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Clustering-induced self-propulsion of isotropic
autophoretic particles

Akhil Varma, a Thomas D. Montenegro-Johnson b and Sébastien Michelin *a

Self-diffusiophoretic particles exploit local concentration gradients of a solute species in order to self-

propel at the micron scale. While an isolated chemically- and geometrically-isotropic particle cannot

swim, we show that it can achieve self-propulsion through interactions with other individually-

non-motile particles by forming geometrically-anisotropic clusters via phoretic and hydrodynamic

interactions. This result identifies a new route to symmetry-breaking for the concentration field and to

self-propulsion, that is not based on an anisotropic design, but on the collective dynamics of identical

and homogeneous active particles. Using full numerical simulations as well as theoretical modelling of

the clustering process, the statistics of the propulsion properties are obtained for arbitrary initial

arrangement of the particles. The robustness of these results to thermal noise, and more generally the

effect of Brownian motion of the particles, is also discussed.

1 Introduction

Achieving self-propulsion through fluids at the micron scale
entails many challenges associated with the dynamics of the
surrounding fluid medium, including overcoming the dominant
effect of viscous dissipation that precludes any inertia-related
history effect, and breaking temporal and spatial symmetries in
the flow forcing.1,2 Swimming micro-organisms (e.g. bacteria or
swimming algae) achieve self-propulsion using the propagation
of waves along their cilia or flagella, in order to generate periodic
yet non-reciprocal strokes.3–5 These biological systems have
inspired the experimental design of many artificial swimmers in the
lab.6–9 However, such mechanical systems present fundamental and
practical limitations, such as moving parts or their reliance on an
external, often macroscopic, actuation (e.g. unsteady magnetic field).

Catalytic colloids represent another category of artificial
micro-swimmers that rely instead on self-generated gradients in
the physico-chemical properties of their immediate environment.10

Self-diffusiophoresis is such an example, where a chemically-active
colloid moves in response to a concentration gradient of a solute
species that is either produced or consumed at its surface through a
catalytic reaction.11,12 Other phoretic systems rely on self-generated
gradients of temperature (thermophoresis) or electric potential
(electrophoresis) to self-propel.13,14 Such autophoretic motion
fundamentally requires two distinct physico-chemical properties

of the particle. Short-range interactions between its surface and
the surrounding solute generate an effective slip motion of the
fluid in response to gradients in surface concentration, a property
generally termed as phoretic mobility,M.15 The second property,
the chemical activity,A, refers to the particle’s ability to absorb or
release solute through chemical reactions at their surface.16

A major advantage of such active colloids in comparison
with macroscopically-actuated microswimmers lies in the local
nature of the interaction phenomena at the heart of their
propulsion, which allows for complex collective behaviour; in
contrast, collective motion of magnetic swimmers is essentially
driven by a macroscopic forcing that is uniform at the scale of the
inter-swimmer distance. Experimentally, these active colloids
have been observed to reach speeds ranging from a few to tens
of diameters per second.17–19 Promising experimental results and
theoretical predictions have motivated research into possible
biomedical and engineering applications such as cargo transport
for targeted drug delivery20,21 and micromachines.22

These colloids are fundamentally out of equilibrium as they
continuously convert physico-chemical energy of their environment
into mechanical work. Hydrodynamic and chemical interactions
of such self-propelled particles may lead to complex collective
dynamics including clustering23–25 or richer patterns,26–29 which
can often be linked to instabilities of homogeneous suspensions.30,31

Individually non-motile particles can further achieve self-propulsion
by forming stable chemically-inhomogeneous clusters,32,33 a
phenomenon which was recently also observed in experiments.34,35

To achieve self-propulsion, autophoretic colloids must set the
surrounding fluid into motion which fundamentally requires an
asymmetric distribution in the solute concentration at their
surface. So far, three different mechanisms have been identified
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to achieve such symmetry-breaking of the concentration field:
(i) an asymmetric chemical patterning of the surface (e.g. Janus
particles,16,19) (ii) an asymmetric shape of the chemically-
homogeneous colloid36,37 and (iii) an instability resulting from
the non-linear advective coupling between the solute dynamics
and the flow motion.38,39 The former two are fundamentally
associated with the particle design, and are built into its
architecture. The latter, in contrast, arises spontaneously from
the destabilization of a non-motile isotropic state.

The purpose of the present work is to introduce and char-
acterize a fourth route to symmetry-breaking of the concentration
field and self-propulsion, wherein geometrically- and chemically-
isotropic particles interacting with diffusive solutes do not propel on
their own but instead gain locomotion by forming asymmetric
clusters. All particles are identical here, which is a fundamentally
different situation from the assembly of chemically-inhomogeneous
molecules from a mixture of two different types of particles.32,33

Identical isotropic phoretic particles which can attract (forA andM
of opposite signs) each other because they generate radial
concentration gradients which induce a phoretic drift on the
other particles. This phoretic attraction combined with steric
constraints enable only a discrete set of stable configurations
that may display a geometric asymmetry (Fig. 1), which is a
sufficient ingredient for self-propulsion of this assembly.37

This collective self-propulsion is intimately linked to the
exact geometry of the particle assembly, which itself results from
the dynamic phoretic clustering of the particles. An essential goal
of the present work is therefore to characterize the statistical
properties of the particle arrangement arising from the clustering
process, and therefore requires a careful modelling of this dynamics.

Note that self-propulsion and collective dynamics of chemically-
isotropic and individually non-motile particles was also observed for
colloidal particles trapped at a fluid–fluid interface;40 then fluid
motion resulted from the Marangoni stresses at the free surface
rather than a direct hydrodynamic forcing by each particle as
considered here.

The general problem for N particles is first presented in
Section 2. In Section 3, the collective dynamics of two identical
isotropic particles is considered in detail and their relative
motion is computed analytically. Such analytic solutions are
not available for larger number of particles and Section 4
focuses on the modeling of the clustering dynamics and cluster
self-propulsion. A reduced-order model, validated with full numerical
solution using a regularized Boundary Element Method (BEM),
is then used in Section 5 to determine the statistics of formation
of different clusters, their velocity and the resulting mean properties

and their evolution with N. Section 6 analyses the effect of noise
and Brownian motion on these results and conclusions are
finally drawn in Section 7.

2 Collective dynamics of N isotropic
phoretic particles

The dynamics of N identical spherical particles is considered in
an unbounded fluid of viscosity Z and density r. The surface of
the particles interacts with a chemical solute suspended in the
fluid phase; following the classical continuum framework,15,16,41,42

this local interaction results in an effective slip velocity
MðI� nnÞ � rC where C(x) is the surface solute concentration,
n the local normal unit vector to the surface andM the phoretic
mobility, which is a signed characteristic of the solute–particle
interaction. The second physico-chemical property of the particles’
surface is its activity, namely its ability to alter the solute
concentration (e.g. through catalytic reactions). For simplicity,
this activity is modeled here as a fixed-flux emission (A4 0) or
absorption (Ao 0) of solute, but this framework could easily be
extended to more complex chemical kinetics.42–45 The solute
diffuses in the fluid domain with diffusivity k, and its far-field
concentration is noted CN. The particles considered here are
geometrically and chemically identical and homogeneous, i.e.
A and M are constant and uniform for all spherical particles,
which are also of the same radius.

The radius a of the particles is chosen as the characteristic
length scale. The relative solute concentration is then defined
as c ¼ C � C1ð Þ=ðjAja=kÞ, and characteristic velocity and pressure
are chosen as jAMj=k and jAMjZ=ka, respectively. In the
following, all quantities are non-dimensionalized using these
characteristic scales.

We assume that the particles are small enough so that
inertial and advective effects are negligible on the fluid and
solute transports (i.e. the Reynolds number, Re ¼ rjAMja=ðZkÞ
and Péclet number, Pe ¼ jAMja

�
k2 are both small). Thus, in

this purely diffusive limit, the solute concentration field obeys
the steady state diffusion equation,

r2c = 0, (1)

with boundary conditions

cðr!1Þ ¼ 0; n � rcjSj¼ �A; (2)

where A ¼ A=jAj ¼ �1 is the dimensionless surface activity on the
surface Sj of each particle j. Since advection of the solute by the fluid
is neglected here, the solute dynamics can be solved for indepen-
dently and the fluid dynamics problem can then be obtained in a
second step using the dimensionless Stokes flow equations,

r2u = rp, and r�u = 0, (3)

with boundary conditions

ujSj¼ Uj þXj � Rj þ ~uj ; (4)

ũj = M(I � nn)�rc and u(r - N) - 0, (5)

Fig. 1 Stable planar arrangements of N = 6 attracting phoretic particles.
Colorbar shows the relative surface concentration. The asymmetry of the
geometry sets whether the cluster translates (left) remains stationary
(center) or rotates (right).
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where, M ¼M=jMj ¼ �1 is the dimensionless mobility, Rj is
the position of the center of particle j, and Uj =

:
Rj and Xj are its

translation and rotation velocities. The latter quantities are
determined uniquely by imposing that each particle j remains
force- and torque-free, i.e. for each j,

ð
Sj

r � ndS þ Fj ¼ 0; (6)

ð
Sj

r� Rj

� �
� ðr � nÞdS þ Tj ¼ 0; (7)

with r = �pI + (ru + ruT), the stress tensor. Fj and Tj are the
contact (e.g. steric) forces applied on particle j in a cluster.
When the particles are independent, they are force- and torque-
free, i.e. Fj = 0, Tj = 0 for each value of j. When the particles form
a cluster, their overlap is prevented by steric and other short-
ranged effects. Thus, in this case, the particles are individually
not force- and torque-free, but rigidly-bound. However, the
system of equations can be closed by imposing that the system

as a whole is force- and torque-free
P
j

Fj ¼ 0;
P
j

Tj ¼ 0

 !
. In

the following, we assume that steric interactions between
particles generate only central forces so that Tj = 0.

Indeed, for spherical and isotropic particles with negligible
solute advection, a rotation of any particle around its center
leaves the solute concentration unchanged. In the following,
we therefore solely focus on the translation velocities of the
particles, Uj (note that Xj may not be zero, but is set to satisfy
the condition that each particle remains torque-free).

For a single isolated particle (N = 1), the concentration field
is purely isotropic c(r) = A/r and does not generate any surface
gradient (or slip velocity) along its surface; a single isotropic
phoretic particle is therefore unable to self-propel despite its
chemical activity (see Fig. 2a).

However, the symmetry of the concentration field is broken
by the presence of another identical particle (Fig. 2b). The
surface concentration gradients lead to a mutual phoretic
attraction (or repulsion, depending on the relative sign of their
surfaces’ properties, A and M) between the particles along their
axis of symmetry, ez. The resulting phoretic interactions can be
computed and characterized analytically for two particles, and
this is the focus of the next section.

3 Phoretic clustering of two identical
particles
3.1 Intuitive model

To understand symmetry-breaking and the resulting clustering,
we first take a look at the far-field limit when the distance
between the particles d is much greater than their radius
(a/d { 1). In this limit, in addition to its own chemical field,
particle i is exposed at leading order to the source field A/rj of

particle j a i, which creates a locally uniform concentration
gradient

rcjRi
¼ �

A Rj � Ri

� �
d3

; (8)

with d = |R2 � R1|. In response to this gradient, particles
experience equal and opposite phoretic drift velocities along
their axis of symmetry15

U1 ¼
AMa2

d2
ez; U2 ¼ �

AMa2

d2
ez; (9)

with ez = (R1 � R2)/d. Phoretic attraction (resp. repulsion)
therefore arises for AM = �1 (resp. AM = 1). We shall henceforth
focus exclusively on the attractive case (AM = �1) which will
be responsible for clustering. When the far-field assumption
does not hold, this velocity must be corrected to account for
confinement effects in both the diffusion and hydrodynamic
problems. It is yet amenable to exact analytical calculation
using classical results for Laplace’s and Stokes’ equations in
bispherical coordinates.37,46,47

3.2 Analytical solution for arbitrary separation

The clustering dynamics of two particles is solved analytically
for arbitrary distance d using bispherical coordinates (t, Z, f)
defined from the cylindrical coordinate system (r, f, z) as

r ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
cosh t� m

; z ¼ a sinh t
cosh t� m

; with m ¼ cos Z: (10)

A constant value of t corresponds to a sphere of radius a/sinh|t|
with center located at a/tanh t. Hence, the unit vectors, et and
em are respectively, normal and tangential to a spherical surface.
Here both spheres have the same unit radius, and correspond to
t = �t0. The positive constants a and t0 are determined so that

d = 2a cosh t0, a = sinh t0. (11)

The general solution to Laplace’s equation for concentration c, that
decays in the far-field, is obtained within this framework46 as

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh t� m

p X1
n¼0

cnðtÞLnðmÞ; cnðtÞ ¼ Cn cosh nþ 1

2

� �
t

� 	
;

(12)

Fig. 2 Relative concentration field around (a) a single isotropic phoretic
particle and (b) two identical isotropic phoretic particles (A = 1 and M =�1).
In (a), the isotropic concentration field leads to no fluid motion nor
propulsion. In (b), the asymmetric concentration field around each particle
leads to a mutual attraction.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ju

ly
 2

01
8.

 D
ow

nl
oa

de
d 

on
 2

/6
/2

02
6 

4:
21

:3
5 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8sm00690c


7158 | Soft Matter, 2018, 14, 7155--7173 This journal is©The Royal Society of Chemistry 2018

where Ln(m) is the Legendre polynomial of degree n. Enforcing
the surface flux boundary condition, eqn (2),

� n

2n� 1
cn�1

0
t0ð Þ þ cn

0
t0ð Þ cosh t0 �

nþ 1

2nþ 3
cnþ1

0
t0ð Þ

þ sinh t0
2

cn t0ð Þ ¼ aA
ffiffiffi
2
p

e�ðnþ1=2Þt0 ;

(13)

determines the coefficients Cn uniquely.37 The surface slip
velocity is then determined from the concentration distribution
on the surface,37 and the reciprocal theorem for Stokes flow is
used to compute the axial velocities 8U of particles 1 and 2:37,48

U ¼ 1

2F�

ð
S1 ;S2

~u � r� � ndS; (14)

where r* is the hydrodynamic stress tensor of the auxiliary flow
field corresponding to the solution of Stokes equations around
rigid spheres S1 and S2 translating with velocities �U*ez, in
response to an outer force 8F*ez. This auxiliary flow field can
be expressed as

u� ¼ � ðcosh t� mÞ2
a2

@c�

@m
et þ

ðcosh t� mÞ2

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p @c�

@t
em; (15)

with the streamfunction c* given by37,46

c�ðt; mÞ
U�

¼ ðcosh t� mÞ�3=2
X1
n¼1

1� m2
� �

Ln
0 ðmÞUnðtÞ; (16)

UnðtÞ ¼ bn sinh nþ 3

2

� �
t

� 	
þ gn sinh n� 1

2

� �
t

� 	
: (17)

The no-slip boundary conditions on the spheres’ surface
write as

c� t0; mð Þ ¼ �
a2U� 1� m2

� �
cosh t0 � mð Þ2

; (18)

@c�

@t
t0; mð Þ ¼

a2U� 1� m2
� �

sinh t0
cosh t0 � mð Þ3

; (19)

and appropriate projections on the Legendre polynomials
provide an explicit determination for bn and gn. The shear
stress distribution on the surface is then determined as37

stm�ðt; mÞ ¼
1

a3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p @

@t
ðcosh t� mÞ3@c

�

@t

� 	

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
a3

@

@m
ðcosh t� mÞ3@c

�

@m

� 	
;

(20)

and the hydrodynamic force on each sphere is obtained directly
as46

F� ¼ 2p
ffiffiffi
2
p

a

X1
n¼1

nðnþ 1Þ bn þ gnð Þ: (21)

Note that, due to action–reaction symmetry, this mutual
attraction/repulsion velocity depends only on the distance d
between the particles. Its value is hence computed numerically
at various separation, dc = d � 2a and is plotted in Fig. 3.

The phoretic slip model,15 eqn (5), at the heart of the present
modeling likely breaks down when dc B l with l the thickness
of the interaction layer where solute–particle interactions are
significant. Yet, the phoretic slip model remains valid every-
where except within a small lubrication region between the
particles which is only expected to introduce a subdominant
correction to the present predictions.

The clustering velocity converges to a unit value when the
particles are in contact. Hydrodynamic (lubrication) and phoretic
effects are thus insufficient to avoid particle contact in finite
time;49 short-ranged interaction forces must therefore be added
to account for intermolecular repulsive forces between the inter-
acting surfaces preventing particle overlap (i.e. steric effect). To
preserve the previous velocity formulation, this repulsive effect is
therefore included as an additional repulsive velocity to mimic
this behaviour, in the form of a smoothed step-function. The
complete expression for the clustering velocity is hence given by

Ua(d) = U(d) � C(1 � tanh(d(d � d*))), (22)

where C, d and d* are chosen appropriately so that the particles
have negligible separation after clustering (dc { a). This
clustering velocity is a function solely of the particles’ distance,
shown in Fig. 3, and the dynamics of the two particles can
therefore be described by an over-damped deterministic Lan-
gevin dynamics within an interaction potential:

dRj

dt
¼ � @E

@Rj
; with E R1;R2ð Þ ¼ E2p R1 � R2j jð Þ; (23)

and

@E2p
@d
¼ �UaðdÞ: (24)

This potential E is a measure of the stability of the two-particle
cluster, and the system evolves at each instant down the
direction of its steepest gradient.

For two particles, hydrodynamic and phoretic interactions
introduce an asymmetry in the system that enables the motion
of individual particles. Yet, the center of mass of the arrange-
ment remains stationary for identical particles, since the final

Fig. 3 Clustering velocity of a catalytic particle of unit radius. The solution
converges to 1/d2 decay, as expected in the far-field (dc -N); in the case
with repulsion velocity, C = 35, d = 25 and d* = 1.95 were chosen in
eqn (22).
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cluster (i.e. dimer) is front–back symmetric. For identical
particles, the emergence of global self-propulsion is therefore
restricted to N 4 2.

4 Modeling the clustering and
collective motion of N particles

While an analytical solution was amenable for N = 2 particles,
this is not the case for larger N. Analytical methods, based for
example on the Method of Reflections (MoR), can still be used
to provide asymptotic approximations in particular for large
separation distances between the particles (see Appendix B).
Such approximations provide valuable qualitative and quantitative
insight, but they fail to provide a description of the near-field
interactions. These could nevertheless be studied using asymp-
totics through lubrication analysis.49 Yet, in order to obtain a
complete description of both the chemical and hydrodynamic
problems for arbitrary arrangements, it is necessary to resort to
numerical simulations of the Laplace and Stokes problems. In
problems involving fluid–solid interactions, commonly employed
numerical techniques include finite element and immersed
boundary methods50 and their variations.51,52

Boundary element methods (BEM), based on classical
boundary integral representations of the flow field, have also
found an important niche in solving Stokes flow problems.53

However, their implementation for phoretic problems has only
been recent.54,55 Boundary element methods solve the Laplace
(1) and Stokes (3) equations outside a set of rigid particles by
using the fundamental integral representation of the solutions
to these harmonic and bi-harmonic equations, in terms of their
values and normal gradients on the bounding surfaces alone.
Such methods are therefore particularly well-suited for phoretic
problems in Stokes flows since the coupling of the concentration
and velocity fields occurs only on the particles’ surfaces.

Because they represent the solution as the superposition of
fundamental singularities (e.g. sources and stokeslet), classical
boundary element methods for Laplace and Stokes problems involve
singular kernels which require a separate analytical treatment of the
singular contributions and precise quadrature techniques. An
alternative is to regularize the singularities, for example using
the method of regularized stokeslets for Stokes flows.56–58

4.1 Regularised boundary element method

The concentration as well as the flow fields, being harmonic
functions, can be evaluated at any point in the domain using
boundary integral representations. BEMs are numerical approxima-
tions to these surface integrals obtained by discretising the surface
into a collection of elements. The surface concentration field is
evaluated by distributing regularized sinks and source dipoles
on the surface of the particle while the surface flow velocities are
computed by distributing regularized stokeslets and stresslets.
These regularised singularities are collocated at discrete points
on the surface (called nodes) which are element vertices.

We follow the computational framework of regularised BEM
developed for phoretic problems by Montenegro-Johnson et al.55

to generate mesh and quadrature routines for evaluation of surface
integrals. The surface of each phoretic particle is discretised into
3072 piecewise-quadratic triangular elements (1538 linear nodes).
Surface unknowns are discretized as linear functions over each
element for accurate computation of the concentration field and
traction on the surface. The method begins with the regularized
boundary integral equation for the concentration field in response
to the flux forcing on the active particles55

ð
Vf

cðxÞfe x; x0ð ÞdSx ¼
ð
S

�
cðxÞKe x; x0ð Þ � nðxÞ

� @cðxÞ
@n

Ge x; x0ð Þ
	
dSx;

(25)

where x is any point on the surface S of the spherical particles with
local normal n(x) and x0 is the point where concentration is to be
calculated. The regularised blob function and associated kernels
are given by

fe x; x0ð Þ ¼ 15e4

8pre7
; (26)

and

Ge x; x0ð Þ ¼ �
2r2 þ 3e2
� �

8pre3
; K e

j x; x0ð Þ ¼ rj
2r2 þ 5e2

8pre5
; (27)

with r = |x � x0| and re
2 = r2 + e2. Ge and Ke

j represent a regularised
sink and source dipole respectively. The essence of the regularized
boundary method is to express simply the left-hand side of
eqn (25) in terms of the local concentration c(x0) so as to obtain
an integral equation to solve for c(x0) on the boundary of the
particles. When x0 is located on the surface of a particle, the left-
hand side of eqn (25) can be expressed as (see Appendix A)ð

Vf

cðxÞfe x; x0ð ÞdSx ¼ c x0ð Þ
1

2
þ ek

4

� �
þ e
4

@c

@n
x0ð Þ þO e2

� �
;

(28)

with k the mean local curvature of the particle surface (here
k = 1 for spherical particles). It should be noted that the above
result is true for surfaces of arbitrary shape and that the effect
of the regularization introduces two different O(e) corrections
to the classical c(x0)/2 result obtained for singular boundary
integral methods. These corrections are respectively proportional to
the concentration and normal flux, which can be easily implemen-
ted in classical boundary integral methods frameworks.† A
similar correction should be implemented when x0 is not exactly
on the surface. It can however be demonstrated that these
corrections scale at leading order as O(e4/d4) and O(e3/d2) (here
d is the distance to the integration surface) and are therefore
negligible except in the immediate vicinity of the surface.

Once the surface concentration field has been obtained, the
surface slip velocity, ũ, is computed from the particle’s phoretic
mobility property. The boundary integral formulation of the
Stokes flow problem and force- and torque-free conditions on
each particle is then solved for the flow traction and translation

† The latter was erroneously omitted in an earlier presentation of the method.55
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and rotation velocities Uj and Xj of the different particles
using55,56

ð
Vf

ujðxÞfe x; x0ð ÞdSx ¼
1

8p

ð
S
Se
ij x; x0ð ÞfiðxÞ

h

� uiðxÞT e
ijk x; x0ð ÞnkðxÞ

i
dSx;

(29)

where f is the surface traction and the flow velocity at the
surface, u = ũ + U + X � x. Here, the Green’s functions Se and Te

represent a regularised stokeslet and its associated stress
tensor, respectively:

Se
ij x; x0ð Þ ¼

r2 þ 2e2
� �

dij þ rirj

re3
; (30)

T e
ijk x; x0ð Þ ¼

�6rirjrk � 3e2 ridjk þ rjdik þ rkdij
� �
re5

� (31)

If one is only interested in the resulting motion of the particles,
such a boundary integral approach is particularly well-suited
as no bulk quantity needs to be computed and remeshing
the domain at each time step is unnecessary. The integral in
the left-hand side of eqn (29) can be treated similarly as for the
Laplace problem. Only if necessary (e.g. for plotting purposes),
the surface distribution of concentration and velocity may be
used to compute their bulk distribution, using the fundamental
integral representations.

For simplicity, we restrict the following analysis to two-
dimensional clustering and self-propulsion of the spherical
particles. However, we note that the solute diffusion and hydro-
dynamic problem remain three-dimensional and unbounded.
A variable mesh size is implemented along both polar and
azimuthal directions of each sphere such that the mesh is
refined within and near the plane of clustering. Further, in
stable clusters, particles are arranged on a regular hexagonal lattice.
Additional mesh refinement is then performed in the clustering
plane near the positions of particles’ contact on hexagonal lattices.
This meshing provides an efficient framework to compute the
swimming velocity of clustered particles (see Fig. 4).

The regularization parameter e must be chosen small enough
to approach the true solution but large enough to avoid a singular
behaviour of the integral equation; a value of 0.005 and 0.01 is

typically used. This regularized boundary element method was
shown to provide accurate computations for near- and far-field
dynamics of various phoretic problems.55 We validated here the
method on the two-particle problem for which an analytical
solution was obtained. Using the above mentioned meshing, an
accuracy of about 1% was obtained on the swimming velocity
of the cluster even for particles near contact with dc = 0.01 and
dc = 0.02 (about 10 times the local element size in the
adapted mesh).

In the following, two different types of problems are considered
and solved numerically. In the first one, the detailed kinematics of
the N-particle system is marched in time using an adaptive two-
step Adam–Bashforth method, where the time step is determined
on the smallest-separation between the particles. To prevent
particle overlap, a soft repulsive potential is introduced akin to
that leading to the corrective relative velocity for the two-particle
system. A relatively coarse and uniform mesh (512 nodes per
sphere) is used to compute the velocities of the particles, for which
computing the complete set of trajectories for 6 particles initially
distributed within a circle of radius Rmax = 10 requires about
12 hours using Matlab on a desktop computer. This computa-
tional cost is prohibitive for large number of simulations (see
Section 4.3), hence providing a clear motivation for a reduced-
order model of the clustering dynamics. These accurate BEM
simulations nevertheless provide the required reference for
validation of such model.

In the second class of problems, regularized BEM are used to
obtain the translation and rotation velocities of a cluster of
phoretic particles (i.e. frozen relative positions). Numerically,
the particle assembly is considered as rigid, and the resulting
velocity of these stable clusters is computed with inter-particle
separation, dc = 0.01 and dc = 0.02; a Taylor series expansion of
the global swimming velocity of the cluster in terms of contact
distance around dc = 0 is then used to extrapolate the true self-
propulsion velocities of clusters when particles are in actual
contact. To achieve sufficient accuracy on the global motion of
the cluster (in particular resolving properly the flow field
around the particles in the lubrication regions), a finer mesh
is used with 1538 nodes and refinement near the regions of
contact as described previously. Computation of the cluster
velocity for N = 13 yet requires E28 GB of allocated memory, but
only two computations are performed for each cluster shape.

4.2 Clustering vs. self-propulsion

The numerical methods outlined in the previous section are
now used to compute the dynamics of N identical spherical
particles of unit radius, with chemical properties resulting in a
mutual phoretic attraction i.e. AM = �1. For simplicity, their
initial arrangements (and hence dynamics) are restricted to two
dimensions, the solute diffusion and fluid motion remaining
fully three-dimensional. The present approach and formalism
could nevertheless be applied directly to 3D motion. Particles
are initially arranged randomly in a plane; under the effect of
phoretic attractions, complex non-equilibrium clustering dynamics
are observed leading to the formation of a stable rigid planar
assembly, held together by the balance between phoretic attraction

Fig. 4 An example of the mesh used for regularised BEM computations
(coarsened to 1/4th the total number of elements used so as to aid
visualisation). The surface concentration distribution on the 5-particle
cluster obtained from the simulations are also shown.
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and short-ranged repulsive forces. These clusters are stable in
the classical sense that any slight two-dimensional perturbation
would return them back to their original configuration. Using
optimal packing arguments (attracting phoretic particles tend
to minimize their relative distance), particles in such stable
clusters are found to arrange on a regular hexagonal lattice
where the particles have no relative degree of freedom left i.e.
each particle cannot move without separating from its adjacent
particle in the lattice.

An example of such dynamics is shown on Fig. 5. Initially,
the asymmetric concentration field generated around each
particle by its neighbours drives its motion. The general direction
of each particle tends to cluster them around the geometric
center of the assembly (referred to in the following simply as
‘‘center of mass’’, although no inertial process is involved here).
Initially and up until the particles form a rigid cluster, the velocity
of the center of mass of the particles is noticeably at least one
order of magnitude smaller than the velocity of individual
particles (see Fig. 5): the center of mass of the system remains
effectively stationary during that phase. This is somewhat
unsurprising given the opposite (attractive) velocities induced
by the particles on each other as observed in the 2-sphere case.

Yet, once a stable cluster is formed and particles experience
no relative motion, the global velocity is interestingly non-zero

(albeit small): particles swim as a cluster. This collective self-
propulsion arises from the geometric asymmetry of the formed
cluster which generates an asymmetric concentration field
and phoretic forcing on the assembly, a phenomenon that
was recently characterized for rigid systems of homogeneous
properties and various shapes.36,37

This transition clearly decomposes the dynamics of N phoretic
particles into two different regimes, that differ fundamentally
in the relative magnitude of the mean and relative velocities of
the particles. In the clustering phase (Phase I), particles are
individually force-free hydrodynamically. In the self-propulsion
phase (Phase II), they are rigidly-bound by the balance of
phoretic attraction and repulsive internal forces that prevent
their overlap, and the hydrodynamic force on each particle is
now non-zero. This profoundly modifies each particle’s hydro-
dynamic signature. The results of the numerical simulation of
the full Laplace and Stokes problems show that (i) Phase I is
characterized by a global velocity (i.e. center of mass velocity)
that is negligible in front of individual motion and (ii) this
global velocity is significantly enhanced in Phase (II) when the
particles are rigidly-bound.

These two features are confirmed by computing the asymptotic
expansion of the particles’ velocity during each phase using the
method of reflections59 (see Appendix B). When the particles are

Fig. 5 (top) Clustering dynamics of 5 isotropic particles (A = 1, M = �1). The velocity of each particle is shown by black arrows and the color indicates the
concentration field. The red cross indicates the position of the center of mass. (bottom) Ratio of the magnitude of the center of mass velocity to the
average individual velocity magnitude of the 5 particles. A stable cluster is formed when there is no relative motion between the center of mass and
individual particles (green shade). The vertical dashed lines correspond to the three snapshots above.
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hydrodynamically force-free individually (i.e. not in contact,
Phase I), the translation velocity of particle j is obtained as

Ufree
j ¼ �AM

XN
j;k¼1
kaj

ejk

djk2
þ 5AM

2

XN
j;k;l¼1
kað j;lÞ

3 ejk � ekl
� �2�1
 �

ekj

djk2dkl3
; (32)

with djk = |Rj � Rk| the interparticle distance and ejk = (Rk � Rj)/
djk the unit vector directed from particle j to particle k. The
velocity of the center of mass is then

UCM ¼
1

N

XN
j¼1

Ufree
j ¼ 5AM

2N

XN
j;k;l¼1
kað j;lÞ

3 ejk � ekl
� �2�1
 �

ekj

djk2dkl3
� (33)

Considering now the final clustered configuration (Phase II),
the translation and rotation velocities of the cluster, Ucluster and
Xcluster are obtained as

Ucluster þXcluster � Rj ¼ Ufree
j þ Fj

6p

þ
X
kaj

Iþ ejkejk

8pdjk
� 3ejkejk � I

12pdjk3

� 	
� Fk;

(34)

with
P
j

Fj ¼ 0.

These results are valid up to O(e6) corrections with e B a/d
the typical radius-to-distance ratio. At leading order in e, these
results indeed confirm that

(i) in the clustering phase (Phase I), particles exhibit O(e2)
individual velocities, while their center of mass velocity is O(e5),

(ii) in the self-propulsion phase (Phase II), the global cluster
velocity is O(e3) and there is no relative motion.

The analysis presented in Appendix B also demonstrates the
physical origin of this increased global motion as a consequence
of the non-uniform hydrodynamic resistance experienced by the
different particles within the cluster, illustrated by the right-
hand-side of eqn (34). At leading order, the phoretic forcing
is pairwise and symmetric and therefore averages to zero.
Differences in hydrodynamic resistance between two particles
however introduces an imbalance that must be compensated by
a global translation and/or rotation.

This decomposition of the dynamics of the particles into two
successive and physically distinct phases is of further importance.
Self-propulsion is essentially restricted to Phase II where the
particles are clustered together. But, since the self-propulsion of
the particles depend on the geometry of the cluster formed as an
outcome of the clustering phase (Phase I), the self-propulsion
velocity of the assembly is indirectly, but entirely determined by
the detailed kinematic process of phoretic clustering.

4.3 A reduced-order model of the clustering dynamics:
pairwise interactions

Characterizing the collective self-propulsion properties of
isotropic particles therefore critically relies on a good under-
standing and modelling of the clustering phase. The clustering
process conditions the final shape and therefore collective

propulsion properties. Besides the maximum velocity achievable
for N particles, prominent self-propulsion properties such as the
mean and most probable velocities require determining the
probability of formation of a given cluster configuration through
the phoretic attraction of N particles that are initially randomly-
distributed. The approach chosen here is a Monte-Carlo frame-
work where, for each value of N, a large number of clustering
simulations are run starting from random initial particle arrange-

ments, and the probability Pphoretic
q to obtain a given cluster shape

(indexed by q) is computed from the number of runs leading to
that particular cluster shape. Due to their attractive nature,
phoretic interactions of the particles tend to maximize their
packing in their clustered configuration. Restricting here our
analysis to two-dimensional clusters, particles are arranged on a
regular hexagonal lattice in their final configuration. For N r 5
particles, a single stable shape is obtained (see Fig. 4), while for
N 4 5, the number of final distinct cluster configurations is finite
but increases exponentially with N; for example: N = 6, N = 8 and
N = 10 lead to 3, 9 and 35 distinct configurations, respectively.

Boundary element methods are well suited to compute the
detailed dynamics accurately, but are prohibitively expensive
for running thousands of simulations of the full temporal
dynamics as needed for obtaining the probabilities of different
cluster shapes starting from random initial positions (see
Section 4.1). Motivated by the distinct features of the clustering
and propelling phases identified in the previous section, our
approach is therefore to split the problem into two distinct
parts: (i) determine the distribution of probabilities for the
different cluster shapes using a reduced-order model of the
clustering dynamics, and (ii) compute the exact propulsion
velocity of each final cluster using regularized BEM.

The reduced-order model of the clustering phase required
for the first part must be sufficiently accurate, both in the far-
field and near-field limits, so that the final configuration is the
same as that predicted by BEM, yet be sufficiently inexpensive
computationally to be able to run a large number of simulations
for each N. At leading order (i.e. far-field approximation), the
relative velocity of the particles is determined as the super-
position of symmetric interactions between pairs of particles.
However, this method fails to provide accurate solutions when
the separations between particles are small (dc o a). The
method of reflections detailed in Appendix B, which provides
iterative approximations of increasing accuracy, is an appealing
alternative to full simulations as it can capture the multi-particle
dynamics, but it is fundamentally restricted to distances greater
than the size of the particle (a/d o 1) for numbers of reflections
small enough for practical implementation.

Turning back to the two-particle case, an exact solution for
the Laplace and Stokes problems was obtained in Section 3 which
includes a full description of confinement and lubrication effects.
We exploit this solution here to account for far- and near-field
dynamics properly, by superimposing the pairwise phoretic drift
velocities between the particles whilst retaining the full exact
solution in eqn (22) Ua(djk) (including the repulsive interaction that
prevents particle overlap). Note that a fundamental restriction of
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this superposition assumption is its inability to predict any
collective propulsion: the velocity of the center of mass of the
arrangement is identically zero by definition. Yet, we observed
in the full dynamics that such center of mass motion is
negligible during the clustering phase, so that this constraint has
little physical implication in practice. It should further be empha-
sized that this superposition of pairwise solutions is not derived
from first principles, but rather on its practical ability to capture
correctly the leading order interactions both for near- and far-field
limits, and to match the BEM predictions with good accuracy.

The accuracy of this reduced-order interaction model is therefore
checked in detail against BEM simulations in for N = 3 and N = 6
particles. Fig. 6 illustrates the clustering dynamics of N = 3 particles
starting from arbitrary initial conditions and quantitatively
compares the rate of change in relative distance at each time
as predicted by the reduced-order model to that obtained using
full BEM simulations. The model is observed to predict the
clustering velocities with excellent accuracy except for the final
stages of clustering where particles are already in contact but for
two of them, and the final shape is already fully determined. A
second validation of the ability of the reduced-order model to
predict the final configuration correctly is proposed in Fig. 7
where the evolution in time of three different initial arrange-
ments of six particles (N = 6) are plotted.

These results confirm that this model is sufficient to capture
the final shape of the cluster (which is the only piece of

information that it will be used for): slight discrepancies in
absolute positions of the particles arise only in the final stages
of clustering, and do not affect their relative arrangement (i.e.
they only correspond to a slight translation or rotation of the
whole assembly). Hence, the reduced-order model is chosen in
the following as a suitable substitute for BEM for modelling the
clustering phase (Phase I) as it presents a good compromise
between the accuracy of its prediction of the final shape and
efficient computations (a few seconds are necessary for a single
run, compared to tens of hours with BEM).

In practice, the velocity of particle j is computed in this
reduced-order model as

dRj

dt
¼
X
kaj

Ua djk
� �

ejk; (35)

with Ua(d) given in eqn (22). One should note that this reduced
model is formally equivalent to the motion of N particles down
the steepest gradient of an interaction potential E:

dRj

dt
¼ � @E

@Rj
; (36)

with

E R1; . . . ;Rnð Þ ¼
X
jo k

E2p Rj � Rk

�� ��� �
; and

@E2p
@d
¼ �UaðdÞ:

(37)

It should be stressed here that this formal equivalence only
holds rigorously for the reduced-order model, and not for the
full problem (e.g. in the latter, phoretic interactions lead to a
net global motion). Within the reduced-order model frame-
work, particles arrange to minimize E which is equal to zero for
infinitely-distant particles. As such, E can be understood as a
measure of the cohesive interactions within and stability of a
particular cluster shape. Noting Eq its value for cluster shape q,
a Boltzmann distribution would therefore be expected if the

Fig. 6 Top: From right to left, snapshots of the phoretic clustering in a
system of N = 3 particles obtained using BEM. For visualization purposes,
(a) is zoomed out; the coloured lines represent the distance between
centers of different pairs of particles. Bottom: The rate of change of
separation (

:
dc) between particles due to phoretic attraction predicted by

the reduced model (dashed lines) and BEM (solid lines). The positions of
the particles at each instant are set to that of the full BEM simulations. To
avoid spurious repulsive velocities arising from slight differences in the
equilibrium distance in the reduced model and BEM results and the
stiffness of the repulsive model, the repulsive velocities in the reduced-
order model are removed once two particles are in contact. The stages of
clustering (a) to (e) are also shown (dashed-dotted lines).

Fig. 7 Comparison of the positions of the particles predicted by BEM (in
black) and reduced model (in red) at various instances. The three different
initial distributions of the particles, which differ only in the position of a
single particle (in blue), lead to three different cluster shape using BEM, all
of which are correctly captured by the reduced-order model.
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cluster formation was purely stochastic and driven solely by the
stability of the final shape, with the probability Ps

q to obtain

cluster q equal to

Ps
q ¼

e�Eq= 2s2ð ÞP
m

e�Em= 2s2ð Þ
; (38)

and s2 characterizes the background noise in the system: s = 0

leads to P0
q ¼ 1 for the most stable cluster (i.e. that with

minimum Eq), and P0
q ¼ 0 for all others, while s = N results

in all cluster shapes having the same probability.

5 Phoretic clustering and
self-propulsion

Using the reduced-order clustering model described in the
previous section (Phase I), a large number of simulations are
performed, with random initial spatial arrangements of particles
in order to obtain the probability of formation of the different
cluster configurations through phoretic attractions. In a second
step, the self-propulsion velocity of each cluster (Phase II) is
computed accurately using BEM and hence, the self-propulsion
statistics are obtained for a given system of N particles (i.e.
maximum, mean and most probable velocities).

5.1 Probabilities of formation of stable rigid clusters

To study the complete evolution of clustering of an N-particle
system from zero interaction potential to a final cluster
potential Eq, the particles have to ideally begin from an infinite
separation. For the practical purpose of simulations, the parti-
cles are initially distributed randomly within a large disk of
radius Rmax. It is ensured that Rmax is sufficiently large that it
does not significantly affect the probability statistics (Fig. 8).
For N = 6, which is the smallest value of N for which multiple
stable configurations are obtained, probability values converge
for Rmax \ 20 (see Fig. 8), which corresponds to a density (area
fraction of particles in the clustering plane) of 1.5%. For all
N r 12, it is observed that this area fraction of 1.5% is
sufficient to give accurate probability statistics.

The number of independent trials needed to determine the
probabilities of configurations accurately increases with N. We
found that for N = 6 and N = 7, 2000 distinct runs are sufficient
and the resulting probability distributions and accuracy are
shown in Fig. 8. Clusters are labelled by their effective interaction
potential Eq, i.e. the most stable cluster is on the left.

Interestingly, Fig. 8 shows that the most stable cluster (i.e.
that with least effective potential Eq in the reduced-order model)
does not have the highest probability as one would expect in a
stochastic process. The phoretic clustering described by eqn (37)
(i.e. down-gradient of the interaction potential) does not lead to
an absolute but to a local minimum, as it depends on the
detailed route followed in the configuration phase space during
the clustering process. Less ‘‘stable’’ cluster shapes minimize
the interaction potential only locally but may be wider attractors
in the (2N � 3)-dimensional phase space that characterizes the

clustering motion. Because of the intimate link of cluster shape
and velocity, this is expected to hold profound consequences on
the collective self-propulsion properties of the N particles.

Once formed, a cluster cannot transition to another con-
figuration without additional forcing (i.e. ‘‘energy’’ input).
Even though the differences in the final potential between

configurations DEpq ¼ Ep � Eq
�� ��� �

are relatively small in com-

parison to Eq
�� �� and Ep

�� �� (i.e. the change in potential from the

initially-dispersed configuration to the final clustered shape),
switching from one configuration to another requires overcoming

a much larger potential barrier DEbarrp!q


 �
. This is illustrated in

Fig. 9 in the case of N = 6 particles: changing the position of a
single particle around the rest of the cluster allows the arrange-
ment to describe all three possible stable configurations (identified
as minima in effective potential E).

Fig. 8 Stable 6-particle and 7-particle clusters and their probabilities
obtained from 2000 independent trials. Bar graph shows probabilities
when particles begin at different random locations within a circle of radius
Rmax for each trial (histogram shown for Rmax = 20 for 6-particle and
Rmax = 22 for 7-particle system respectively). Measurements are made for
different Rmax to show its influence. Range bars represent 2 standard
deviation limits of probabilities computed from 50 such events.
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While the difference in effective potential of the three stable
configurations is small DEpq � Oð0:01Þ ({p, q} C {A, B, C}),
transition from one configuration to another requires reaching
intermediate stages representing a potential barrier typically an

order of magnitude larger, DEbarrp!q � Oð0:1Þ. Note also that the

difference in effective potential between the pre-clustering state
(ideally, E ¼ 0) and final configuration is yet an order of

magnitude larger Eq
�� �� � Oð1Þ.

5.2 Propulsion velocities of rigid clusters

Geometrically-asymmetric phoretic systems self-propel with a
global translation and/or rotation velocity determined only by
the asymmetry of their geometric shape;37,60 in particular, this
velocity is independent of the particles’ size. As expected from
symmetry arguments, configurations with a single mirror plane
of symmetry cannot undergo any rotation, while configurations
which are antisymmetric about a plane (left unchanged by a 1801
rotation) do not translate. Moreover, configurations with rotational
symmetry neither translate nor rotate (see Fig. 8 for example).

As explained, in this clustered arrangement, the relative
positions of the particles are fixed in a regular hexagonal
lattice. For each N-particle system, the regularised Boundary

Fig. 9 Evolution of the assembly potential while rolling a single particle
around the cluster from an initial stable configuration A of potential
EA ¼ �6:94 in order to sample all configurations. Clusters A, B and C

represent local minima of the effective interaction potential E. DEbarrA!B � 0:4

represents the minimum gain in effective potential required to transition
from cluster A to cluster B, while the actual potential difference between
clusters is just DEAB � 0:05. EAj j � 7 is the change in effective potential
between the initial stage and final clustered configuration. The results for
1801 r y r 3601 are obtained by symmetry.

Fig. 10 Fastest translating (top), fastest rotating (center) and most probable clusters (bottom) for N = 9 to 12. The relative surface concentration is shown
in color for each cluster as well as its propulsion, stability and probability characteristics.
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Element Method detailed in Section 4.1 is used to compute the
exact translational and angular velocities of propulsion (Phase II) of
all possible cluster configurations. The fastest propelling and rotat-
ing clusters, as well as the most probable ones are shown in Fig. 10
for 9 r N r 12. By defining the normalised effective potential for
shape q for fixed N as Er ¼ Eq � Emin

� ��
Emax � Eminð Þ, we observe

that the fastest propelling (translation or rotation) clusters are some
of the least stable clusters with respect to the normalised effective
potential Er. This is the result of their large geometric eccentricity,
responsible for their larger propulsion velocity through the larger
concentration gradients at their surface it creates. In contrast, the
most probable clusters are characterized by their more compact and
roughly symmetric arrangement around their geometric center (see
Fig. 10).

5.3 Clustering-induced self-propulsion properties

Combining the results of the previous sections, the statistical
properties of the collective self-propulsion of N isotropic parti-
cles resulting from their phoretic clustering are obtained here.
Fig. 11 shows the mean and maximum velocities of N-particle
clusters. In particular, for a given N, noting Pq the probability
and Uq the velocity magnitude (or equivalently, rotational
velocity magnitude Oq) of cluster shape q, the mean velocity
is defined as

UmeanðNÞ ¼
X
q

PqUq; OmeanðNÞ ¼
X
q

PqOq; (39)

with the sum carried out on all possible cluster shapes.
Because of the symmetry of the only existing final cluster, no

self-propulsion is observed for N r 4. Note that for all N 4 5, at
least one non-propelling cluster (having rotational symmetry) is
found; and therefore the minimum velocity for all N 4 5 is strictly
zero. The maximum propulsion velocity is observed to increase
steadily with N as the larger number of particles allows for more
eccentric shapes and larger phoretic forcing. However, the mean
velocity Umean(N) is observed to saturate for larger values of N. Insight
on this result as well as other statistical properties of importance
such as the most probable velocity and the variance in propulsion
velocities of large N-particle clusters is obtained by studying the
probability distribution of the propulsion velocities (Fig. 12).

The probability distributions of translational velocities of
clusters with N Z 10 show a prominent peak near the mean
value of the distribution (E2 � 10�3) indicating that clusters
with this velocity are also the most likely to form. The most
probable angular velocity, however, is lower than the mean
value (E2.5 � 10�5). As the maximum velocity (translation and
rotation) increases with N, the graph spreads indicating an increase
in variance of velocities between the various configurations.
However, the fastest propelling configurations, which are also
some of the most eccentric and elongated ones, have very low
probability so that such clusters are only seldom observed for
large N, and hence their contribution to the mean velocity is
minimal. For N Z 10, most of the contribution to the mean
properties is brought by clusters with an intermediate velocity
which remains relatively fixed with N, leading to the saturation
in the mean velocity as N grows. This can be qualitatively

understood from the most dominant features of the most
probable clusters as depicted in Fig. 10: those clusters display
more compact shapes with an asymmetry arising only from a
small number of particles.

It was already emphasized above that the probability of
formation of a given shape in the phoretic clustering process
does not correlate with its effective potential Er for the reduced-
order model, as would be expected in a classical system at thermo-
dynamic equilibrium, for which the probability of formation of
various configurations follows a Boltzmann distribution, eqn (38).
Not unexpectedly, this has consequences for the collective
propulsion properties: Fig. 11 shows that the mean velocity
resulting from phoretic interactions is systematically larger
than it would be under the sole constraint of minimizing the
effective interaction potential, regardless of the importance of
noise in the process.

6 Effect of noise

The previous sections focused on the clustering-induced collective
dynamics of phoretic particles, in purely deterministic systems: for

Fig. 11 Magnitudes of maximum (dashed) and mean (solid) translational
and rotational velocities of clusters obtained using BEM. The grey shading
represents the mean velocity obtained through an equilibrium distribution,
eqn (38) with the noise level s2, increasing from zero to infinity as the
intensity of shading gets darker.
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a given particles’ arrangement at time t, the evolution of the
particles’ position in time is fully determined. Yet, in practice, all
such systems which focus on microswimmers are subject to a
variety of stochastic processes (including thermal noise) which
continuously alter their motion. In the presence of background
noise caused by temperature of the surrounding fluid, passive
microscopic particles (or isolated isotropic phoretic swimmers)
undergo Brownian motion characterized by zero mean displace-
ment. Active particles however have a net displacement with
continuous reorientation of the direction of propulsion, thus
exhibiting diffusive behaviour in long time scales.61,62 Commonly
employed minimal models for these active Brownian particles
describe the essential dynamics involving overdamped motion
(Langevin dynamics) as well as their thermal reorientation.26,62

Equivalently, in the case of isotropic phoretic particles, we
describe the clustering process by its reduced-order model (see
Section 4.3) rather than using the full BEM simulations because
of its versatility and reduced computational cost, as well as to
maintain consistency with the rest of the manuscript. Hence,
the deterministic dynamics of the particles corresponds to a
collective minimization of the effective interaction potential E
as defined in eqn (37). The purpose of this section is therefore
to provide some insight on the robustness of these determinis-
tic results, i.e. how the results of self-propulsion statistics
obtained in the previous sections are modified in the presence
of background noise on the kinematics of individual particles.

In the absence of inertia, the evolution of the position R(b)
j (t)

of particle j under the effect of background noise is given by the
overdamped Langevin equation:

dR
ðbÞ
j ðtÞ
dt

¼ UjðtÞ þ njðtÞ; (40)

where its deterministic velocity, Uj (t) is given by eqn (37), and
nj (t) is a external Gaussian white noise, with zero mean and a
variance, s2I = hni(t)nj (t0)i = 2Dd(t � t0)dijI, where D is the
diffusivity of each particle in the fluid. Thus, the instantaneous
displacement of particle j at any time t is

dR(b)
j (t) = Uj (t)dt + dWj, (41)

where Wj is a Weiner process with zero mean and variance
s2tdijI. Discretizing eqn (41) by using Euler–Mayurama
method gives

R(b)
j (t + Dt) = R(b)

j (t) + Uj (t)Dt + DWj, (42)

DWj is also a zero mean Weiner process with variance
s2DtdijI. Eqn (42) is solved using an adaptive time stepping
method.

A system of N = 6 particles is the smallest system that
exhibits multiple clustered configurations, and for which
the introduction of noise is expected to potentially introduce
significant modification in the collective dynamics; we shall
henceforth consider N = 6 as an example to illustrate the effect
of noise on the clustering statistics and resulting propulsion
properties. A direct result of the component of randomness in
position of particle in eqn (42), is the formation of multiple
configurations from the same initial conditions of the system.
For each set of initial conditions (typically a few hundreds),
eqn (42) is used to run about 100 simulations. If the strength

of noise satisfies s2 � Eq
�� ��, background fluctuations are

sufficient to break the formed clusters and redistribute the
particles far apart. Hence, we restrict ourselves to the case
where s2 is much smaller than the absolute cluster potential,

Eq
�� �� so that phoretic effects are still dominant and clustering

Fig. 12 Probability distribution of (top) translational velocities U and (bottom) rotational velocities X of N-particle clusters. The distribution mean is
indicated by a dashed red line for each N.
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occurs. In the following, two different behaviours are observed
under the effect of noise, depending on its relative magnitude

(s2) and the effective potential barrier DEbarrp!q from configura-

tions p to q (see Fig. 9).

6.1 Low noise

Low noise conditions are characterised by s2 	 DEbarr, which
is not sufficient to change the configuration of a stable
cluster once formed. However, it can influence the clustering
dynamics by rearranging the particles as the system moves
down the steepest gradient in interaction potential, as seen in
Fig. 13.

Its influence is particularly important when particles are far
apart, i.e. when differences in E are small and of order s2. For
this reason, one may wrongly presume that noise would change the
probability statistics for the formation of cluster configurations.
Instead, the probability statistics remain identical to that in the
absence of noise (see Fig. 14).

This result can be explained as follows: although a low
background noise is expected to enable the system to explore
neighboring routes in the configuration space to minimize the
system’s potential, E, during the clustering phase, it is only
effective in the initial stages where system has low E; in the
later stages, the magnitude of the noise becomes too small
in front of the deterministic velocity (determined by rRiE)
to significantly alter the particles’ trajectories. However, a

lower potential during the initial stages does not ensure a low
potential of the cluster formed eventually (as observed in
Fig. 13). Thus, the noise just effectively redistributes the initial
arrangement of the particles. But this randomness is already
taken into account in the probability of formation of different
clusters by considering a large number of random initial positions.
As a result the collective propulsion statistics in Fig. 11 remain
unmodified in low-noise conditions.

6.2 High noise

In the presence of sufficiently large noise, s2 � O DEbarrp!q


 �
,

a cluster, once formed, continuously transitions from one
configuration to another without dislocating fully since the

noise intensity remains much smaller than Eq
�� ��. This situation

is in stark contrast with the low-noise dynamics for two main
reasons: (i) it is not possible anymore to define a fixed cluster
shape to the arrangement of the particles which continuously
evolves in time and transitions between all the available
configurations, and (ii) the clustering dynamics does not play
a significant role anymore. Indeed, since the particles’ arrange-
ment can be reconfigured, which cluster shape was reached
in the first place is not relevant. Instead, how much time
the particles spend in a particular configuration is now the
significant information. This can be characterized as the prob-
ability to obtain a given configuration at any time, which is the
result of the equilibrium between the background noise and
the phoretic attraction. Not surprisingly, this probability now
follows a Boltzmann distribution (Fig. 15). However, since
multiple intermediate configurations (with the same potential)
exist, the probability of a particular stable configuration cannot
be defined.

Fig. 13 Formation of different clusters from the same initial positions of
particles in the presence of noise of strength s2 = 0.01. Variation in
potential of system with time during clustering for the cases shown.

Fig. 14 Comparison between probabilities of formation of 6 particle
cluster configurations in the absence of noise and with low noise shows
no significant difference in the statistics. The clustering was performed
with Rmax = 16 in both cases. In the case of low noise (s2 = 0.01),
probabilities are computed from 200 random initial arrangements of
particles with 100 trials per arrangement.
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7 Conclusions

The results presented in this work therefore establish a fourth route
to self-propulsion of active colloids. Unlike previously-identified
strategies which relied either on an asymmetric design of the particle
or the non-linear convective transport of solutes by the phoretic
flows, self-propulsion of individually non-motile yet active particles
is achieved here by non-symmetric interactions between multiple
particles. Under the effect of attractive phoretic attractions and
steric constraints, particles form geometrically-asymmetric
clusters that are able to maintain the asymmetric concentration
fields required for propulsion. The self-propulsion velocities
are much lower (by at least an order of magnitude) than typical
relative velocities between particles during particle clustering,
but lead nonetheless to a net migration of the particles.

Even though the governing dynamics of the particles (in the
absence of external noise) are completely deterministic, multiple
particle arrangements can be reached depending on the detailed
dynamics of the cluster formation and balance between phoretic
attraction, hydrodynamic interactions and steric repulsion. Slightly
different initial positions of the different particles may therefore
lead to fundamentally different propulsion characteristics, thereby
introducing an inherent stochasticity in the system. Focusing
for simplicity on two-dimensional arrangements of the particles
(the hydrodynamics and solute diffusion are three dimensional),
the probability of formation of the different cluster shapes was
determined using Monte-Carlo simulations of the phoretic clustering
for N particles with initially-random positions. These simulations
were performed using a reduced-order model of the clustering
process obtained by superimposing the velocity induced on a given
particle by each of its neighbors as in a two-particle system, for which
an analytical solution was first obtained.

Using these probabilities and the velocity of the different
clusters computed numerically using a regularized boundary
element method, the statistics of the collective self-propulsion
were obtained, namely the mean, maximum and most probable

velocities, for both translation and rotation. The maximum
attainable velocity was found to increase with N: for larger
clusters, a greater degree of asymmetry can be achieved leading
to larger velocities. The mean propulsion velocity on the other
hand was found to saturate for increasing N: the most eccentric
clusters with large velocity also become less and less probable as
N increases, while the most probable clusters exhibit a more
compact geometry with velocities close to the mean value.

The particles are continuously in a state of non-equilibrium. The
lack of external noise to relax the system creates probability statistics
of various configurations which are strikingly different from equili-
brium statistics. This difference directly affects the velocity statistics
and we observe a larger mean velocity compared to that expected
from a purely equilibrium process. Yet thermal noise and Brownian
motion can become important for smaller particles, and their impact
on the present result was tested by introducing a Brownian compo-
nent in the motion of the active particles in addition to their
deterministic phoretic clustering. Two different situations are
observed depending on the magnitude of the noise with respect to
the phoretic forces maintaining the cohesion of the formed clusters.
The cluster probability and velocity statistics are found remarkably
robust to low noise amplitude (i.e. thermal fluctuations that are
unable to break or reconfigure a given cluster): such noise levels
essentially redistribute the already random position of the particles
in their initial state (before clustering). In contrast, higher levels of
thermal noise can lead to cluster break-up or reconfiguration. In the
latter, a given cluster undergoes continuous transition between
different configurations, and the probability to find a given shape
follows an equilibrium probability distribution. In that case, the
group of N particles continuously reconfigure leading to changes in
its translational and rotational velocity. This provides it with a self-
propelled motion which is reminiscent in some regards to the run-
and-tumble behaviour of bacteria where self-propulsion in a given
configuration is followed by a geometric reorganization that modifies
its swimming direction and velocity magnitude.34 Although the
process is quite different here, in particular because the relative
length of a run is significantly smaller than for bacteria, it is expected
to enhance transport by diffusion.

The central goal of the present work is to characterize the
emergence of the self-propulsion from phoretic and hydrodynamic
interactions of individually-non-motile isotropic particles. We
demonstrated this property for the simpler configuration of
two-dimensional motion of the particles. Yet, the different tools
developed both analytically and numerically directly apply
to three-dimensional and the present results could easily be
extended to generic 3D clusters and associated propulsion
properties, the main difficulty residing in the classification of
the different cluster shape. We finally remark that the formalism
developed in this manuscript, both numerical and analytical, could
also be extended to address the collective dynamics of mixtures of
particles of different chemical properties (e.g. mixture of active and
inert, or isotropic and Janus particles32,35).

Conflicts of interest

There are no conflicts to declare.

Fig. 15 Formation of different cluster configurations by rearrangement of
particles over time due to high noise, s2 = 0.1. Also shown is the probability
distribution of various cluster configurations which follow a Boltzmann
distribution. Since the average separation between particles are larger due
to the continuous high noise, E takes larger values.
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Appendix
A Effect of a finite regularization parameter

We present briefly here the derivation of eqn (28) which
provides the leading order correction introduced by a finite
regularization parameter e in the regularized boundary element
method framework. The general goal in BEM is to express the
following integral

I x0ð Þ ¼
ð
Vf

cðxÞfe x; x0ð ÞdSx; (43)

with

fe x; x0ð Þ ¼ 15e4

8p x� x0j j2þe2

 �7=2; (44)

in terms of the local value of c(x0) and its gradients, when x0 is
on the surface of the particle. Here, Vf is the fluid volume
outside the particle. To perform this computation, we consider
a local reference frame centred on x0 and such that n(x)0 = ez.
The fluid domain outside the particle is locally defined as
z + (kxx2 + kyy2)/2 Z 0 with kx and ky are the two principal
curvatures (this implicitly assumes that |k|e { 1 with k the
mean curvature).

First, c(x) is expanded in Taylor series around x0:

I x0ð Þ ¼ c x0ð Þ
ð
Vf

fe x; x0ð ÞdSx þrc x0ð Þ �
ð
Vf

fe x; x0ð ÞxdSx þ � � �

(45)

and using a local spherical polar coordinate system with
m = cos y and mc(r,f) = �(kx cos2 f + ky sin2f)r/2 the parametric
description of the local particle surface

I x0ð Þ ¼
15e4c x0ð Þ

8p

ð2p
0

ð1
0

ð1
mcðr;fÞ

r2drdmdf

r2 þ e2ð Þ7=2

þ 15e4

8p
rc x0ð Þ �

ð2p
0

ð1
0

ð1
mcðr;fÞ

r2rdrdmdf

r2 þ e2ð Þ7=2
þ � � �

¼ 15e4c x0ð Þ
4

ð1
0

r2dr

r2 þ e2ð Þ7=2
1þ kr

2


 �

þ 15e4

8
n x0ð Þ � rc x0ð Þð Þ

ð1
0

r3dr

r2 þ e2ð Þ7=2
þ � � �

¼ c x0ð Þ
1

2
þ ke

4

� �
þ en x0ð Þ � rc x0ð Þ

4
þ � � �

(46)

The development above includes the first two leading orders in
e: the O(e0) contribution is the classical result for a singular
boundary integral methods and the O(e) accounts for the finite
size of the regularization in comparison with (i) the local
curvature of the surface and (ii) the typical length scale for
the variations of c.

B Method of reflections

The method of reflections is a classical technique to construct
an asymptotic solution of Laplace or Stokes problem around

several or many bodies using an iterative approach.59 This
asymptotic development is made in terms of e = 1/d, i.e. the
ratio of the particles’ radius to typical distance among them.
Taking the concentration problem as an example, the solution
c0

j is first obtained for each particle j in the absence of all the
other particles. These solutions are then corrected at each stage
(i.e. each reflection) near each particle k a j to cancel the extra
contribution to the boundary conditions introduced at the
surface of this particle by the previous reflections.

B.1 Diffusion problem. The Laplace problem for the
concentration around all the particles of unit radii can be
formulated in full as follows

r2c = 0, (47)

nj�rc = �A for rj = 1, (48)

c - 0 for r - N. (49)

As for the main text of the manuscript, rj = r � Rj is the position
relative to particle j, nj its outward-pointing normal, djk =
|Rj � Rk| the relative distance of particles j and k, and
ejk = (Rk � Rj)/djk is the unit vector point from particle j to
particle k.

The solution of this problem for an isolated particle l is
simply c0

l = A/rl. Expanding this solution near particle k a l (i.e.
for small rk),

c0l ¼
A

rl
¼ A

dkl

X1
p¼0

rk

dkl

� �p

Lp
rk � ekl
rk

� �
; (50)

where Lp(m) is the Legendre polynomial of degree p.
The first reflection solution c1

k therefore satisfies r2c1
k = 0,

decays at infinity, and at the surface of particle k

nk � rc1k ¼ �nk �
XN
l¼1
lak

rc0l for rk ¼ 1: (51)

The unique solution is obtained as

c1k ¼ A
XN
l¼1
lak

X1
p¼1

p

pþ 1

1

dkl

� �pþ1
1

rk

� �pþ1
Lp

rk � ekl
rk

� �
: (52)

Note that this expansion includes no source term (p = 0) since
c0

l satisfies r2c0
l = 0 in the vicinity of particle k.

The leading order correction introduced by the second
reflection on particle j is a response to the uniform gradient
G1

j , created near particle j by the source dipole contribution in
each c1

k (k a j) in the above equation, namely

G1
j ¼

XN
k¼1
kaj

rc1k
��
rj¼0 ¼

A

2

XN
k;l¼1
kað j;lÞ

1

dkl

� �2
ekl

rk3
� 3 rk � eklð Þrk

rk5

� 	
: (53)

and the leading order contribution to the second reflection
writes

cj
2 ¼

G1
j � nj
2rj2

¼ A

4

XN
k;l¼1
kað j;lÞ

ekl � 3 ekl � ejk
� �

ejk
� �

djk3dkl2rj2
� nj : (54)

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ju

ly
 2

01
8.

 D
ow

nl
oa

de
d 

on
 2

/6
/2

02
6 

4:
21

:3
5 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8sm00690c


This journal is©The Royal Society of Chemistry 2018 Soft Matter, 2018, 14, 7155--7173 | 7171

Using these results, the concentration cs
j and slip velocity

ũj = M(I � njnj)�rcs
j at the surface of particle j using two

reflections, are given by

cs
j = Cj

0 + Cj
1�nj + Cj

2 : (njnj) + � � �, (55)

ũj = Cj
1 + 2Cj

2�nj + � � �, (56)

with

C
j
1 ¼ A

XN
k¼1
kaj

3ejk

2djk2
þ
XN
k;l¼1
kað j;lÞ

I� 3êjkêjk
� �

� êkl
4djk3dkl2

þO e6
� �

2
664

3
775; (57)

C
j
2 ¼ A

5

6

XN
k¼1
kaj

3ejkejk � I

djk3
þO e6

� �2
64

3
75: (58)

B.2 Hydrodynamic problem for free particles. We now turn
to the iterative solution of the Stokes problem for individually
force-free particles, namely

Zr2u = rp, r�u = 0, u(N) = 0 (59)

8j, u = Uj + Xj � rj + ũj on rj = 1, (60)

8j;
ð
rj¼1

r � ndS ¼
ð
rj¼1

rj � ðr � nÞdS ¼ 0: (61)

Following the general framework of the method of reflections,
the swimming problem for a single isolated particle k is solved for
the velocity, rotation rate and stresslet of this particle as

U0
k ¼ � ~ukh i ¼ �

2M

3
Ck

1; (62)

X0
k ¼ �

3

2
nk � ~ukh i ¼ 0; (63)

S0
k = �10phnkũk + ũknki = �8pMCk

2, (64)

The leading order flow field generated by particle j is then

u0k ¼ �M
rkrk

rk5
� I

3rk3

� �
� Ck

1 þ 3M
rkrkrk

rk5

� �
:Ck

2: (65)

The development above retains only the source and force
dipoles as fundamental singularities. Force quadrupoles, which
have the same far-field decay as that of the source dipole (1/r3),
are nevertheless neglected because their intensity is deter-
mined by Cj

3 which is of subdominant order. The result of the
first reflection is the swimming and rotation velocities of force-
and torque-free particles in an ambient flow field, and are
determined directly using Faxen’s laws for spherical particles.
As a result,

U1
j ¼ �M

XN
k¼1
kaj

1

3djk3
3ejkejk � I
� �

� Ck
1 þ

3

djk2
ejk � Ck

2 � ejk
� �

ejk

� 	
;

(66)

X1
j ¼ 3M

XN
k¼1
kaj

C
j
2 � ejk

� �
� ejk

djk3
� (67)

Using the results for the Laplace problem (Section B.1), the
velocity of force-free particle j is obtained as

Uj ¼ AM �
XN
k¼1
kaj

ejk

djk2
þ 5

2

XN
k;l¼1
kaj
lak

3 ejk � ekl
� �2�1
 �

ekj

djk2dkl3
þO e6

� �
2
6664

3
7775;

(68)

and the velocity of the center of mass, UCM ¼
1

N

PN
j¼1

Uj , is

UCM ¼
5AM

2N

XN
j;k;l¼1
kaj
lak

3 ejk � ekl
� �2�1
 �

ekj

djk2dkl3
þO e6

� �
2
6664

3
7775: (69)

For free (i.e. non-touching) particles, individual particles’
velocities scale as 1/d2 while their center of mass moves with an
1/d5 velocity.

B.3 Hydrodynamic problem for rigid clusters. When the
particles are rigidly-bound in a cluster, they are not individually
force-free, but, the total force and torque on the cluster are
zero. Assuming that the non-hydrodynamic interaction forces
between the particles are central, the net torque on particle j
around its center of mass must vanish. Hence,

8j;
ð
rj¼1

r � nj ¼ �Fj ;

ð
rj¼1

rj � r � nj
� �

dS ¼ 0: (70)

Within the framework of the method of reflections, solving
the hydrodynamic problem for particle k, leads to

U0
k ¼ � ~ukh i þ

Fk

6p
¼ �2M

3
Ck

1 þ
Fk

6p
; (71)

X0
k ¼ �

3

2
nj � ~uj

 �

¼ 0: (72)

Particle k is not force-free anymore, and its flow signature must
now also include a contribution from an additional Stokeslet
and source dipole associated with Fk:

u0k ¼ �M
rkrk

rk5
� I

3rk3

� �
� Ck

1 þ 3M
rkrkrk

rk5

� �
:Ck

2

þ Fk

8p
I

rk
þ rkrk

rk3

� �
þ Fk

24p
I

rk3
� 3rkrk

rk5

� �
:

(73)

From Faxen’s law, the correction to the velocity of particle j
introduced by the first reflection is therefore

U1
j ¼ �M

XN
k¼1
kaj

1

3djk3
3ejkejk � I
� �

� Ck
1 þ

3

djk2
ejk � Ck

2 � ejk
� �

ejk

� 	

(74)
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þ
XN
k¼1
kaj

Fk

8pdjk
Iþ ejkejk
� �

þ Fk

12pdjk3
I� 3ejkejk
� �� 	

: (75)

Using the result for the concentration problem and the rigid
body kinematics, Uj = UCM + XCM � Rj,

UCM þXCM � Rj �Ufree
j ¼

X
k

Kjk � Fk; (76)

with

Ufree
j ¼ �AM

X
kaj

ejk

djk2
þ 5

2

X
kaj
lak

3 ejk � ekl
� �2�1h i

ejk

djk2dkl3

2
64

3
75; (77)

Kjj ¼
I

6p
; Kjk ¼

Iþ ejkejk

8pdjk
� 3ejkejk � I

12pdjk3
for kaj: (78)

The translation and rotation velocity of the cluster are then
obtained by imposing that the cluster as a whole is force- and
torque-free, i.e.

P
j

Fj ¼ 0;
P
j

Rj � Fj ¼ 0. The resulting leading

order velocity of the center of mass, UCM, now scales as 1/d3.
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arXiv:1801.06868v1.

36 S. Shklyaev, J. F. Brady and U. M. Cordova-Figueroa, J. Fluid
Mech., 2014, 748, 488–520.

37 S. Michelin and E. Lauga, Eur. Phys. J. E: Soft Matter Biol.
Phys., 2015, 38, 7.

38 S. Michelin, E. Lauga and D. Bartolo, Phys. Fluids, 2013,
25, 061701.

39 Z. Izri, M. N. van der Linden, S. Michelin and O. Dauchot,
Phys. Rev. Lett., 2014, 113, 248302.

40 A. Dominguez, P. Malgaretti, M. N. Popescu and S. Dietrich,
Soft Matter, 2016, 12, 8398–8406.

41 R. Golestanian, T. B. Liverpool and A. Ajdari, Phys. Rev. Lett.,
2005, 94, 220801.

42 S. Michelin and E. Lauga, J. Fluid Mech., 2014, 747, 572–604.
43 S. Ebbens, M.-H. Tu, J. R. Howse and R. Golestanian, Phys.

Rev. E: Stat., Nonlinear, Soft Matter Phys., 2012, 85, 020401(R).

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ju

ly
 2

01
8.

 D
ow

nl
oa

de
d 

on
 2

/6
/2

02
6 

4:
21

:3
5 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8sm00690c


This journal is©The Royal Society of Chemistry 2018 Soft Matter, 2018, 14, 7155--7173 | 7173

44 N. Sharifi-Mood, J. Koplik and C. Maldarelli, Phys. Fluids,
2013, 25, 012001.

45 Y. Ibrahim, R. Golestanian and T. B. Liverpool, J. Fluid
Mech., 2017, 828, 318–352.

46 M. Stimson and G. B. Jeffery, Proc. R. Soc. London, Ser. A,
1926, 111, 757.

47 S. Y. Reigh and R. Kapral, Soft Matter, 2015, 11, 3149.
48 H. A. Stone and A. D. T. Samuel, Phys. Rev. Lett., 1996, 77, 4102.
49 E. Yariv, Phys. Rev. Fluids, 2016, 1, 032101(R).
50 R. J. LeVeque and Z. Li, SIAM J. Sci. Comput., 1997, 18(3), 709–735.
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