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Shear-density coupling for a compressible
single-component yield-stress fluid

Markus Gross ab and Fathollah Varnik c

Flow behavior of a single-component yield stress fluid is addressed on the hydrodynamic level. A basic

ingredient of the model is a coupling between fluctuations of density and velocity gradient via a

Herschel–Bulkley-type constitutive model. Focusing on the limit of low shear rates and high densities,

the model approximates well—but is not limited to—gently sheared hard sphere colloidal glasses, where

solvent effects are negligible. A detailed analysis of the linearized hydrodynamic equations for

fluctuations and the resulting cubic dispersion relation reveals the existence of a range of densities and

shear rates with growing flow heterogeneity. In this regime, after an initial transient, the velocity and

density fields monotonically reach a spatially inhomogeneous stationary profile, where regions of high

shear rate and low density coexist with regions of low shear rate and high density. The steady state is

thus maintained by a competition between shear-induced enhancement of density inhomogeneities and

relaxation via overdamped sound waves. An analysis of the mechanical equilibrium condition provides a

criterion for the existence of steady state solutions. The dynamical evolution of the system is discussed in

detail for various boundary conditions, imposing either a constant velocity, shear rate, or stress at the walls.

I. Introduction

Heterogeneous flow and shear banding are ubiquitous phenomena,
commonly occurring in a variety of complex fluids such as polymer
solutions and worm-like micelles,1–3 colloidal gels,4 hard sphere
colloidal glasses5,6 and granular media.7 In line with this diversity
of the physical systems, one encounters different underlying
mechanisms as being responsible for localized flow. Classically,
shear banding occurs in systems with a strongly shear-thinning
flow curve (stress versus imposed shear rate).8 Alternatively, banding
can result for a non-monotonic flow curve stemming from a shear-
induced phase transformation. In this case, an instability occurs if
the globally imposed shear rate lies between the two solutions
corresponding to homogeneous steady flow. The system divides into
two regions, each flowing with one of the stable shear rates.1 For
colloidal gels, on the other hand, the mechanism of shear localiza-
tion is attributed to a competition between formation and growth of
fractal-like clusters and its shear-induced breakage.4

An interesting case occurs in dense suspensions of hard
sphere colloidal particles and granular materials, where the
underlying flow curve is monotonic, yet the flow can develop spatio-
temporal heterogeneities.5,7 In these ‘‘soft glassy materials’’,9

shear-induced rejuvenation competes with the sluggish relaxation
(aging) kinetics and may lead to a heterogeneous flow in the
glassy state.10–12

Flow localization in dense hard-sphere suspensions has
been recently rationalized in terms of the so-called shear–
concentration coupling (SCC),5,6 a hydrodynamic model, first
proposed in ref. 13, which couples the local flow to the concentration
field. This coupling is encoded in a non-Newtonian stress and in
a shear-rate dependent osmotic pressure.

Within SCC, one considers a background fluid which trans-
ports—and is influenced by—a concentration field. While this
picture emerges naturally in the case of polymer solutions, the
role of the background fluid is less obvious in hard sphere
colloidal glasses. Indeed, there is a common consensus that the
effect of hydrodynamic interactions can be neglected in colloidal
hard-sphere systems close to the glass transition in the low shear
rate limit, which is of primary interest to the present study.14,15

Accepting this standpoint, it is tempting to fully neglect the
background fluid and investigate the issue of flow heterogeneity
within hydrodynamic equations of a single-component non-
Newtonian fluid. This paper presents such a study.

In ref. 5, 13 and 16, the instability of a sheared colloidal
suspension has been investigated based on an advection–
diffusion equation for the colloid concentration r, embedded
in a solvent of velocity u,

@tr ¼ �r � j; j � r u� 1
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rm

� �
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where j denotes the total particle flux, z is a friction coefficient,
and m is a (shear-rate dependent) generalized chemical
potential.17 Eqn (1) asserts that the total flow velocity j/r of
the colloidal particles consists of an imposed ‘‘background’’
flow u, onto which a contribution �(1/z)rm due to the diffusive
motion of the particles is superimposed. The flow velocity u is
assumed to be governed by the Stokes equation,

qt(rua) = qbsab, (2)

where r is the viscous stress tensor, which is typically given
in terms of an expansion in gradients of u. The Greek
symbols stand for spatial directions (a,b A {x,y} in the present
2D study) and Einstein’s sum rule over repeated indices
is used.

In ref. 6, the possibility of a coupling between shear and
concentration has been investigated in a system of hard spheres. A
constant kinetic temperature has been imposed by continuously
rescaling the particle velocity during the simulations. Notably,
there is no background fluid in the system investigated in ref. 6.
Thus, it can be considered as an isothermal compressible
single-component fluid, described by a continuity equation for
the particle density r and a transport equation for the fluid
momentum ru:

qtr = �qa(rua), (3a)

qt(rua) = �qbPab + qbsab. (3b)

As in ref. 6, P and r denote the reversible and the irreversible
(viscous) stress tensors. In close analogy to shear concentration
coupling, one postulates a coupling between fluid density and
local shear rate, which we shall call ‘‘shear-density coupling’’
(SDC) in the following. As shown in Section II, this coupling is
generated by reversible and viscous stresses being functions of
the shear rate and density, respectively. In equilibrium, the
divergence of the reversible stress tensor can be related to a
chemical potential via qbPab = rqam. Beyond equilibrium, this
relation serves as a definition of a shear-rate dependent
chemical potential.

Before proceeding further with our analysis, a comment on
the above equations is at order here. The advection–diffusion
eqn (1) is central to dynamic density functional theory and widely
used for the description of driven colloidal suspensions.18–20 In
these approaches, u represents the velocity of the background
fluid, which consists of an externally imposed component (e.g.,
shear flow) and a contribution arising from the hydrodynamic
inter-particle interactions. Notably, the dynamics of a subset
of tagged particles in a single-component fluid flowing with
velocity u is formally also described by eqn (1) and (2).21,22 In
this case, the chemical potential and the viscosity would react
only to the fluctuations of the tagged particles. However, the
viscosity and the pressure are actually sensitive to the total
density, since this quantity describes the caging and trapping
responsible for the dynamic slowing down near the glass
transition.

In view of these arguments on the single-component fluid
nature of the problem, it appears more appropriate to analyze the

hard-sphere system of ref. 6 in terms of the isothermal compressible
fluid equations in eqn (3), rather than an advection–diffusion
equation. In passing, we remark that the different nature of the
two models is also crucial in the case of critical phenomena:
here, the advection–diffusion and momentum transport equations
define the universality class of ‘‘model H’’, which primarily describes
a binary fluid mixture.23 The isothermal single-component
fluid, instead, is described in terms of a continuity equation
and a momentum equation, giving rise to a critical behavior
distinct from model H.24

II. Model

We consider a fluid described by eqn (3), bounded by walls at
y = 0 and y = L (see Fig. 1). The flow is assumed to be
homogeneous along the vorticity direction (z) as well as along
the flow direction (x), such that generally qx(� � �) = qz(� � �) = 0.
The local shear rate is defined as

_g( y,t) = qyux( y,t). (4)

In this and the following section, we focus on bulk dynamics,
such that specification of the boundary conditions at the walls
is not necessary. We shall therefore merely assume the
presence of a constant steady background shear rate _g0. (We
return to the effect of boundary conditions in Section IV,
where we numerically solve the Navier–Stokes equations in a
finite domain.) The pressure tensor P is isotropic, Pab = Pdab,
where P denotes the scalar pressure. Consequently, eqn (3)
reduces to

qtr = �qy(ruy), (5a)

qt(rux) = qysxy, (5b)

qt(ruy) = �qyP + qysyy. (5c)

Fig. 1 Slit geometry considered in the present study. The fluid is sub-
jected to a steady shear flow in lateral direction (x) with a spatially constant
(background) shear rate _g0, but can develop arbitrarily large deviations
described by a local shear rate _g(y,t). We assume the fluid to be homo-
geneous both in the lateral and the vorticity direction (z, pointing normal to
the figure plane).
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Analogously to ref. 16, 25 and 26, we take the following form for
the viscous stress tensor r:

sab ¼ syieldab ðrÞ þ Zðr; _gÞ � kðr; _gÞr2
� �

@aub þ @bua �
2

d
dab@gug

� �

þ zðr; _gÞ � k0ðr; _gÞr2
� �

dab@gug; (6)

which corresponds to an expansion in gradients of the flow
field u respecting certain symmetry properties of the stress.27

Here, Z and z denote the shear and bulk viscosity, respectively,
which are generally functions of the density and the shear rate
(see below). The parameter k denotes the shear–curvature
viscosity, and the stress contribution associated with it serves
to stabilize the flow field against large gradients. Analogously,
the parameter k0 controls the corresponding contribution stabilizing
the bulk viscous stress. The yield stress ryield is independent of _g and
is nonzero only in the glassy phase (r4 rg). In contrast to the shear
viscosity Z (see below), detailed data for the bulk viscosity z and
the curvature viscosities k and k0 in a hard-sphere fluid near the
glass transition are not available. Following ref. 16, we shall
therefore assume these viscosities to have the same functional
form as Z, i.e.,

kðr; _gÞ ¼ k0
Z0

Zðr; _gÞ; (7a)

z(r, _g) = b0Z(r, _g) (7b)

k0(r, _g) = b0k(r, _g). (7c)

Here, Z0 and k0 are the shear (curvature) viscosities in the zero-
shear rate (Newtonian) limit [see eqn (13b)], and b0 is a free
dimensionless parameter. Typically, we set b0 = 1 and k0/Z0 C
(10 � 100)a2, where a is a microscopic length scale, e.g., the
average particle diameter in a colloidal glass. This choice gives
rise to an effective interface width, �

ffiffiffiffiffiffiffiffiffiffiffiffi
k0=Z0

p
, of the shear band

of a few particle diameters a.16 Using eqn (4), the relevant
components of the viscous stress tensor follow as

sxy = syield
xy (r) + Z(r, _g) _g � k(r, _g)qy

2 _g, (8)

syy ¼ syieldyy ðrÞ þ Z� k@y2
� �

2� 2

d

� �
þ z� k0@y2
� �	 


@yuy;

¼ syieldyy ðrÞ þ b Z� k@y2
� �

@yuy;

(9)

with b � b0 + 4/3 = 7/3. In order to track the influence of the
bulk viscosity, we shall carry along the parameter b in our
calculations. Summarizing, eqn (5) reduces to

qtr = �qy(ruy), (10a)

qt(rux) = s _gqy _g + srqyr � kqy
3 _g � [(qrk)(qyr) + (q _gk)(qy _g)](qy

2 _g),
(10b)

qt(ruy) = �P _gqy _g � Prqyr + b(Z � kqy
2)qy

2uy, (10c)

where we defined

Pr � q(P � syield
yy )/qr, P _g � qP/q _g, (11a)

sr � q(syield
xy + Z _g)/qr, s _g � q(Z _g)/q _g, (11b)

which are generally functions of r and _g.

It seems reasonable to assume

syield
yy C syield

xy = syield, (12)

where syield is a common yield stress function. In the liquid
phase (r o rg), the yield stress vanishes and the shear viscosity
is well described by a Krieger–Dougherty relationship (cf.
ref. 16):

syield = 0, (13a)

Z(r) = Z0(1 � F)�2. (13b)

Here and in the following, F � r/rm, where rm = 0.67
(in appropriate units, see below) is the packing fraction
corresponding to random close packing of (polydisperse) hard
spheres.

In the glassy phase (r 4 rg), instead, MD simulations of a
hard-sphere system indicate6

syieldðrÞ ¼ s0
ð1� FÞp; (14a)

Z(r, _g) = syield(r)A(1 � F)n _gn�1, (14b)

where the parameters s0 C 0.0119kBT/a3, A = 34.5(Z0a3/(kBT))n,
p C 2.355, n C 0.4 result from a fit. kBT denotes the thermal
energy and rg = 0.585 is the density of the glass transition. The
pressure is given, for any r, by6

Pðr; _gÞ ¼ P0F
ð1� FÞ 1þ Bð1� FÞ1�r _gm

� �
; (15)

with P0 C 8.4kBT/a3, B = 0.07(Z0a3/(kBT))m, n = m C 0.4, r = 4.1.
The shear-rate dependence of P is a manifestation of the
flow-induced distortion of the pair-correlation function. We
remark that the parameters in eqn (14) and (15) have been
obtained in ref. 6 from a fit to the global flow curves, taking
_g � _g0, but are assumed here to apply also locally in the
system. We shall henceforth fix the units of mass, length and
time by setting kBT = a = Z0 = 1. With these choices, the
fundamental ‘‘microscopic’’ time scale t0 � Z0a3/kBT = 1.
Using the fact that Z0 is the fluid viscosity in the dilute limit
[see eqn (13b)] and invoking the Stokes–Einstein relation, one
obtains t0 B a2/D with the self-diffusion coefficient D. In
other words, t0 is the time needed for a particle to explore, in
the dilute limit, a distance comparable to its own size.
Noteworthy, this is also a measure of the structural relaxation
time. Accordingly, the microscopic time scale t0 determines,
together with thermal energy and particle size, the viscosity and
stress scale. In the context of macroscopic fluid dynamics,
however, a more natural dimensionless measure of time, which
we shall use in the discussion of our results, is instead given by
the strain t _g.

III. Linear stability analysis
A. Linearization of the dynamics

We consider small fluctuations of the density and the shear-
rate, i.e., r( y,t) = r0 + dr( y,t), _g( y,t) = _g0 + d _g( y,t), where r0 and _g0
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denote the uniform background values. In linear order in the
fluctuations and derivatives, eqn (10) becomes

qtdr = �r0qyuy, (16a)

_g0qtdr + r0qtd _g = s _gqy
2d _g + srqy

2dr � kqy
4d _g, (16b)

r0qtuy = �P _gqyd _g � Prqydr + bZqy
2uy � bkqy

4uy, (16c)

where now the coefficients s _g,r, P _g,r, Z, and k are understood to
be evaluated for the background values r0 and _g0.

In order to develop a basic understanding of the transport
mechanisms in the compressible fluid, note that, inserting
eqn (16a) into eqn (16b), the latter becomes a generalized
diffusion equation for the shear rate fluctuation d _g,

r0qtd _g = s _gqy
2d _g � kqy

4d _g + srqy
2dr + _g0r0qyuy. (17)

While the last term on the r.h.s. is typically negligible, the first
and the second term induce a smoothing of shear rate inhomo-
geneities. However, due to the third term, which is not present in
a Newtonian fluid, a positive density fluctuation can effectively
lower the local shear rate. Such a negative shear rate fluctuation
drives, via the first term on the r.h.s. of eqn (16c), a flow which
[via eqn (16a)] further enhances the density in that region.
This gives rise to a feedback mechanism, which is further
analyzed in Section IIIB. In passing, we note that eqn (16a)
and (16c) can be combined into a generalized ‘‘sound-wave’’
equation

@t
2dr ¼ b

r0
Z� k@y2
� �

@y
2@tdrþP _g@y

2d _gþPr@y
2dr: (18)

The dynamics induced by the above compressible fluid equations
is further discussed and contrasted to a diffusive transport model
in Appendix A.

In order to investigate the linear stability, we solve eqn (16)
via the ansatz

dr

d _g

uy

0
BBB@

1
CCCA ¼

�r

�_g

�uy

0
BBB@

1
CCCA expðotþ ikyÞ; (19)

where o and k represent the growth rate and wavenumber of a
fluctuation, respectively, and the bared quantities denote the
fluctuation amplitudes. This ansatz transforms eqn (16) into

o�r = �ikr0 %uy, (20a)

o _g�rþ r0 _g
� �

¼ �k2 s _g þ kk2
� �

_g� k2sr�r; (20b)

or0�uy ¼ �ikP _g _g� ikPr�r� b Zþ kk2
� �

k2�uy; (20c)

which can be written in matrix form as

o 0 ikr0

o _g0 þ k2sr or0 þ k2~s _gðkÞ 0

ikPr ikP _g or0 þ yðkÞk2

0
BBB@

1
CCCA

�r

_g

�uy

0
BBB@

1
CCCA ¼ 0;

(21)

with the abbreviations

~s _g(k) � s _g + kk2 (22)

and

y(k) � b(Z + kk2). (23)

A nontrivial solution of eqn (21) requires the coefficient matrix
to be singular and, correspondingly, the determinant to vanish:

r0o
3 þ ~s _gðkÞ þ yðkÞ

� �
k2o2 þ r0Pr þ

yðkÞk2
r0

~s_gðkÞ � _g0P _g

	 

k2o

þ k4 ~s_gPr � srP _g
� �

¼ 0: (24)

Note that, in order to obtain a purely real solution, the ansatz in
eqn (19) must be linearly combined with an expression of the
same form but where k is replaced by �k. The three roots w1,2,3

of the cubic eqn (24) are independent of the sign of �k.
Accordingly, we can write the general solution to the linearized
hydrodynamic eqn (16) as

dr

d _g

uy

0
BBB@

1
CCCA ¼ Aeo1t þ Beo2t þ Ceo3tð Þeiky

þ Âeo1t þ B̂eo2t þ Ĉeo3t
� �

e�iky:

(25)

The coefficient vectors A, B,. . . are obtained by inserting each
root oj into eqn (21) and determining the null-space of the
resulting linear mapping.

B. Boundary of stability and growth dynamics

Before turning to the discussion of the cubic eqn (24) in the full
parameter space, we first focus on the region near the boundary
of stability, where the analysis is simplified by the fact that the
real part of at least one oj must be small. We proceed by
discussing the two possible cases admitted by the solutions to a
cubic equation with real coefficients, like eqn (24).

Case 1: all the three roots are purely real (but not necessarily
distinct). The general solution given in eqn (25) consists in
this case only of exponentially growing, decaying or constant
contributions. In the stable region, oj r 0 for all j. Directly at the
boundary to the unstable region, one must have oj = 0 for at least
one mode index, say j = 1. Setting o1 = 0 in eqn (24) readily yields

B1 � ~s _gðkÞPr � srP _g ¼ 0: (26)

As is shown below, the quantity B1 defined here determines the
boundary of stability. Inserting eqn (26) into eqn (24), the other
two decay rates result as

o2;3 ¼ �
~s _gðkÞ þ yðkÞ

2r0
k2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~s_gðkÞ þ yðkÞ

2r0
k2

� �2

� Pr þ
yðkÞk2
r02

~s_g �
_g0
r0
P _g

� �
k2

s
:

(27)

For typical systems, one has

r0Pr Z _g0P _g. (28)
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In fact, for the constitutive relations reported in eqn (14) and
(15), this inequality is violated only for unrealistically small
shear rates _g t 10�12 and extreme densities r C rm, where
the hydrodynamic model considered here is doubtful. Since
generally ~s _g Z 0 and y(k) 4 0, it follows that o2,3 r 0—still
assuming purely real oj. Accordingly, provided that eqn (28)
holds, none of the frequencies o2 and o3 vanishes and, conse-
quently, the boundary of stability is solely defined by the
condition o1 = 0 in this case. Close to the boundary of stability,
nonlinear terms in o1 can be neglected in eqn (24), such that
one readily obtains the growth rate

o1 ’ � k2
B1

r0Pr þ yðkÞk2~s_gðkÞ

r0 � _g0P _g

:

ðcase 1; all frequencies realÞ
(29)

We thus infer that, under the condition in eqn (28), the system
is linearly stable if

B1 4 0, ~s_gðkÞPr 4srP _g (30)

This inequality is consistent with the stability of the Navier–
Stokes equations for a purely Newtonian fluid, since sr = P _g = 0
and thus B1 4 0 in that case. As discussed below, eqn (30) in
fact describes the boundary of stability of the whole relevant
parameter space for the compressible single-component fluid.

In order for eqn (25) to be real, one must have Re Â = Re A,
Im Â = �Im A, with analogous conditions applying for B and C.
These conditions are indeed fulfilled by the solution in
eqn (25), which can be seen by writing eqn (21) as

[M0(k) + iM00(k)]A = 0, (31)

where M0 and M00 denote the real and imaginary parts of the
matrix in eqn (21). Now let A = A0 + iA00 be a solution to eqn (31).
Comparison of the real and imaginary parts of the resulting
expression in eqn (31) shows that Â = A0 � iA00 is a solution to
the equation [M0(�k) + iM00(�k)]Â = [M0(k) � iM00(k)]Â = 0, as
required.

Case 2: one root is real and the other two are complex
conjugates. Let o1 denote the purely real and o2,3 = O0 + iO00

the complex conjugate solutions to eqn (24). For the imaginary
part of eqn (25) vanish, B and C must be complex conjugates of
one another, while A must be purely real. Taking B = C* = B0 +
iB00 allows one to write the general solution as

(r, _g,uy)Te�iky = Aeo1t + 2eO
0t(B0cosO00t � B00sinO00t). (32)

Analogously to case 1, at least either o1 or O0 must vanish at the
boundary of stability. If o1 = 0, we recover eqn (26) as a
necessary consequence and eqn (27) shows that O0 r 0. Thus,
in this case, the growing mode will be a monotonic function as
in case 1 with a growth rate given by eqn (29). In contrast, the
oscillatory modes will in general be decaying functions of time
and will not give rise to any linear instability.

In order to analyze the case O0 = 0, we consider Vieta’s
formulas28 for the solutions to the cubic eqn (24) in case 2:

o1 þ 2O0 ¼ �k2 ~s _g þ yðkÞ
r0

; (33a)

2o1O0 þ O02 þ O002 ¼ k2 Pr þ
yðkÞk2
r02

~s_gðkÞ �
_g0
r0
P _g

� �
; (33b)

o1 O02 þ O002
� �

¼ �k
4

r0
~s_gPr � srP _g
� �

: (33c)

If O0 = 0, eqn (33a) immediately implies o1 o 0, i.e., the purely
real mode is stable. Moreover, combining the relations in
eqn (33a) to eqn (33c) results in

o1O002 ¼ �
k4

r0
~s _g þ yðkÞ
� �

Pr þ
yðkÞk2
r02

~s _gðkÞ �
_g0
r0
P _g

� �

¼ � k4

r0
~s _gPr � srP _g
� �

:

(34)

In order to determine the stability boundary for the complex
conjugate pair of solution, we consider in eqn (24) small
variations around O0 = 0. Accordingly, we insert o = dO0 + iO00

into eqn (24), where O00 is determined by eqn (33b). Neglecting
terms of O dO02

� �
and higher in eqn (24) (keeping, however, all

orders in O00, as this quantity is not necessarily small), yields

dO0 ’ �1
2

r0k
2B2

Prr02 þ k2 yðkÞ2 þ 3yðkÞ~s _gðkÞ þ ~s _gðkÞ2
� �

� r0 _g0P _g
� �;

(35)

with

B2 � ~s _g þ yðkÞ
� �

Pr þ
yðkÞk2
r02

~s _gðkÞ �
_g0
r0
P _g

� �
� ~s_gPr � srP _g
� �

;

¼ yðkÞ Pr þ
yðkÞk2
r02

~s_gðkÞ �
_g0
r0
P _g

� �

þ ~s _g
yðkÞk2
r02

~s _gðkÞ �
_g0
r0
P _g

� �
þ srP _g:

(36)

Under the condition (28), the denominator on the r.h.s. in
eqn (35) is positive for all k, allowing one to conclude that the
system is linearly stable for

B2 4 0: (37)

As expected, the condition B2 ¼ 0 coincides with eqn (34).
Note furthermore that B2 4 0 for k - N and, generally,
B24B2jk¼0¼yð0Þ Pr� _g0P _g


r0

� �
þP _g sr� _g0s _g


r0

� �
. A numerical

analysis reveals that the condition B2jk¼0 4 0 and thus B2ðkÞ4 0 is
fulfilled for all physically relevant r0 and _g0 of the present model.

The main result of the above analysis is that the cubic
equation eqn (24) admits instability only through a single
monotonically growing mode, the two other modes being decaying
functions of time, either in a monotonic (case 1) or an oscillatory
(case 2) fashion.

C. Stability diagram and discussion

As shown above, within the present linear stability analysis
of the hydrodynamic equations for a compressible single
component yield-stress fluid, the instability occurs uniquely
via a monotonic (and thus non-oscillatory) mode, which grows
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exponentially with a rate given by eqn (29). In fact, an extensive
numerical evaluation of the solutions of the dispersion relation
in eqn (24) indicates that, over the whole relevant parameter
space, all unstable modes have a non-oscillatory character.
Owing to eqn (28) and the fact that B1 � k2 4 0 in the limit
k - N, the growth rate in eqn (29) becomes negative for
sufficiently large k, as is necessary for a physically reasonable
model. In particular, asymptotically for k - N one obtains

oðk!1Þ ’ �r0Pr

bkk2
: (38)

Note, however, that the continuum model in eqn (3) is not
expected to be valid at arbitrarily small scales. We remark that,
in the absence of the shear- and bulk-curvature viscosities k
and k0, one has oðk!1Þ ’ �r0B1


bZs _g
� �

. On the other hand,
neglecting all contributions related to bulk viscosity, yields
oðk!1Þ ’ �k4Pr


r0Pr � _g0P _g
� �

� k2B1


r0Pr � _g0P _g
� �

.
From these results one infers that the stability of the system for
large k is indeed due to the shear–curvature viscosity.

Since ~s _g is a growing function of k, the boundary of stability
of the whole phase diagram of a bulk system is determined by
eqn (30) for k = 0. Specifically, if B1ðk ¼ 0Þo 0, the system is
unstable for all wavenumbers, satisfying B1ðkÞ ¼ B1ðk ¼ 0Þþ
kPrk

2 o 0 (cf. eqn (29)). In other words, all wavenumbers
0 o k o kc are unstable, where the critical wavenumber kc is
defined via

kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B1ðk ¼ 0Þ

kPr

s
: (39)

Remarkably, this expression as well as the condition for stability
threshold,B1ðkÞ ¼ 0, are identical to the corresponding expressions
obtained in ref. 16 for the advection–diffusion model described
by eqn (1) and (2).29 However, as can be inferred from eqn (29),
owing to the presence of bulk viscosity, the fastest growing
mode behaves differently as a function of k for the compressible

fluid. Such a finite bulk viscosity is to be expected, since colloidal
suspensions exhibit a certain degree of local compressibility even
in the highly concentrated regime. Fig. 2 shows the stability
diagram obtained for k = 0. For illustrative purposes, it is more
convenient to consider instead of B1 [eqn (26)] the (dimension-
less) stability parameter

S � srP _g

s _gPr
; (40)

according to which the system is unstable for values S4 1. As seen
in Fig. 2, the instability occurs only in the glassy phase (r 4 rg).

The wavenumber km and the growth rate om of the fastest
growing mode has to be determined numerically from eqn (24)
in the general case. Fig. 3 shows km and om as functions of the
background density r0 and shear rate _g0. When expressed in
terms of the fundamental time and length scales t0 and a
(which are unity for our choice of units), om and km reach a
maximum for intermediate shear rates and generally grow
upon increasing the density. When taking instead the inverse
shear rate as the fundamental time scale, om/ _g0 grows with
increasing distance from the boundary of stability [see main
plot of Fig. 3(c)]. At intermediate shear rates, an effective
algebraic behavior om/ _g0 B _g0

�0.5 can be inferred from the
numerics. As illustrated in Fig. 3(c) and (d), changing the value of
the shear–curvature parameter k0 [eqn (7)] has only a moderate
effect on km and om.

Close to the stability boundary, B1 [eqn (26)] and therefore kc

are small, such that a Taylor expansion of the growth rate in
eqn (29) to O k4

� �
is sufficient to determine km. (The leading term

of the expansion of o is of O k2
� �

.) Within this approximation, the
wavenumber of the fastest growing mode follows by evaluating the
condition do/dk = 0 as

km ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Bð0Þ1 r0 r0Pr � _g0P _g

� �
2kr0Pr r0Pr � _g0P _g

� �
� 2bZs _gBð0Þ1

vuut ’

ffiffiffiffiffiffiffiffiffiffiffiffi
�Bð0Þ1

2kPr

s
; (41)

Fig. 2 Stability diagram for a liquid (a) below (ro rg) and (b) above (r4 rg) the glass transition. The glass transition occurs at a density of rg/rm C 0.873,
where rm = 0.67 denotes the density of random close packing (in dimensionless units, see Section II). The SDC instability occurs for values of the
parameter S4 1 [eqn (40)] or, equivalently, for B1 o 0 [eqn (30)]. The boundary of stability is indicated by the solid curve in (b), corresponding to S ¼ 1. For
comparison, the dashed curve in (b) represents the boundary of stability computed with syield

yy = 0 in Pr [eqn (11a)].
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with Bð0Þ1 ¼ B1jk¼0. In the last expression, the fact that Bð0Þ1 ’ 0

close to the stability boundary has been used. Notably, due to bulk
viscous effects, eqn (41) is generally different from the corres-
ponding result obtained in ref. 16. In Fig. 4, the typical behavior of
the growth rate o as a function of the wavenumber k is illustrated.
We have chosen here values of the parameters r0 and _g0 near the
stability boundary, where eqn (41) provides an accurate approxi-
mation to the actual maximum wavenumber. While o p k2 for
small k [eqn (29)], o eventually becomes negative for sufficiently
large k [see eqn (38)], as required for reasons of stability.

Fig. 5 illustrates the direction of growth and the magnitude
of the most unstable mode (having wavenumber km). In order
to obtain the amplitude vector v(r0, _g0), the nullspace solution

v0 ¼ �r; _g; �uy
� �

of eqn (21) is determined and normalized, v0/||v0||,
and then projected onto the space spanned by r0 and _g0, additionally
normalizing the components by r0 and _g0, respectively. As illustrated

in Fig. 5, in general, �r and _g have opposite signs in the unstable
region, as expected for the SDC instability. A similar anti-
correlation has been reported in molecular dynamics studies
of heterogeneous flow in a hard sphere glass.6 Note that, with v,
also �v is a valid solution of eqn (21); in the plot, we have
chosen the positive sign of �r. One notes that the development
of the instability is dominated by a strong relative change of
the shear rate, while the growth of the density is rather weak.

This feature of the linear regime will also prevail in the non-
linear case discussed below. Comparing with Fig. 3(a) and (b),
one infers that the growth amplitude ||v|| is largest in those
regions of the phase diagram where the growth rate om and the
wavenumber km are relatively small.

Fig. 4 Typical behavior of the growth rate o [eqn (24)] as a function of the
wavenumber k in the unstable region of the parameter space. For wavenumbers
k with 0 o k o kc, the system is unstable. The dotted line indicates the location
of the critical wavenumber kc [eqn (39)]. Near the boundary of stability,
the wavenumber km of the fastest growth mode is estimated by eqn (41)
(dash-dotted line). Near the boundary of stability and for small k, the growth
rate o is well approximated by eqn (29), implying o p k2. The values
r0 = 0.91rm, _g0 C 3.5 � 10�4, and k0 = 100 are used for the calculation.

Fig. 3 (a and b) Maximum growth rate om (a) and associated wavenumber km (b) of the unstable modes. In the white region, the system is stable (oo 0).
A value of k0 = 100 is used for the calculation. (c and d) Growth rate om (c) and wavenumber km (d) of the maximally unstable mode as a function of _g for
r0/rm = 0.93, k0 = 100 (solid curve), r0/rm = 0.91, k0 = 100 (dashed curve), and r0/rm = 0.93, k0 = 1000 (dot-dashed curve). The dotted line in
(c) represents a power-law p _g�0.5. The main plot and the inset in (c) shows om expressed in terms of the inverse shear rate 1/ _g0 and the microscopic time
scale t0, respectively (see Section II).
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IV. Nonlinear dynamics and steady
states
A. Dynamics

The one-dimensional Navier–Stokes equations for a compressible
fluid given in eqn (5) are numerically solved in a slit geometry
(see Fig. 1) in the following way: the flux j = ru is introduced and
the partial differential equations are converted to ordinary ones
by spatial discretization on a grid of L/Dh nodes.30,31 Specifically,
we use second-order accurate central differences for the approxi-
mation of the spatial derivatives. The grid spacing is taken as
Dh = a, which is thus unity in our choice of units. A vanishing
normal flux jy is assumed at the boundaries. The lateral flux jx at
the boundaries is determined by imposing, at both walls, either a
constant wall velocity uw, a constant wall shear rate gw, or a
constant wall stress sw. Values of jx exterior to the computational
domain (‘‘ghost nodes’’) are calculated via linear interpolation

from the adjacent bulk nodes.32 Exterior values of r are determined
by assuming a vanishing gradient of r at the boundary. We have

checked that the total density,
Ð L
0
dyrðyÞ, remains practically

constant during the time evolution.
As initial configuration we use a density and shear rate

profile with a weak sinusoidal modulation (barely visible in the
plots) in order to trigger the SDC instability. In the case of fixed
wall stress, we initialize the shear rate with the constant value
_g0 calculated from eqn (43) below. The dynamical evolution is,
however, not significantly altered if instead a different value for
the initial shear rate is used, except for a short transient at early
times. After this transient, the evolution of the shear rate is
found to be essentially enslaved to the density dynamics. In all
cases, the wavelength of the maximally unstable mode predicted
by the dispersion relation [eqn (24), see also Fig. 3(d)] is some-
what larger than the system size. Accordingly, the instability is
realized here with the largest wavelength that fits in the system
(cf. Fig. 4), provided that p/kc t L, i.e., the system size exceeds
half of the critical wavelength [eqn (39)]. This condition constrains,
inter alia, also the value of the curvature parameter k0 [eqn (7)],
which sets the width of the shear band interface. Simulations with
p/km { L are typically found to be unstable at late times since the
nonlinear feedback mechanism leads to a singularity in the
integration of the Navier–Stokes equations (see the discussion
below eqn (44)). This singularity manifests itself in a diverging
viscosity and vanishing shear rate. For sufficiently large inter-
face widths, global mass conservation stabilizes the stationary
state before the singularity is reached.

Fig. 6–8 illustrate the time evolution of the density r, flow
velocity ux, and local shear rate _g = qyux across the slit in the
unstable region for various boundary conditions. One observes
that, in all cases, the system evolves from an essentially homo-
geneous initial state towards a steady state with inhomoge-
neous density and shear-rate profiles. The steady state of ux (or,
correspondingly, the shear rate) is typically reached within a
time scale 1/ _g0 determined by the average shear rate _g0. The
latter is given by (ux(L) � ux(0))/L = _gav in the case where a fixed
wall velocity is imposed and by _gw in the case where a fixed wall
shear rate is used.

Fig. 6 Time evolution of (a) the density, (b) the velocity, and (c) the shear rate resulting from eqn (5) for a fixed wall velocity uw = ux(L) � ux(0)
corresponding to an average shear rate _gav = 2 � 10�4. The profiles shown are obtained at times t_gav = 0, 0.20, 0.28, N, where t = N corresponds to
the steady state reached for t_gav \ 103 (thick black curve). In the steady state, the local shear rate at the left and the right boundary are found to be
gC 1.7 � 10�8 and 3.7 � 10�4, respectively. The initial growth rate of the maximally unstable mode is given by om C 7.8 � 10�3 [see eqn (24)]. Parameters
L = 200Dh, k0 = 100 and r0 = 0.91rm are used.

Fig. 5 Growth direction and magnitude of the fluctuation amplitude v /
�r=r0; _g


_g0

� �
(up to a normalization factor, see text) of the most unstable

mode km, as determined by the nullspace solution of eqn (19). The coloring
indicates the magnitude of v in a logarithmic scale, while the arrows indicate
the growth direction (non-logarithmic scale along both axes), which is
determined up to a sign. Accordingly, in the unstable region, fluctuations
grow indefinitely by reducing the shear rate and increasing the density (or vice
versa), providing a nonlinear feedback mechanism for the SDC-instability.
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At late times, the evolution slows down due to the slow
transport of mass towards the boundaries. This effect is parti-
cularly pronounced in the case of a fixed wall velocity (Fig. 6),
where the shear rate profile is essentially fully developed at
times t _gav \ 1, while the density at the left wall reaches the
steady state only for times t _gav �4 O 103

� �
. One observes that the

time evolution is fastest if a fixed wall-shear rate is imposed.
The broken left-right symmetry with respect to the walls in

Fig. 6 and 8 is a direct consequence of the asymmetry of the
initial configuration. In fact, using an initial sinusoidal density
profile with a maximum in the right half of the system leads to
spatially mirrored evolution.

The density dynamics is generally overdamped, which is
expected based on an analysis of the linear equations in eqn (16):
for typical values r0, _g0 of the density and shear rate in the unstable
regime and for wavenumbers k � O 10�2

� �
(in units of a), one

Fig. 7 Time evolution of (a) the density, (b) the velocity, and (c) the shear rate resulting from eqn (5) for a fixed shear rate _gw = 10�4 at both walls. The
profiles shown are obtained at times t _gw = 0, 2.2 � 10�2, 4.0 � 10�2, N, where t = N corresponds to the steady state (thick black curve) reached for
t _gw \ 0.4. In the steady-state, the local shear rate at each of the walls results as _g C 1.0 � 10�4. The initial growth rate of the maximally unstable mode is
given by om C 0.078 [see eqn (24)]. Parameters L = 200Dh, k0 = 100, and r0 = 0.93rm are used.

Fig. 8 Time evolution of (a) the density, (b) the velocity, and (c) the shear rate resulting from eqn (5) for a fixed wall stress sw. The profiles shown are
obtained at times t_g0 = 0.07, 0.42, 0.48, N, where t = N corresponds to the steady state (thick black curve) reached for t _g0 \ 10. An effective shear rate
_g0 C 10�3 is obtained from eqn (43) based in the initial density r0. In the steady state, the local shear rate at the boundary at y = 0 is obtained as
_gC 3.3 � 10�5. The initial growth rate (corresponding to the above _g0) of the maximally unstable mode is given by om C 0.012 [see eqn (24)]. Parameters
L = 200Dh, k0 = 100, r0 = 0.93rm, and sw = 11 are used.

Fig. 9 Multiple shear bands occur for sufficiently small values of the shear–curvature viscosity k0, which determines the effective interface width [see
eqn (7)]. Panel (a) shows the density profile and panel (b) the shear rate profile at times t _gav � Oð0:1Þ in the case of a fixed wall-velocity corresponding to
an average shear rate _gav C 2 � 10�4. The initial density profile is given by r(y,0) p cos(npy/L), with n = 4, 2, 1 for the solid, dashed, and dotted curve,
respectively. A value k0 = 2 is used, while all other parameters are the same as in Fig. 6. We emphasize here that, regardless of the initial structure, multiple
bands are not observed for larger values of k, such as those used in Fig. 6 and 8.
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finds for the present constitutive model [eqn (14)] that the
viscous term Zqy

2 dominates over the restoring force Prqy
2 in

the sound-wave equation [eqn (18)].
An interesting question here regards the existence of multiple

shear bands. In order to obtain such a structure, we decrease the
shear–curvature viscosity k, whereby, as stated above [eqn (7)], the
width of the interface between regions of low and high shear
rates is reduced. As shown in Fig. 9, where we used a value of
k0 = 2 (in dimensionless units), multiple shear bands are
indeed observed in our model. The figure also highlights the
important role of the initial perturbations for the formation of a
multi-banded structure, since the number of nodes of the band
directly depends on the period of the initial sinusoidal profile.
The shear-curvature viscosity k, in contrast, plays a subordinate
role for detailed band structure. We emphasize that the profiles
in Fig. 9 are not in the steady state but correspond to times
t _gav � O 0:1ð Þ. In fact, the presently used constitutive model
does not allow us to reach the steady state in these cases due to
the occurrence of an intrinsic singularity [see eqn (44) below].

B. Steady states

In the steady state, the wall normal velocity must vanish, i.e.,
uy = 0. It thus follows from eqn (5) and (8) that the density r and
the shear rate _g in the steady state are determined by the
equations

0 = qy[syield(r) � P(r, _g)], (42a)

0 = qysxy(r, _g) = qy[syield(r) + Z(r, _g)_g � k(r, _g)qy
2 _g]. (42b)

Upon discretizing this boundary value problem using finite
differences, the resulting system of nonlinear equations can be
solved via Newton’s method. In order for this scheme to
converge, good initial guesses for r( y) and _g( y) are required,
which can be obtained from the dynamical eqn (5), as discussed
above. Alternatively, the steady state profiles may also be directly
obtained by integrating the PDEs in eqn (5) over a sufficiently
large time, as is done in Fig. 6–8.

According to eqn (42), in the steady state, the effective
pressure P � syield as well as the viscous stress sxy must be
constant throughout the system. The resulting profiles realizing
these constraints are illustrated in Fig. 6–8 (thick black curves).
For a fixed wall velocity uw or a fixed wall stress sw, we obtain
here spatially asymmetric steady state profiles for which the
maximum density and minimum shear rate is attained close to
the walls. These profiles are qualitatively similar to the ones
observed in ref. 16, where a fixed wall stress was considered (see
also Appendix B). The spatial symmetry of the steady profile in
Fig. 7 is a consequence of the fact that the same shear rate _gw

is imposed at both walls. Profile shapes similar to the ones in
Fig. 6 and 8 result when the values of _gw at each wall are set
accordingly (data not shown).

In the unstable region of the phase diagram, a necessary
condition (which, however, is not sufficient; see below) for the
development of an inhomogeneous steady state profile is the
presence an initial perturbation in the system and a system
size large enough such that at least one unstable mode can be

accommodated. However, eqn (42) also admits constant solutions,
i.e., r = r0 and _g = _g0. In this case, eqn (42b) with qy_g = 0 readily
yields a relation between r0, _g0, and the stress in the system sw

(which arises as an integration constant and typically corresponds
to the wall stress):

_g0 ¼

sw
s0
ð1� FÞp � 1

Að1� FÞn

2
64

3
75
1=n

; (43)

where F = r0/rm and we used eqn (14). Alternatively, eqn (42a)
provides a relation between r0, _g0, and the system (wall) pressure.
If, instead of sw, the wall shear rate _gw = _g0 or the wall velocity uw

(implying _g0 = uw/L) are prescribed, eqn (43) represents a family of
solutions for r0 with the integration constant sw as adjustable
parameter.

Eqn (43) is illustrated in Fig. 10. A solution of eqn (43) exists
provided that the numerator on the r.h.s. is positive, i.e., for

F r 1 � (s0/sw)1/p, (44)

or, equivalently, if the yield stress remains below the system
stress,

syield(F) r sw. (45)

For syield 4 sw, instead, the system becomes increasingly more
rigid and thus ceases to flow. This singular behavior is indeed
reflected in the solution of the fluid dynamical equations
[eqn (5)] in the SDC-unstable region. In order to gain a heuristic
understanding of this singularity, let us assume that, close to
the inhomogeneous steady state, the density and shear rate
profiles in the fluid consists of large nearly flat portions. In each
of these regions then eqn (43) and thus eqn (44) approximately
hold, with sw being the corresponding local stress. In order to
trigger the SDC instability, here typical values of sw ’ Oð10Þ are
required,33 for which eqn (44) implies F � Oð0:94Þ as an upper
limit for the density (see Fig. 10). As indicated in Fig. 5, once the
system is unstable, some part of it evolves towards smaller shear
rates and larger densities. In small systems, this growth is
eventually limited by global mass conservation and the fact that

Fig. 10 Relation between shear rate _g0 and density r0 in a homogeneous
system, as provided by eqn (43), for various values of the system stress sw

(increasing in the direction of the arrow from sw = 8 to 12 in steps of 1).
Eqn (43) is well-defined only if condition (44) holds, i.e., for sufficiently
small densities. The maximum possible density corresponds in the plot to
the (sw-dependent) location where _g0 - 0. The dashed black curve
represents the threshold of the SDC instability, B1 ¼ 0 [see eqn (26) as
well as Fig. 2].
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the interface between low and high density regions must keep a
certain width [see discussion after eqn (7)]. In contrast, for
systems much larger than the interface width, the limit for F
implied by eqn (44) can be easily exceeded by means of mass
transport, leading to syield 4 sw and thus causing the solution
of eqn (5) to become singular. The singularity, in particular,
makes an observation of stationary inhomogeneous profiles
with multiple shear bands rather difficult. Nevertheless, as
shown in Fig. 9, we do observe a multi-band structure up to
the instant of the numerical singularity. Based on these findings
and the above detailed analysis, we anticipate that a slightly
modified version of the present constitutive model with a tamed
singularity would exhibit stable multiple shear bands.

Physically, the singularity can be understood as ‘‘free-
zing’’—a behavior which is a hallmark of yield stress fluids
upon increasing the density or decreasing the shear rate.
Accordingly, a possibility to avoid this singularity would be to
limit the growth of the yield stress and the viscosities in the
constitutive eqn (14) and (25). An adequate study of this issue is
an interesting topic for future work.

V. Summary

This study addresses the issue of flow heterogeneity, often
observed in the glassy state of matter under externally imposed
shear. We focus on the limit of gently sheared dense single-
component fluids, such as colloidal hard sphere glasses, where
hydrodynamic interactions are negligible. Therefore, the effect
of solvent is ignored in this study. Instead of a coupling to
the concentration field as in the original theory of shear–
concentration coupling,13 in the present case, fluctuations of
the velocity field are coupled to fluctuations of the fluid density.
Analogously to a standard density-dependent thermodynamic
pressure, here, a shear-rate dependent pressure drives a transverse
flow away from regions of high shear rate, thus further lowering
the viscosity in that region. Together with a strongly non-
Newtonian viscous stress, this gives rise to a feed-back mechanism
which ultimately determines the borders of flow stability. A
detailed analysis of the resulting cubic dispersion relation reveals
that the instability can occur only via a monotonic growth of
fluctuations, thus excluding the possibility of an oscillatory growth
mode. Notably, after an initial transient, the velocity and density
fields reach a stationary profile. In this stationary state, regions of
high shear rate exhibit low density and vise versa. For systems
much larger than the characteristic width of the shear-band
interface, the fluid model considered here generally develops a
singularity in the unstable regime, accompanied by a vanishing
shear rate and thus a divergent viscosity. The steady states
obtained here in fact all occur for system sizes comparable to
the interface width, in which case they are stabilized by means
of global mass conservation.

Interestingly, the expression for the stability threshold and
the range of unstable wavenumbers are identical to those
obtained from an analysis of the advection–diffusion equation
based on the original theory of shear–concentration coupling.16

The difference between the present compressible single-component
fluid model and the one incorporating the coupling of flow to a
concentration field is exhibited in the specific dynamics and under-
lying timescales, such as the expression for the fastest growing
mode. In the compressible fluid, the density relaxes via overdamped
sound waves—a transport mechanism which, in contrast to
diffusion, leads to wavenumber-independent exponential relaxation
in the limit of small frequencies and large wavenumbers. The use of
a compressible fluid model is supported by molecular dynamics
simulations,6 which show that variations of the density are a
typically observed response to fluctuations of the shear rate in
single-component hard-sphere colloidal glasses.

The existence of a stationary solution seems, at first sight, to
be in conflict with the time dependent behavior of the shear
band observed in molecular dynamics simulations.6 A plausible
interpretation here would be to invoke the coupling between
velocity fluctuations and structural heterogeneity in the glassy
state. As also discussed in ref. 5, this may lead to the formation
of a locally depleted zone with a density in the stable regime
and a denser packing in the remaining part of the system with
enhanced instability and a corresponding temporal evolution.
This is also in-line with recent reports on the strong influence
of structural heterogeneity on plastic deformation in the amor-
phous solid state.34–36 Notably, the time scale of the shear band
dynamics in MD simulations is of the order of the inverse shear
rate.6 This is also the time associated with structural fluctuations,
since during this time a particle moves a distance comparable to
its size and the cage of nearest neighbors around it relaxes to a
large extent. This stochastic effect is not included in the present
deterministic model. A way to account for this would be to
add a noise term into hydrodynamic equations, which is left for
future work.
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Appendix A: transport mechanism

Here, we provide further insights into the transport mechanism
of the compressible fluid model, as compared to the diffusive
transport model studied in the original SCC theory.13,16 In
order to focus on the essential aspects, we consider linearized
dynamics. In both models, shear rate fluctuations are governed
by eqn (17), i.e., a diffusion equation with a coupling to density
fluctuations. (The last term in eqn (17) is typically small in our
case and absent in the model of ref. 16.) However, instead of
following a diffusion equation as in ref. 13 and 16, density
fluctuations dr in the compressible fluid are governed by
the generalized sound-wave eqn (18). In the glassy state, the
viscosities are large and the dynamics is thus strongly over-
damped, such that the term qt

2dr can be neglected in eqn (18),
resulting in

0 ’ b

r0
Z� k@y2
� �

@y
2@tdrþP _g@y

2d _gþPr@y
2dr: (A1)
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Noting that the kinetic coefficients are constants here and
focusing on large wavelengths, where the term involving k can
be disregarded, eqn (A1) reduces, after two integrations over y, to

qtdr = �Adr � Bd _g + c + dy, (A2)

with A � r0Pr/bZ, B � r0P _g/bZ, and integration constants c
and d. In order to have drC 0 at the boundaries of the domain,
we set d = 0, such that the solution of eqn (A2) with initial
condition r( y,0) = rin( y) is obtained as

drðy; tÞ ¼ c

A
1� e�At
� �

þ e�AtrinðyÞ � e�At
ðt
0

dseAsBd _gðy; sÞ:

(A3)

Due to the neglect of the term qt
2dr, eqn (A2) does not conserve

mass. The effect of global mass conservation can be mimicked
in eqn (A3) by setting c ¼ A

Ð
dy0rinðy0Þ, which follows from

requiring 0 ¼
Ð
dy0drðy0; t ¼ 0Þ. Eqn (A3) shows that, in the

overdamped limit and for large wavelengths and small frequencies,
density fluctuations essentially relax exponentially in the com-
pressible fluid (cf. ref. 24). However, in contrast to diffusive
relaxation, which is also exponential at late times, the relaxation
rate is here independent of the wavenumber. Furthermore,
according to eqn (A3), a positive shear rate fluctuation gives
rise to a reduction of the local density. This behavior is an
essential mechanism of the SDC instability.

Appendix B: diffusive transport model

Here, we compare our results obtained in Section IV to the SCC
model studied in ref. 16, which is based on the advection–
diffusion equation for the concentration given in eqn (1). The
flow velocity u is assumed to relax much faster than the density,
such that the shear-rate is essentially enslaved to the density
evolution. Furthermore, also advective transport is neglected,
such that the SCC model as considered in ref. 16 effective
reduces to a purely diffusive transport model:

qtr = qy
2P(r, _g), (B1a)

0 = qysxy(r, _g), (B1b)

where sxy is given by eqn (8). In writing eqn (B1a), we used the
fact that, for the constitutive model in eqn (15), the effective
diffusivity Deff and the shear-gradient coefficient x defined
in ref. 16 derive from the pressure P(r, _g) via Deff � qrP and
x � q _gP, such that qy

2P = qy[Deffqyr + xqy _g].
Instead of the Couette geometry considered in ref. 16, we

study here the time evolution of eqn (B1) for a planar shear flow
(see Fig. 1). As in the main text, we impose either a fixed wall
velocity uw, a fixed wall shear rate _gw, or a fixed wall stress sw at
the boundaries. For the first two cases, instead of eqn (B1b),
we solve the full time-dependent equation eqn (5b) for the
velocity ux,

qt(rux) = qysxy(r, _g), (B2)

with _g = qyux. We generally impose a vanishing pressure
gradient qyP = 0 at the boundaries, which ensures global mass
conservation for the dynamics described by eqn (B1a).

Fig. 11–13 illustrate the time evolution of the density and the
shear rate in an unstable system for various boundary conditions.
In all cases, the density profile is initialized with a sinusoidal
modulation in order to trigger the initial instability. In general,
the steady state is reached significantly faster for diffusive
dynamics than for the compressible fluid model described by
eqn (5). Both for fixed uw and sw, the steady state is typically
reached for strains t _gav � Oð1Þ and � Oð0:1Þ, respectively,
while, for fixed _gw, instead, the growth rate of the maximally
unstable mode om provides a better estimate of the dynamical
time scale than the strain. (The value of the time scale inferred
from simulation depends somewhat on the chosen initial
configuration.) The larger steady-state time scale in the compressible
fluid model is predominantly caused by the slow transport of mass
towards the wall at the late stages of the evolution. In fact, apart
from this difference, the spatio-temporal evolution in both the
compressible and the diffusive transport model are qualitatively
similar (cf. Fig. 6–8).

Since we impose a vanishing pressure gradient at the
boundaries when solving eqn (B1a), the steady states resulting
from eqn (42) and (B1) are characterized by P and sxy being
constant throughout the system. Thus the only difference between
the steady states of two models stems from the presence of the yield

Fig. 11 Diffusive transport model [eqn (B1a) and (B2)]: time evolution of (a) the density and (b) the shear rate for a fixed wall velocity uw = ux(L) � ux(0)
corresponding to an average shear rate _gav = uw/L = 2� 10�4. The profiles shown are obtained at times t_gav = 0, 0.38, 0.4, N, where t = N corresponds to
the steady state (thick black curve) reached for t _gav \ 0.8. The shear rate at the wall is obtained as _g C 1.1 � 10�6. The growth rate of the maximally
unstable mode is given by om C 7.8 � 10�3. Parameters L = 200Dh, k0 = 100, and rav = 0.91rm are used.
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stress in eqn (42a). Accordingly, the steady state-profiles obtained
from eqn (42) and (B1) are very similar, which is illustrated in Fig. 14
for the case of fixed wall stress boundary conditions. It is therefore
not surprising that the time evolution, when starting from the same
initial conditions, is similar in the two models.
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