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Diffusive interaction of multiple surface
nanobubbles: shrinkage, growth, and coarsening†

Xiaojue Zhu, a Roberto Verzicco,ab Xuehua Zhang ac and Detlef Lohse *ad

Surface nanobubbles are nanoscopic spherical-cap shaped gaseous domains on immersed substrates which

are stable, even for days. After the stability of a single surface nanobubble has been theoretically explained, i.e.

contact line pinning and gas oversaturation are required to stabilize it against diffusive dissolution [Lohse and

Zhang, Phys. Rev. E, 2015, 91, 031003(R)], here we focus on the collective diffusive interaction of multiple

nanobubbles. For that purpose we develop a finite difference scheme for the diffusion equation with the

appropriate boundary conditions and with the immersed boundary method used to represent the growing or

shrinking bubbles. After validation of the scheme against the exact results of Epstein and Plesset for a bulk

bubble [J. Chem. Phys., 1950, 18, 1505] and of Lohse and Zhang for a surface bubble, the framework of these

simulations is used to describe the coarsening process of competitively growing nanobubbles. The coarsening

process for such diffusively interacting nanobubbles slows down with advancing time and increasing bubble

distance. The present results for surface nanobubbles are also applicable for immersed surface nanodroplets,

for which better controlled experimental results of the coarsening process exist.

1 Introduction

Surface nanobubbles1 – nanoscopic gaseous domains on
immersed surfaces – were first speculated to exist about
20 years ago2 and later found in atomic force microscopy (AFM)
images.3–5 While their long-time existence (often days) was first
considered as puzzling6 due to the supposedly large internal
Laplace pressure, which should squeeze them out, it is now
theoretically understood that they are stable thanks to a stable
balance between the Laplace pressure inside the nanobubble
and the gas overpressure from outside, which is enabled by
pinning of the contact line.1,7–10 The equilibrium angle ye

(see Fig. 1 for a sketch of the surface nanobubble and the used
notation) is determined by the gas oversaturation z = cN/cs � 1,
where cN is the concentration far away and cs the solubility,
and the contact diameter L by10

sin ye ¼ z
L

Lc
; (1)

where Lc = 4s/P0 = 2.84 mm for air in water under ambient
pressure P0 = 1 bar and with its surface tension s = 0.072 N m�1.
Note that we have assumed a spherical-cap shape, which is
well-justified theoretically and experimentally. The experi-
mental confirmation of eqn (1) through AFM experiments is
difficult for various reasons,1 but it was confirmed in molecular
dynamics (MD) simulations.11

In this paper we will first add further numerical confirma-
tion of the theory of ref. 10 by directly solving the diffusion
equation around a surface nanobubble, together with the
appropriate boundary conditions, namely cN far away from
the bubble, no gas flux through the substrate, and a gas
concentration given by Henry’s law at the bubble–liquid inter-
face, finding perfect agreement for the equilibrium contact
angle ye (eqn (1)) (Section 3). Before, in Section 2, we will introduce
the employed numerical method, namely a finite difference
scheme coupled to an immersed boundary method.12–14

Note that eqn (1) implies that the Young–Laplace relation,
which determines the contact angle on a macroscopic scale due
to the mutual interfacial tensions, is irrelevant on the micro-
scopic scale of the nanobubbles. This is in agreement with
various experimental observations (see e.g. ref. 1 and 15) that
the microscopic contact angle is constant and independent
of the substrate and thus different from the macroscopic
contact angle. According to eqn (1), the crossover from macro-
scopic to microscopic bubbles occurs at the length scale Lc/z,
below which the bubbles are small enough so that their Laplace
pressure is large enough to counteract the gas influx by
oversaturation.
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The main focus of the present paper will however be
on multiple surface bubbles which are diffusively inter-
acting.7,10,16,17 In general, no analytical solution is possible
for this case. An exception is the case of two diffusively inter-
acting surface bubbles far away from each other, i.e., with
a distance d much larger than their surface contact diameter L.
For that case Dollet and Lohse18 succeeded to analytically
show that the pinning of the surface bubbles not only stabilizes
each bubble against dissolution or growth, but that it also
stabilizes the pair of surface bubbles against Ostwald
ripening,19 i.e., the shrinkage of a bubble with smaller radius
of curvature (corresponding to large Laplace pressure) to the
benefit of a neighboring bubble with larger radius of curvature.
Here we will numerically show that this stabilization of
a pair of surface bubbles through pinning holds in general,
i.e., is not limited to bubbles far away from each other. We will
also show that the lack of pinning leads to Ostwald ripening
(Section 3).

In Section 5 we will extend the calculation to many surface
nanobubbles in a row, studying their coarsening process. The
coarsening of nanobubbles in principle can happen via Ostwald
ripening or via coalescence. In ref. 20 the analogous coarsening
process of nanodroplets growing in an oversaturated solution
was experimentally studied. There the nanodroplets also effec-
tively sit in a row, namely at the rim of a spherical lens, and our
assumption of periodic boundary conditions for the bubbles is
justified. In that ref. 20 it was speculated that the coarsening
mainly happens via Ostwald ripening. Here within our model
we will show under what conditions this indeed can be the
case. We will moreover study the dynamics of the coarsening
process and show that it slows down with advancing time and
thus increasing distance between the bubbles, similar to other
coarsening processes.21

As mentioned above, our numerical scheme can not only be
applied to diffusively interacting nanobubbles in a liquid, but
equally well to diffusively interacting droplets in a liquid (see
e.g. our own work on this subject, ref. 20, 22 and 23) or in a gas,
e.g., as they emerge in dew formation.24–28

The paper ends with conclusions and an outlook (Section 6).

2 Method: finite differences coupled
to the immersed boundary method

We start by considering the diffusion equation

@c

@t
¼ Dr2cþ s; (2)

where c is the concentration field, D the diffusion coefficient.
In the immersed boundary methods,13,14 the Eulerian source
term s is used to mimic the effects of the boundaries of bubbles
or droplets on the concentration.

The boundaries of bubbles or droplets are discretized into a
series of Lagrangian points. The Eulerian and Lagrangian
sources are related to each other through a regularized delta
function

sðxÞ ¼
ð
S Xlð Þd x� Xlð Þds; (3)

where x and Xl are the position vectors of the Eulerian and
Lagrangian points; S the Lagrangian source term; d the delta
function, respectively.

To enforce the prescribed concentration fields on the boundary,
we define the Lagrangian concentration field. Using the regular-
ized delta function again, this relation can be expressed as follows

ð
cðxÞd x� Xlð Þdx ¼ CG Xlð Þ; (4)

where CG is the Lagrangian concentration field which is pre-
scribed, known beforehand, on the boundary (Fig. 2).

In the discretized form, the diffusion equation for the kth
step is solved through the following procedures. First, an
intermediate ‘‘guessed’’ concentration field %c is calculated from
the Eulerian source term of the last step sk�1, with

Fig. 1 Sketch and notation of a surface droplet. L is the contact diameter,
y the contact angle, H the maximum height of the droplet, and R the radius
of curvature.

Fig. 2 Schematic sketch to illustrate the immersed boundary method: the
diffusion equation is solved on the Eulerian Cartesian grid points x. The
boundary G is discretized into a set of Lagrangian points X. The transfers of
the concentration between the Eulerian and the Lagrangian grid (c - C)
and the source term between the Lagrangian and Eulerian gird (S - s) are
through the discrete regularized delta function dh, which covers the area A.
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%c = ck�1 + Dt(Dr2ck�1 + sk�1). (5)

Here, the diffusion term r2c is discretized by a second-order
explicit scheme.

Next, we interpolate the intermediate concentration field
from Eulerian (%c) to Lagrangian ( %C) grid points through the
discrete delta function dh, i.e.

�C Xlð Þ ¼
X
x2A

�cðxÞdh x� Xlð Þh3: (6)

Apparently %C does not satisfy the boundary condition CG. In
order to achieve CG, from eqn (5) the Lagrangian source term Sk

for the current time step is derived as

Sk ¼ Sk�1 þ CG � �C

Dt
: (7)

The next step is to spread the Lagrangian source term Sk to
the Eulerian counterpart sk through the discrete delta function
dh again, expressed as

skðxÞ ¼
XNL

m¼1
SkðxÞdh x� Xlð ÞDVl: (8)

Finally, the concentration field with the Eulerian source
term sk at kth step is solved from

1�DDt
r2

2

� �
ck ¼ ck�1 þ Dt D

r2ck�1

2
þ sk

� �
: (9)

Here the Crank–Nicolson scheme is adopted to ensure the
stability of the code.

This ends one time step, after which the next time step is
treated in the same way.

The regularized delta function used in the present study is
defined as

dhðx� XÞ ¼ 1

h3
f

x� X

h

� �
f

y� Y

h

� �
f

z� Z

h

� �
; (10)

where f in the present implementation is based on the four-
point version of Peskin.13

fðrÞ ¼

1

8
3� 2 rj j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 rj j � 4r2

p� �
; rj j � 1;

1

8
5� 2 rj j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12 rj j � 4r2

p� �
; 1 � rj j � 2;

0; 2 � rj j;

8>>>>>><
>>>>>>:

(11)

3 Validation of the scheme for a single
bulk bubble and a single surface
bubble

We will now validate the scheme introduced in the previous
section. We will assume two test cases: a spherical bubble in
the bulk, whose growth or shrinkage behavior is analytically
known since Epstein and Plesset29 (Section 3.1), and a surface
nanobubble, which in the pinned case has a stable equilibrium

contact angle given by eqn (1), and in the unpinned case either
shrinks and then fully dissolves or grows and then finally
detaches (Section 3.2). All the simulations that are shown below
are performed with nitrogen bubble, for which the material
parameters are D = 2 � 10�9 m2 s�1, rg = 1.165 kg m�3, and
cs = 0.017 kg m�3.

3.1 The Epstein–Plesset bubble

In still liquid in an infinite domain, the mass loss or gain of a
spherical bubble of radius R is given by the concentration

gradient
@c

@r

� �
R

at its surface and the diffusion constant D,

dm

dt
¼

d 4=3rpR3
� �

dt
¼ 4pR2D

@c

@r

� �
R

: (12)

Here r the density of gas in the bubble. Epstein–Plesset29

succeeded to solve the diffusion equation together with
eqn (12) and the boundary condition far away from the bubble,
c(r - N,t) = cN, to obtain an ordinary differential equation
(ODE) for the bubble radius R(t),

dR

dt
¼ � CG � c1ð ÞD

r
1

R
þ 1

ðpDtÞ1=2

	 

: (13)

Here the prescribed CG is calculated from Henry’s law, taking the
effects of surface tension into account, i.e., CG(R,t) = cs(1 + 2s/R),
where cs is the saturation concentration. Note that for small
bubbles the Laplace pressure leads to an enhanced density,
obtained from the ideal gas law, and this effect of the surface
tension must also be taken into account. Eqn (13) can be
solved analytically to obtain R(t).29 Obviously, also in the
simulations the bubble is assumed to keep its spherical shape
during the diffusion process and eqn (12) is used to update the
bubble radius and the Lagrangian coordinate X during the
simulation.

Our numerical results of the relation between the bubble
radius and time based on the scheme developed in the previous
section are shown in Fig. 3 and compared with the analytical
results (or the results from eqn (13)). Three cases are consid-
ered. In Fig. 3(a), the bubble surface concentration and gas
density are kept constant, in Fig. 3(b), the density of the gas is
kept constant and we use the Henry’s law to calculate CG, and in
Fig. 3(c), we vary the density of the bubble according to the
ideal gas law and again the Henry’s law is used to calculate CG.
For all the cases, our simulations show excellent agreements
with the predictions from eqn (13).

We now come to dissolving or growing surface bubbles and
droplets (‘‘sessile droplets’’).1,30 For this axisymmetric case,
Popov31 could exactly solve the quasi-static case qtc E 0, i.e.,
the diffusion equation reduces to a Laplace question.
For evaporating droplets as in the case of Popov, this in
general is a very good approximation. Later the Popov model
was also applied to surface nanobubbles.10 Then the gas
concentration at the interface is again given by Henry’s
law which for surface bubbles takes the form CG(R,t) =
cs[1 + 4s sin y/(P0L)].

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
Ja

nu
ar

y 
20

18
. D

ow
nl

oa
de

d 
on

 1
1/

19
/2

02
4 

6:
37

:2
5 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7sm02523h


This journal is©The Royal Society of Chemistry 2018 Soft Matter, 2018, 14, 2006--2014 | 2009

To check how important the time dependence of the concen-
tration field is, we apply Popov’s model for a dissolving bubble
with a fixed contact angle of 901, written as

dR

dt
¼ � CG � c1ð ÞD

r
1

R
: (14)

One can see that the only difference between eqn (13) and (14)
is that in eqn (14) the time dependent term in the right hand
side of eqn (13) is eliminated. It is observed from Fig. 3 that
when Henry’s law is used while the bubble density is kept
constant, the quasi-static assumption of Popov’s model leads to
an overestimation of the bubble lifetime. Therefore in the
following, for appropriately simulating the diffusive dynamics
of the bubbles, we do not use the quasi-static approximation,
but employ the full diffusion equation with Henry’s law for the
bubble surface concentration and the ideal gas law for the
bubble density.

3.2 Stability of surface nanobubble & confirmation of the
theory of Lohse & Zhang10

For nano-bubbles with pinned contact line, an ODE for the
diffusive contact angle dynamics was derived in ref. 10, namely

dy
dt
¼ �4D

L2

cs

r
ð1þ cos yÞ2f ðyÞ Lc

L
sin y� z

	 

; (15)

with

f ðyÞ ¼ sin y
1þ cos y

þ 4

ð1
0

1þ cosh 2yt
sinh 2pt

tanh½ðp� yÞt�dt: (16)

A stable nanobubble can therefore be formed with the condi-
tion of eqn (1) where the bubble contact angle y is a constant
and stable.

Fig. 4(a) shows snapshots for the bubble evolution in the
pinned case with L = 1 mm and z = 1, for which according to
eqn (1) there should be a stable equilibrium,10 for fixed gas
oversaturation z 4 0. Indeed, the stable equilibrium angle
ye = 20.61 is reached in the simulations. Fig. 4(b) shows the

time evolution of the contact angle for two initial contact angles
yi = 901 and yi = 51. In both cases the contact angles saturate to
the predicted ye = 20.61 when advancing time long enough.
Further, we vary the oversaturation rate z from 0.4 to 1.6, in
which the equilibrium contact angle y would change, as shown
in Fig. 4(c). Again our results are in perfect agreement with the
prediction (eqn (1)).

In comparison, when a bubble is unpinned, even if with gas
oversaturation, the bubble can not be stable because of the
Laplace pressure, In Fig. 5, we show the time evolution of a
bubble in a constant contact mode with fixed contact angle
y = 901. The oversaturation z = 1 but still the bubble dissolves
very quickly.

We take the opportunity here to discuss the assumptions
that lead to eqn (15). Henry’s law is used when deriving
eqn (15), however the gas density is assumed constant and
the process is assumed quasi-steady. Let’s first focus on the
quasi-steady assumption. The typical diffusion time scale is
td = R2/D, while the evaporation/dissolution time scale
te = tdr/(cs � cN). For a water droplet evaporation, te/td is of
the order of 105, thus eqn (15) is a rather good approximation32

without considering the time dependent term of the diffusion
equation. However, for a gas bubble, te/td is of the order of 102,
thus the quasi-steady condition can not be valid anymore, as
also shown in Fig. 3(b). Also the gas density might vary because
of the Laplace pressure. However, it is easy to see from eqn (15)
and (3) that these considerations are only relevant for the time
scale of the evolution towards the equilibrium contact angle ye,
not for the value of ye itself.

4 Ostwald ripening process of two
bubbles: unpinned vs. pinned case

We now move to the case of two bubbles, for which the general
argument for nanobubble stability is not available anymore.
One exception is the case where two bubbles are far away from

Fig. 3 Time evolution of the bubble radius R(t) for nitrogen gas bubble for three cases with cN = 0 and the same initial bubble radius 50 nm: (a) the
bubble surface concentration and the gas density stay constant during the diffusion. (b) The gas density stays the same, however the surface
concentration is given by Henry’s law, where CG(R,t) = cs(1 + 2s/R). (c) The gas density varies according to the ideal gas law and the surface concentration
according to Henry’s law as in (b). In the simulations here, the domain size is 0.5 mm � 0.5 mm � 0.5 mm. The resolution is of the computational domain is
201 � 201 � 201. Our numerical solutions agree very well with the exact Epstein–Plesset29 results. However, our results deviate from that of a quasistatic
approximation qtc = 0.
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Fig. 4 (a) Snapshots of the diffusive dynamics of a pinned surface nanobubbles growing towards its equilibrium state. The color code represents the gas
concentration field. Here L = 1 mm and z = 1. (b) Time evolution y(t) of the contact angle growing or shrinking towards its equilibrium value ye given by
eqn (1). Two cases with different initial contact angles yi are shown. As above, L = 1 mm and z = 1. (c) Equilibrium contact angle ye for various gas
concentrations z. The straight line is the prediction eqn (1), giving perfect agreement. Again, L = 1 mm. In the simulations here, the domain size is
6 mm � 3 mm � 6 mm. The resolution is of the computational domain is 301 � 151 � 301. The corresponding videos are shown as ESI.†

Fig. 5 Time evolution for the contact diameter L(t) for an unpinned surface nanobubble with pre-described constant contact angle y = 901 and gas
oversaturation z = 1. The bubble dissolves within 3 microseconds. In the simulations here, the domain size is 6 mm � 3 mm � 6 mm. The resolution is of the
computational domain is 301 � 151 � 301. The corresponding videos are shown as ESI.†
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each other. For this case Dollet and Lohse18 theoretically show
that pinning also suppresses the Ostwald ripening process
between neighbouring surface nanobubbles. But this case is
not given in most experiments, in which the nanobubbles sit
very close to each other and nonetheless can remain stable for
very long time.7 In this paper we will now show with numerical
simulations that this stabilization of a pair of surface bubbles
through pinning is indeed not limited to bubbles far away from
each other but also holds for bubbles that are close.

Fig. 6 shows two cases, the first one for two surface bubbles
with same fixed contact diameter L1 = L2 = 1 mm and the second
one with different contact diameters L1 = 1 mm, L2 = 0.7 mm. In
both cases we set the oversaturation to z = 2 and have pinned
contact lines. It can be seen that with pinning and gas over-
saturation, indeed the two bubbles case are eventually stable,

even if the distance between them are very close. Specifically,
for the case with same contact diameter, both have the stable
equilibrium contact angle ye = 40.71 given by eqn (1). For the
case with different contact diameters, one bubble has the
stable equilibrium contact angle ye = 40.71 and the other one
ye = 29.61, however, the radii of curvature L/cos ye for the two
bubbles are the same, as it should be according to the theory
of Lohse and Zhang.10

For the bubbles with unpinned contact line, Ostwald
ripening indeed diffusively destabilizes the two neighboring
bubble. In Fig. 7 we show two bubbles with the same condition
as in Fig. 6(a and b), but now unpinned and with constant
contact angles. It can be seen that the two bubbles diffusively
interact with each other, leading to Ostwald ripening: therefore
one bubbles dissolves and the other one grows.

Fig. 6 (a and c) Snapshots of the time evolution of two pinned neighbouring bubbles and the surrounding gas concentration field. The oversaturation is
z = 2. For (a), the contact diameters are L1 = L2 = 1 mm. The initial contact angle for the left bubble is 901 and for the right bubble is 151. For (c), the contact
diameters are L1 = 1 mm and L2 = 0.7 mm. The initial contact angle for the left bubble is 151 and for the right bubble is 901. The pinning stabilizes the two
bubbles against Ostwald ripening and the contact angles of both bubbles converge to ye, as given by eqn (1). (b and d) Contact angles of the two bubbles
as function of time for cases (a) and (c). In (d) (case (c), and in (b) (case (a)) of course anyhow), the resulting radii of curvature L/cos ye are identical. In the
simulations here, the domain size is 6 mm � 3 mm � 6 mm. The resolution is of the computational domain is 301 � 151 � 301. The corresponding videos
are shown as ESI.†
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5 Diffusive coarsening process for an
one-dimensional array of bubbles

Finally, we look at the coarsening process for an one-dimensional
array of bubbles. In Fig. 8(a), we show an array of 5 bubbles. The
bubbles all have a constant contact angle of 901. Initially, bubble 1
and bubble 5 have contact diameters of 1.44 mm, bubble 2 and
bubble 4 have contact diameters of 1.45 mm, and bubble 3 has a
contact diameter of 1.46 mm. Because of the Henry’s law, smaller
bubble will have a higher surface concentration while bigger one
lower. Thus a concentration gradient between different bubbles is
formed and the coarsening process starts. Interestingly, it is not
bubble 1 and 5, which have the lowest surface concentration that are
eaten by other bubbles, but bubble 2 and 4, which are in between.
We see after the disappearance of bubbles 2 and 4, all other three
bubbles become bigger, however with time advancing, the even
bigger bubble 3 finally eats all the other bubbles and the coarsening
process ends. Similar effects can be found for more bubbles, in
Fig. 8(c), we show an array of 13 bubbles. In this case, bubble contact
diameters are from 1.44 mm to 1.5 mm, with an increase of 0.01 mm
for each from bubble 1 to bubble 7. Then from bubble 7 to bubble
13, the contact diameter decreases 0.01 mm for each. Analogous to
the coarsening process of shaken compartimentalized granular
matter of ref. 21, here for nanobubbles we find that with time
passing by and thus the distance between the bubbles growing, the
coarsening process also slows down, as shown in Fig. 8(b and d).

6 Conclusions and outlook

Simulations of finite difference combined with the immersed
boundary methods were performed to study the stability and

instability of nanobubbles. Four difference configurations were
considered, a bulk bubble, a surface bubble, two close surface
bubbles, and an array of surface bubbles. For bulk bubbles, the
simulated time evolution of the bubble radius shows excellent
agreements with Epstein & Plesset’s analytical results,29 validat-
ing our scheme and code. For single surface nanobubbles, our
simulations confirm that pinning and oversaturation can
indeed stabilize the surface nanobubble, and the equilibrium
contact angle perfectly agrees with the analytical result eqn (1)
of Lohse and Zhang.10 Thus a consistent picture between
our prior theoretical calculations and the present numerical
simulations has emerged. For two neighbouring nanobubbles,
we find that pinning and oversaturation can stabilize
the nanobubble pair against Ostwald ripening, even when the
bubbles are very close to each other. Finally, we show the
coarsening process for a row of nanobubbles. The coarsening
slows down with advancing time and increasing nanobubble
distance, similar to the coarsening process as seen in shaken
compartimentalized granular matter.21

We note that though here we give the results only for surface
nanobubbles, corresponding results should also hold for
surface nanodroplets. We also note that for the parameters of
this study here, the dominant coarsening process is Ostwald
ripening, i.e., mass exchange by diffusion, but for other para-
meters (e.g. larger oversaturation) the dominant process can
also be bubble coalescence. To map out the parameter space
when Ostwald ripening will be dominant and when bubble
coalescence will be the subject of future work. Correspondingly,
in future work we also want to extend this study from surface
bubbles or surface droplets in a row to those in a two-
dimensional array as experimentally done in e.g. ref. 17
and 33 or to randomly distributed surface bubbles or droplets

Fig. 7 (a) Snapshots of the time evolution of two unpinned neighbouring bubbles and the surrounding gas concentration field. The parameters are the
same as in the case of Fig. 6(a). In the absence of pinning the pair of bubbles undergoes Ostwald ripening, i.e., one bubble grows and the other ones
dissolves. (b) Contact diameters of the two bubbles as function of time. The red curve shows the contact diameter of the growing right bubble, and
the blue one that of the shrinking left bubble, which is fully dissolved in the end. In the simulations here, the domain size is 6 mm � 3 mm � 6 mm.
The resolution is of the computational domain is 301 � 151 � 301. The corresponding videos are shown as ESI.†
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as in ref. 22. Future work can also address how heterogeneities
on the gas-water interfaces through e.g. local surfactant accu-
mulation can affect the overall dynamics of the bubble
ensemble.

Finally, we caution the reader: our results are based on
continuum theory and hydrodynamic equations. However, at
very short length scales the continuum approximation will
break down. In very recent molecular dynamics (MD) simula-
tions, Maheshwari et al.34 have revealed that in certain cases
(very strong attraction between the dissolved gas molecules and
the surface) surface nanobubbles very close to each other can
communicate through a ‘‘new channel’’, namely diffusion of
gas from one surface bubble to the other along the surface, and
not through the bulk. If this is the case, some sort of ripening
process of neighboring surface bubbles may be possible in spite
of hydrodynamic stability against Ostwald ripening.
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