. Here we adopt the spanning
distance R(s) (root mean-square distance between monomers
N/2 apart) as a measure of the spatial size of rings, so that X is
the average number of surrounding rings, whose centers of

mass (COMs) are located within the distance R(s) from the
COM of the reference ring. Note that the Re and Xe values are
evaluated from the numerical data in ref. 4, 11 and 12 (see
Table 1), which play the role of rescaling factors in the master
plot. While the resultant Re values reasonably accord with the
theoretical expectation (Appendix), it is striking that all the data
sets point to almost the same value for Xe C 8 despite different
simulation models and conditions employed. The same conclu-
sion is reached if we measure the ring size with the radius of
gyration R(g), in which case Xe C 1.4 is found (Appendix, Fig. 4).
Hence, besides the quantitative predictability of the proposed free
energy, we find that the coordination number serves as a robust
measure for the TC. In particular, the onset of the TC can be
identified by Xe, whose precise value is independent of the system
details. The crossover towards the compact statistic regime for
longer rings is quantified by the function G(x), which describes a
gradual increase of the coordination number from Xe towards Xc.

Here it is instructive to draw a connection of the particle-like
behavior of non-concatenated rings in their dense solution with
the argument based on random packing. For the assembly of
particles to be mechanically stable, Maxwell’s criterion claims
that the minimum coordination number Xiso = 2df is required,
where df is the number of degrees of freedom determined by
the symmetry of the constituent particles.7 With df = 6 for a
generally shaped particle in 3 dimensions, we see an impressive
consonance of Xiso with Xe and Xc = Xe/Ce when we adopt the
spanning distance R(s) as a measure of the ring size. Note also
that the range of the value X A (Xe,Xc) in this case corresponds
to the so-called Kavassalis–Noolandi number to mark the onset
of the entanglement effect in dense linear polymer solutions.8,21

This suggests the fundamental role of X in describing the TC in
polymer systems. We also emphasize that the function G(x) is
universal in the sense that it does not depend on the system
parameters (Appendix).

4 Cooperative mechanism for global
structural relaxation

To discuss the consequences of topological volume on ring
dynamics in dense solution, let us recall a topological length
N = Ne. It indicates Rouse dynamics for a shorter scale,
thus introducing a time scale te B t0Ne

2 for the relaxation of

Fig. 2 Comparison of free energy prediction (solid line) with numerical
simulation data for spatial size R and coordination number X of rings in their
non-concatenated melt of dense solution. As a measure of the ring size, we
adopt here the spanning distance R� R(s). Numerical data are obtained from
the literature (squares,11 circles,12 triangles4) (a) plot of R/Re as a function of
N/Ne. Before reaching the asymptotic compact scaling with n = 1/3, there
exists a broad crossover up to N/Ne - Nc/Ne B 30 (see the Appendix for
the estimation of Nc). (b) Plot of X/Xe as a function of N/Ne. See Table 1 for
details of simulation models and the estimated values of Re and Xe.

Table 1 A summary of methods and numerical values employed in or
extracted from simulations (lp: persistence length). The values Re

2 and Xe

are obtained by inter-(or extra-)polating the data in references. All lengths
are measured in units of lattice size (MC) or bead diameter (MD)

Vettorel11 Halverson12 Michieletto4

Method MC on cubic lattice MD MD
Stiffness No angle potential lp C 1.5–2 lp C 5
Volume fraction 0.5 0.85 0.1
Ne 175 28 40
(R(s)

e )2 75 18 88
Xe|R=R(s) 7.7 8.4 7.8
(R(g)

e )2 26 6.1 30
Xe|R=R(g) n/a 1.4 1.3
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the Ne-strand (with t0 being a monomeric time scale), which
plays the role of an elementary time scale for larger scale
dynamics, where the TC matters. Here, while recent rheological
measurements have evidenced a self-similar stress relaxation
process without the sign of a rubber plateau,22,23 the neutron
spin-echo experiment detected glassy dynamics of rings’
COM.3 A connection between these two observations remains
unsolved. A hint comes from a detailed analysis of numerical
simulation data, which indicates that while the stress relaxa-
tion is correlated with the internal conformational reorganiza-
tion, whose characteristic time scales as t(1) C te(N/Ne)z1 with
z1 C 2.2, the diffusion would be much slower, that is to say,
t c t(1) for large N, where t is the time scale for global
structural relaxation during which the ring travels its own
size.24 It is likely that a reason for such a self-diffusion slower
than expected lies in a cooperative dynamics, which is necessary
for the global structural relaxation.

As a prototype, we begin with reviewing a minimal descrip-
tion of cooperative dynamics in glass transition.26 Consider an
assembly of particles of radius b with volume fraction c such
that the average interparticle distance r p bc�1/3. The mecha-
nism for structural relaxation would depend on the average size
D B r � 2b of the gate, through which each particle escapes
from its cage. Two characteristic interparticle distances rc and
rv can be conceived; while the latter corresponds to the kinetic
arrest point rv C 2b, the former rc(4rv) signals the onset of the
crowding effect so that, at higher concentration (r o rc), cage
breaking requires the cooperative motion of adjacent particles.
Since the missing space for gate opening is rc � r, and the space
created by the cooperative motion of M � 1 neighboring particles
is (M � 1)D, it follows

MðcÞ � rc � rv

r� rv
� cv=ccð Þ1=3�1

cv=cð Þ1=3�1
(6)

where cc p (b/rc)3 and cv p (b/rv)
3 are volume fractions

corresponding, respectively, to rc and rv. From this, the structural
relaxation time t (in units of molecular time scale tm) is

t
tm
� tliq

tm

� �MðcÞ
(7)

where tliq is a typical liquid-like relaxation time at c = cc,
indicating a drastic slowing down of dynamics due to the
crowding at c 4 cc towards a sharp divergence of t at c = cv.
To recast eqn (7) in the form of temperature dependence, one
usually invokes the thermal expansion of materials, which is
assumed to be described by c(T) C cv[1 + a(Tv � T)] in the
range (cc, Tc) to (cv,Tv). Combining this with eqn (6) and (7),
one obtains the Vogel–Fulcher–Tammann (VFT) relation

t � tm exp
A

T � Tv

� �
(8)

with A = (Tc � Tv)ln(tliq/tm).
Applying the above picture of the cooperative dynamics to

the slow diffusion of rings under the TC, the notion of topolo-
gical volume invites a correspondence c - C. The cooperative

onset cc then naturally corresponds to the TC onset Ce at Ne

with the replacement of characteristic time scales tm - te and
tliq - t(1). We then set rv - 0, which amounts to saying
that there is no spontaneous kinetic arrest due to the ultra-
softness of rings, i.e., their COMs can indeed overlap in space.
Such a translation leads to the growing cooperativity
M(N) B (C(N)/Ce)1/3 = [G(N/Ne)]1/3 with N, hence, the global
structural relaxation time

t � te
tð1Þ

te

� �MðNÞ

� Nzeff (9)

where the exponent zeff = z1 � [G(N/Ne)]1/3 increases from z1 at
Ne towards zN = z1[Xc/Xe]1/3 B 3 in the long chain asymptote
(Appendix, Fig. 5). Notice that the C–N relation (or equivalently
X–N relation shown in Fig. 2(b)) determined by our free
energy plays an analogous role to the c–T relation (thermal
expansibility) in the context of the derivation of the VFT
relation in particle systems.

As demonstrated in Fig. 3, eqn (9) captures all the essential
features observed in numerical simulations. In addition to the
semi-quantitative prediction for t and its departure from t(1), it
provides the diffusion coefficient D(N) B R(N)2/t(N), whose scaling
with N remarkably agrees with numerical observations4,24 (Fig. 3
(inset); see also Appendix, Fig. 5). Compared to previous predictions
based on the conventional estimation D(1) B R(N)2/t(1)(N),19,27

this improvement on D once again sets forth the notion of slow
diffusion due to the cooperative structural relaxation. Yet notice-
able is the absence of VFT-like divergence in t despite invoking
mandatory cooperative motion for cage breaking. In our descrip-
tion, this traces back to the ultra-soft nature of rings rv - 0, thus
no divergence in the cooperativity M. Still, there is a small build
up in M at N 4 Ne, and combined with the slowing down of
single ring dynamics t(1), it acts as a multiplicative factor in the

Fig. 3 Internal (t(1)) and global (t) structural relaxation times as a function
of N/Ne compared with MD simulation data24 with te = 120t0. Also plotted
is the stress relaxation time tsr (multiplied by a factor c = 0.4) evaluated in
ref. 19 using the data in ref. 24. Here, we adopted z1 = 7/3 suggested in
ref. 19. (inset) Diffusion coefficient. Here the line with [R(s)]2/t is compared
with the diffusion coefficient measured in MD simulations.24 See also
ref. 25 for very similar numerical data on the separation between t(1) and t.
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exponent, leading to an unconventional, i.e., faster than power-
law, increase in t with N.

5 Conclusions

To summarize, we have proposed a cooperativity scenario for
slow dynamics in a dense solution of non-concatenated ring
polymers motivated by some analogy between soft colloids and
rings. While we have shown that many of the puzzling observa-
tions could be resolved by introducing the notion of topological
volume, it should be recognized as a minimal description in the
sense that we only look at the COM degrees of freedom of
the rings to evaluate the cooperativity M, which is mirrored
in a small Mc = (Xc/Xe)1/3 B 1.3 in the large N limit. A more
realistic picture would be that a larger number of neighboring
rings behave collectively not only by the COM translation
but also by internal deformation modes to create a gate for
structural relaxation. Our discussion yields several challenges
and future directions. (i) Quantifying the degree and the nature
of the cooperativity in ring solutions – it should help with a
possible refinement of our current description. (ii) Clarifying
the relation with the threading picture4,28 – there seems to be
some correspondence between our structural relaxation time
t and the ring dethreading time possibly responsible for the
slow mode in stress relaxation.28 (iii) Elucidating the analogy
with soft colloids – they are known to be strong glass formers,29

and rings could be viewed as the softest ‘‘particle’’ ever known.
Compared, for instance, to star polymers,30 the energy scale of
the effective repulsive pair potential is much lower (on the
order of kBT), and the COMs of different rings can spatially
overlap rather easily. A quantitative comparison with a dense
solution of the soft core (such as the Gaussian core) model
may yield useful insights.31 (iv) An apparently similar soft
colloidal picture (with comparable energy scale) is known to
describe the linear polymer systems as well.32 Unlike the ring
polymer systems, however, it has nothing to do with the
conformation of individual chains, and the correlation hole
(or effective repulsion) becomes weaker with the chain length.
Nonetheless, some anomalous feature in the diffusive
dynamics of COMs,3,4,24 which is not captured by the reptation
theory, may be described by the cooperative mechanism
scenario proposed here. (v) Building a microscopic foundation
for the proposed description should be a fundamental
problem. Some attempts for coarse-graining of ring polymer
systems indicate the crucial effect of the TC.33,34 (vi) Exploring a
novel depletion effect35 – the notion of topological volume
indicates an associated depletion effect. This would be related
to the recent prediction on the promotion of phase separation
in the blend of ring polymers with dissimilar molecular
weights,20,36 and may have non-trivial effects in confined spaces,
e.g. in the cell nucleus.
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Appendix
Some discussion on free energy associated with the TC

Entropic penalty due to the non-concatenation constraint.
A unique feature in the system of unlinked rings compared to
the standard particle system is that constituents have freedom
to adjust their spatial size to reduce the repulsive interaction
(here originated from the non-concatenation TC among neigh-
boring rings). In the free energy (4), it is accounted for through
the van der Waals term Funlink/kBT = �ln(1 � C) based on the
free volume concept.

Let c denote the number concentration of rings in the melt.
From free energy Funlink per ring, we obtain the free energy
density funlink = cFunlink as

funlink

kBT
¼ �X

R3
ln 1� X

Xc

� �
¼ B2c

2 þ B3c
3 þ � � � (10)

where we have used the relation c � Nring/O = f/(Na3) (Nring is
the total number of rings in the system volume O, and the
monomer volume fraction f B 1 in the melt state), and the
definition of the coordination number X given as eqn (1). The
final expression is obtained by the expansion into a virial series,
which identifies the virial coefficients B2 C R3/Xc, B3 C R6/2Xc

2,
etc. Note that the second virial coefficient is in line with the
effective ring size R̃ invoked in eqn (5), i.e., B2 C R̃3, that is, the
soft nature of the ring is linked with Xc = Xe/Ce, hence with Ne.
It is instructive to compare our free energy Funlink with that
conjectured by Cates and Deutsch long ago. They suggested the
form Funlink/kBT B R3/(Na3) B X.37 In light of the present
discussion, their free energy corresponds to the second virial
approximation (which amounts to setting Bn = 0 for integer
n 4 2) neglecting the softness factor Xc (thus B2 B R3). Therefore,
it fails to capture the many-body effect responsible for the
compact statistics (n = 1/3) in the long N limit, and lacks Ne

as a unique characteristic length in the problem.
Entropic penalty due to the unknotting constraint. The free

energy Funlink(C) due to the non-concatenation constraint
favors a smaller C, and hence the ring shrinkage. With more
shrinkage, however, another TC associated with unknotting
within individual rings becomes more relevant. Here we
briefly outline the derivation of the entropic penalty due to
the unknotting TC (second term in eqn (4)) following the
discussion in ref. 20.†

According to the standard scaling argument, the entropic
cost of squeezing a polymer into the size R is evaluated as

Funknot

kBT
� R0

R

� �b

(11)

where R0 is the size of a ring in the reference state.9 In the
present problem, a ring in the reference state can be prepared by
hypothetically switching off the non-concatenation TC among
different rings, i.e., it is free from the ordinary excluded-volume

† In ref. 14 and 15, this term has the form (N/Ne)(Xe/X)2, which amounts to setting
n0 = 1/2, but it was corrected later to account for the swelling of the unknotted
ring due to the TC;20 see the discussion below.
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effect (i.e., screened in melt), and not perturbed by the non-
concatenation TC, but constrained to maintain the unknot
topology. Such a ring is essentially identical to an ideal, but
non-phantom unknot ring in dilute solution, whose size is
given by

R0 �
aN1=2 NoN0ð Þ

aN0
1=2 N=N0ð Þn0 N � N0ð Þ

(
(12)

where N0 (B300 for a flexible ring) is a characteristic length
beyond which the ring (without excluded volume) swells due to
the unknotting TC.38 It has been shown that this topological
swelling is characterized by the excluded volume exponent n0.

To determine the exponent b in eqn (11), we require the
squeezing free energy to be an extensive quantity; Funknot(kN,kR3) =
kFunknot(N,R3) for an arbitrary positive number k. This leads to
b = 6 for N o N0 or b = 3/(3n0 � 1) for N c N0.39 With this
exponent and the definition of X (eqn (1)) and Xe (eqn (3)), the
free energy (11) is rewritten as

Funknot

kBT
�

N

Ne

Xe

X

� �2

NoN0ð Þ

c0
N

Ne

� �
Xe

X

� �1= 3n0�1ð Þ
N � N0ð Þ

8>>>><
>>>>:

(13)

where a factor c0 = (N0/Ne)3(1–2n0)/[2(3n0)�1] of order unity arises
since the two characteristic topological lengths N0 and Ne are
generally different (though their relation is not well understood
yet). In all the calculation in the main text, we adopted the free
energy form for N c N0 with c0 = 1. It would be more accurate to
interpolate the two expressions for Funknot as a function of N,
but we have carefully checked that this does not cause any
essential change in the results presented in the main text.‡ As
long as Funknot is written in the form B(N/Ne)(Xe/X)1/(3~n�1), the
result of free energy minimization is insensitive to the value of
~n (either n0 or 1/2; the latter case corresponds to the first line of
eqn (13), that is Funknot with N o N0).§

Dependence of the coordination number on the measure of the
ring size

The coordination number X B R3/N has an arbitrariness in its
quantitative evaluation depending on how we measure the ring
size R. In the main text, we adopt R � R(s), where R(s) is the
spanning distance between monomers N/2 apart along the ring.
Here, we repeat the same analysis by adopting the gyration
radius as a measure, i.e., R � R(g). The dependence of R(g) on
N is measured in simulations.4,11,12 These data are plotted in
Fig. 4(a) along with the theoretical prediction given in the main

text. Similarly, the dependence of the R(g)-based coordination
number X|R=R(g) on N is measured in simulations,4,12 and
compared with the theoretical master curve in Fig. 4(b). The
plot of Fig. 4(a) is virtually indistinguishable from that of
Fig. 2(a) in the main text. The plot of X measured in simula-
tions in Fig. 4(b) is slightly off from the free energy prediction
compared with the excellent match seen in Fig. 2(b) in the main
text. The latter point may be related to the smallness of the
numerical value X|R=R(g), i.e., Xe|R=R(g) B 1.3–1.4 (see Table 1 in
the main text), indicating the sensitivity to sampling fluctua-
tion. Yet, the deviation is at most on the order of 10 percent,
and the general agreement on the N dependence is still
remarkable. Therefore, we conclude that as expected from
theory, the results are insensitive to the size measure upon
appropriate rescaling. This highlights the importance of the
notion of topological length scale Ne and associated coordina-
tion number Xe in the problem. We also note that the estimated
numerical values for the rescaling factors Re and Xe listed in
Table 1 in the main text are consistent with the assumption on

Fig. 4 Comparison of free energy prediction (solid line) with numerical
simulation data for spatial size R and coordination number X of rings in
their non-concatenated melt. Unlike in Fig. 2 in the main text, here the
measure of the ring size is the gyration radius R = R(g). Numerical data are
obtained from the literature (squares,11 circles,12 triangles4). (a) Plot of R/Re

as a function of N/Ne. (b) Plot of X/Xe as a function of N/Ne. See Table 1
in the main text for details of simulation models and the estimated values
of Re and Xe.

‡ Even if we use the first line of eqn (13) instead of the second in the free energy
minimization calculation, the results basically agree with those in Fig. 2 with the
deviation being smaller than the symbol size there.
§ In Cates and Deutsch’s argument, they adopted as a competing term with
Funlink the free energy of squeezing an ideal chain into a narrow space of size R

(which may be regarded as a proxy of Funknot here).37 This amounts to setting
b = 2 in eqn (11), which is not compatible with the extensivity requirement
discussed in the text; see ref. 39 for the scaling structure of confining a (non-ideal)
chain in a closed space.
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the onset of the TC, i.e., the ideal chain statistics applies up to
the chain length Ne (see the discussion in the Section Effect of
chain stiffness and concentration in this Appendix).

The comparison done here indicates that, for most practical
purposes (numerical or theoretical analysis), it would be more
useful to adopt the definition of X in terms of R(s) rather than
R(g); the numerical value is more robust against the sampling
fluctuation, and fits in well with that expected from the general
packing problem as discussed in the main text.

Onset of compact statistics

In the main text, we have shown that the effective exponent
neff(N) for the size R B Nneff of the ring continuously decreases
before reaching the asymptotic compact statistics regime with
n = 1/3 (Fig. 2 in the main text). Here we give a rough
estimate for the ring length Nc, which signals the onset of
the compact statistics regime. For convenience, we rewrite the
free energy given as eqn (1) in the main text as F = Funlink(C) +
Funknot(C;N), where Funlink(C)/kBT = �ln[1 � C] and
Funknot(C;N)/kBT = (N/Ne)(Ce/C)1/(3n0�1).

First, we note that the limit C(�X/Xc) - Cc C 1 signals the
onset of the compact statistics. In other words, Xc is the max-
imum coordination number, which can be achieved in dense
ring polymer solutions. To deal with this limit, let us introduce a
number S c 1 such that Funlink(Cc)/kBT = S, thus Cc = 1 � e�S.
The free energy balance indicates Funknot(Cc;Nc)/kBT C S, which
leads to Nc/Ne C [(1 � e�S)/Ce]1/(3n0�1)S C Ce

1/(1�3n0)S.
We determine the value S from the following observation. If

we count the number of the pair of overlapping rings at N = Nc,
it is evaluated as Xc/2 per ring. Given that kBT is the natural
energy scale, it would be plausible to say that the energetic
penalty of kBT for each overlap at the maximum coordination
provides an appropriate energetic measure for the C- 1 limit,
which yields S C Xc/2.

We thus find Nc=Ne � C1=ð1�3n0Þ
e Xc=2. With Ce C 0.5 and

Xc = 15–20, the above argument provides the estimate Nc/Ne B 30.
Here, from the consonance with the packing picture discussed
in the main text (last part of Section 3), we adopt the coordina-
tion number defined in terms of the spanning distance as
the measure of the ring size. Although crude, this discussion
indicates a broad range for the crossover Nc/Ne B 30 (between
ideal and compact statistics regimes) in agreement with the
numerical simulation results.

In Fig. 5, we plot the prediction on the evolution of various
effective exponents with the increase in N during the crossover
regime.

Note that while ideally neff - 1/2 for N - Ne + 0 is expected,
Fig. 5(a) shows a slightly smaller value. This may be associated with
the mean-field nature of the theory. In fact, around the onset of the
TC N B Ne, the free energy due to TC is comparable to the thermal
energy, and therefore, the value determined by free energy mini-
mization does not necessarily correspond to the actual value.

Finally we mention that although most of recent works
admit the asymptotic size exponent n = 1/3, there is another
claim against it.40 If n 4 1/3 in the long chain limit, it implies
that the coordination number M grows with N without

saturation, and hence the dynamical and diffusion exponents
z and g keep increasing with N.

Effect of chain stiffness and concentration

Topological length scale Ne. Consider a dense solution of
rings with segment volume fraction f, in which individual
rings are composed of N beads of size a. There is a bending
potential introducing the directional persistence of bonds such
that the segment length l 4 a. For short rings with N o Ne, the
ideal chain statistics implies the ring size R B lM1/2 = ap1/2N1/2,
where M = aN/l is the number of segments and p = l/a
is the segment aspect ratio. The coordination number is
X B R3f/(Mvseg) B R3f/(Na3), where vseg B a2l is the segment
volume. At the onset of the TC, we have Xe B Re

3f/(Nea3) with
Re B ap1/2Ne

1/2, which is converted to

Ne �
Xe

2

f2p3
(14)

where the proportionality constant depends on the definition
of the measure of the ring size (R(s) or R(g) etc.). This is very
similar to the entanglement criterion in a dense solution of
linear polymers due to Kavassalis–Noolandi.8,21 The observa-
tion of constant Xe (see the main text) indicates the concen-
tration and stiffness dependence of the topological length scale
Ne B f�2p�3, the systematic investigation of which in dense
solution of ring polymers would be very interesting. Note that
in the ‘‘genuine’’ semidilute regime f t p�3, the correlation

Fig. 5 (a) Effective size exponent neff defined as R(N) B Nneff. (b) Effective
exponents of global relaxation time zeff and diffusion coefficient geff

defined, respectively, as t(N) B Nzeff and D(N) B N�geff.
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effect will alter the dependence as Ne B f1/(1�3n0)p3(2–3n0)/(1–3n0) B
f�5/4p�3/4 with the SAW exponent n0, where the final expression
is obtained by the Flory approximation n0 C 3/5.

Ring size. From the definition of the coordination number,
the ring size is written as R B a(NX/f)1/3. For long rings,
N c Ne, the equilibrium X is determined by the free energy
discussed in the main text. Since the free energy is constructed
based on the coordination number, it is independent of f and
p. Bearing this point in mind, let us rescale the ring size in
units of Re B ap1/2N1/2. After some arrangement, we find

R

Re
� N

Ne

� �1=3
X

Xe

� �1=3

¼ N

Ne

� �1=3

g N=Neð Þ½ �1=3 (15)

where the function g(x) follows from the free energy, and thus,
is independent of f and p, too, with the asymptotic behaviors
discussed in the main text. Therefore, the dependence on f and
p is absorbed in rescaling factors Re and Ne, and one can
collapse various data sets with different system parameters
onto the master curve as demonstrated in the main text.

In the long chain limit N c Ne, the ring size is

R�Re
Xc

Xe

� �1=3
N

Ne

� �1=3

�ap1=2Ne
1=6 Xc

Xe

� �1=3

N1=3�a Xc

f

� �1=3

N1=3

(16)

where eqn (14) is used in the last relation.
Quantitative evaluation of Re. Since the ideal chain statistics

without the TC applies for short rings with N o Ne, it is possible
to provide a quantitative estimate for Re. In terms of mean
square size, we find

RðsÞe

� �2
¼ pNea

2

4
(17)

RðgÞe

� �2
¼ pNea

2

12
(18)

for spanning size R(s) and the gyration radius R(g), respectively,
at the onset of the TC. With p C 2lp/a expected for a worm-like
chain, one can see that the values used in Fig. 2(a) in the main
text and Fig. 4(a), which are summarized in Table 1 in the
main text, are indeed reasonable. In addition, the relation
(R(s)

e )2/(R(g)
e )2 = 3 indicates the ratio Xe|R=R(s)/Xe|R=R(g) C 33/2 C 5.2

between the coordination numbers based on two different
measures for the ring size. As seen in Table 1 in the main text,
this is almost the case within statistical accuracy.
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