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Maximum in density heterogeneities of active
swimmers†

Fabian Jan Schwarzendahlab and Marco G. Mazza *a

Suspensions of unicellular microswimmers such as flagellated bacteria or motile algae can exhibit

spontaneous density heterogeneities at large enough concentrations. We introduce a novel model for

biological microswimmers that creates the flow field of the corresponding microswimmers, and takes

into account the shape anisotropy of the swimmer’s body and stroke-averaged flagella. By employing

multiparticle collision dynamics, we directly couple the swimmer’s dynamics to the fluid’s. We

characterize the nonequilibrium phase diagram, as the filling fraction and Péclet number are varied, and

find density heterogeneities in the distribution of both pullers and pushers, due to hydrodynamic

instabilities. We find a maximum degree of clustering at intermediate filling fractions and at large Péclet

numbers resulting from a competition of hydrodynamic and steric interactions between the swimmers.

We develop an analytical theory that supports these results. This maximum might represent an optimum

for the microorganisms’ colonization of their environment.

I. Introduction

Physical interactions in suspensions of microswimmers consisting
of bacteria or algae have been recognized to play an important
role in the swimmers’ collective behavior.1–3 The nonequilibrium
character of active suspensions, where the energy injection takes
place at the scale of the microorganisms, produces myriad
mesmerizing phenomena, such as complex interaction with
solid surfaces,4–6 the spontaneous formation of spiral vortices,7

directed motion,8 swarming,9 bacterial turbulence,10 and self-
concentration.11

Almost invariably, motile microorganisms move in an aqueous
environment, where, because of their size, viscous forces
dominate, and inertial forces are completely negligible. In fact,
consideration of the Navier–Stokes equations identifies that the
nature of the dynamics is dictated by the ratio of viscous to
inertial forces, known as the Reynolds number R = svr/Z, where
s is the typical size of the microorganism, v its mean velocity,
and r, Z are the fluid’s density and viscosity, respectively. For
Escherichia coli, e.g., s E 10 mm, v E 30 mm s�1, and for water
r E 103 kg m�3, Z E 10�3 Pa s, which result in R E 10�5. As
noted by Purcell,12 this means that if the propulsion of a swimmer
were to suddenly disappear, it would only coast for 0.1 Å.

Thus, the state of motion is only determined by the forces
acting at that very moment, and inertia is negligible.

Due to the microswimmers’ low Reynolds numbers, the sum
of viscous drag and thrust balances out to zero, in most
situations. A direct consequence of force-free motion is that
the leading term of the solution of the Stokes equation for a
microswimmer is a symmetric force dipole (or stresslet).

Biological microswimmers are complex systems because
of the combination of biological, biochemical and physical
processes all taking place at the same time. It is thus of great
scientific value to develop theoretical models that isolate the
relevant degrees of freedom and interactions. Considerable
work has been done in recent years, and various models have
been introduced, like the squirmer model,13–31 the shape
anisotropic raspberry swimmer,32–34 the force–counterforce
model,35–38 the catalytic dimers,39 or other hydrodynamic
models.40–43 Experiments have confirmed that the flow field
of flagellated bacteria like E. coli is to very good approximation
modeled by a simple force dipole,44 whereas Chlamydomonas
reinhardtii are modeled by three Stokeslets.45 Furthermore, as
cell shapes vary greatly in the natural world, and realistic steric
interactions are important in dense suspensions, a model that
allows for flexibility in the shape of a microswimmer is a highly
desirable feature. In this article we fill this lacuna. We derive a
model for a flexible-shape microswimmer that produces self-
propulsion by means of a force dipole for pusher-like micro-
swimmers, or three Stokeslets for puller-like microswimmers.

An efficient method to simulate fluids at mesoscopic scales,
and their hydrodynamics is the multiparticle collision dynamics
(MPCD) technique.46 MPCD is a particle-based simulation method
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that correctly produces hydrodynamic modes. Due to its particle
nature MPCD naturally includes thermal fluctuations, and can
be easily coupled to molecular dynamics methods of solutes,
colloids,47 and active swimmers.20,24,26 The MPCD technique in
fact proves to be ideal for our purposes.

The nonequilibrium phase diagram of microswimmers has
been subject to considerable interest, especially with regard to
the emergence of density heterogeneities in the swimmers’
distribution.2 We explore the phase diagram of active swimmers
and describe the presence of heterogeneities in the spatial dis-
tribution of both pushers and pullers. These heterogeneities arise
due to the hydrodynamic interactions between the swimmers and
relate to existing hydrodynamic theories.2,48–50 Interestingly, we
find a maximum in the heterogeneities as filling fraction and
Péclet number are varied. By using both computer simulations and
analytical theory, we demonstrate that this maximum results from
a competition between hydrodynamic and steric interactions,
where the latter temper the hydrodynamic instability at higher
filling fractions. This optimum might have important biological
implications on the ability of motile bacteria and algae to form
colonies or biofilms.

The remainder of this article is organized as follows. In
Section II we introduce the model for the microswimmer.
Section III describes the physical properties of the fluid and the
microswimmer’s flow field. In Section IV we present the non-
equilibrium phase diagram of our model microswimmers, and
specifically we characterize the density heterogeneities emerging
from their hydrodynamic interactions and show that these
are tempered by steric interactions at higher filling fractions. In
Section V we present an analytical theory and show that we also find
a maximum in heterogeneity, which is mediated by the interplay
of hydrodynamic and steric interactions. Finally, in Section VI we
discuss our main results and summarize our conclusions.

II. Model

We employ a stroke-averaged model of biological microswimmers,
similarly to,1,10,51 taking into account the asymmetric shape of
biological microswimmers due to the cell’s body and the flagella.
The swimmer is thus modeled as an asymmetric dumbbell, as
depicted in Fig. 1, that mimics a C. reinhardtii or an E. coli cell.
The smaller sphere models the swimmer’s body and the larger
sphere is a stroke average of the region spanned by flagellar
motion. The rigid body dynamics of the dumbbells is simulated
using Newton’s equations and quaternion dynamics (for details
see Appendix A1 and A2).

In addition to the rigid body dynamics, we simulate the fluid
surrounding the swimmers using MPCD (see Appendix A3),
which is a mesoscopic, particle based method, that reproduces
hydrodynamics at the Navier–Stokes level.47 Precise measure-
ments44 show that the flow field of pusher-type microswimmers
is well modeled by a force dipole. The pullers flow field, on the
other hand, is well represented by a three-Stokeslet solution of
the Stokes equation.45 These two flow-field models are included
in our simulations by adding force regions to the fluid, as

depicted by the red regions (3) in Fig. 1. Furthermore, we couple
the fluid and swimmers’ dynamics by imposing a no-slip
boundary condition on the swimmers’ surface (for details see
Appendix A4).

It should be noted that the dumbbell model introduced here
has an anisotropic rigid shape that can be easily modified to
more complex shapes. Squirmer models have so far been
described for spherical or ellipsoidal shapes.25 Our hydro-
dynamic flow field is very similar to the three-bead-spring
model.52 However, the rigid body dynamics differ in the fact
that in the three-bead-spring model the beads are connected by
springs, whereas ours is a rigid model.

In the following, we express all physical quantities in terms
of the MPCD particle mass m, the size of an MPCD grid cell a,
and the temperature T of the fluid. We simulate (see Section IV)
N = 300–1560 active swimmers in a cubic domain with side
length of 100a, which is approximately 20 times the size of an
individual swimmer, and with periodic boundary conditions.
The resulting filling fraction ranges between f = 0.05 and
f = 0.29. The average number of MPCD particles per cell is
hNCi = 20 such that the total number of MPCD particles in a
simulation is 2 � 107. The Reynolds number considered here
ranges from R B 0.01 to R B 0.1 and the Péclet number
reaches from 2.2 � 102 to 2.6 � 103.

The full details of our numerical implementation are given
in Appendix A.

Fig. 1 Schematic representation in a perspective view of the active
swimmer model for (a) a puller-type, and (b) a pusher-type microswimmer.
In both panels, the small green spheres (1) represent the swimmer’s body,
and the larger transparent spheres (2) represent the stroke-averaged space
spanned by the flagella. The red spheres (3) with embedded arrows
represent the regions where the forces are applied. The golden arrows
(4) represent the swimming direction. The lines with arrows (5) are a sketch
of the hydrodynamic streamlines generated by the swimmers.
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III. Characterization of the fluid and
active hydrodynamics

In the following we describe calculations aimed at characterizing
the thermal (equilibrium) properties of our model in the passive
case, and also the flow field generated by the active motion.

We first consider a passive colloid (with the same geometry
described above, and in Fig. 1) immersed in the MPCD fluid,
that is, we carried out equilibrium simulations without activity.
The equipartition theorem applied to the passive colloid for the
translational motion predicts that the average of each velocity
component squared is hUa

2i = kBT/M, where M is the colloid’s
mass, kB is the Boltzmann constant, and a = x, y, z. For
our system, we find a theoretical value of the translational
motion hUtheory

2i = 2.7 � 10�4kBT/m and the simulations give
hUx

2i = hUy
2i = hUz

2i = 2.3 � 10�4kBT/m. In case of the rotational
motion, the equipartition theorem predicts for the angular
velocity h(Ob

a)2i = kBT/Ima, where Ima is the moment of inertia
tensor. Considering our swimmer, whose long axis is aligned
with the z axis of a Cartesian reference frame, the theoretical
prediction for the angular motion in x and y direction yields
h(Ob

x,y)2i = 1.3 � 10�3kBT/ma2 while the simulations yield
h(Ob

x)2i = h(Ob
y )2i = 1.1 � 10�3kBT/ma2. In the z direction, the

theory predicts h(Ob
z )2i = 1.4 � 10�3kBT/ma2 and the simulations

give h(Ob
z )2i = 1.2 � 10�3kBT/ma2.

We now consider the active motion at R{ 1. Hydrodynamics
at low Reynolds numbers (relevant for micron-sized objects)
allow a great simplification of the Navier–Stokes equations: the
nonlinear, inertial effects can be neglected, and the governing
equations are the Stokes equations

Zr2u = rp � f ext, r�u = 0, (1)

where u(r) is the fluid velocity, p(r) the pressure, f ext(r) is a body
force acting on the fluid at position r, and Z is the viscosity of
the fluid. Solving the Stokes equations means obtaining expres-
sions for u and p that satisfy eqn (1) and the boundary
conditions. From this knowledge, the stress tensor r can be
calculated. For a Newtonian fluid, r depends linearly on the
instantaneous values of the velocity gradient, so that one can
write r = �pI + Z[r # u + (r # u)T], where # indicates the

tensor product, and I the identity tensor. Because the Stokes
equations are linear, their solution can be formally written
in terms of the convolution of a Green’s function with the
inhomogeneous term f ext 53,54

uðr; tÞ ¼
ð
Oðr� r0Þ � f extðr0; tÞdr0: (2)

In free, three-dimensional space, the Green’s function is
found by considering a point force f ext = fed(r) acting on an
infinite, quiescent fluid, where e is the unit vector representing
the direction of the force, and d(r) is the Dirac distribution.

A straightforward calculation55 gives the Oseen tensor OðrÞ �

1

8pZr
ðIþ r̂� r̂Þ where r̂ � r/r, r = |r|, and the resulting flow field

uðrÞ ¼ f

8pZr
½eþ ðr̂ � eÞr̂�, which is termed a ‘Stokeslet’ and decays

with distance as r�1.
A theoretical prediction for the puller flow field is constructed

from three Stokeslets, and for the pusher we use two Stokeslets.
The Stokeslets positions are placed at the midpoints of the
respective force regions in the swimmer model (see Fig. 1).

We now consider the flow field generated by the active
motion of our model microswimmer. We switch on the active
motion with a force f0 = 50kBT/a and carry out the full dynamics
as described in Section II (see also Appendix A for a full
definition of f0). Fig. 2 shows the flow fields of a pusher and
a puller in the lab frame. As expected, the flow field of the puller
is contractile, as fluid is drawn in from the front and the back,
while fluid is pushed away normal to the swimming direction
[Fig. 2(a)]. The situation is reversed in the pusher case [Fig. 2(c)]
where fluid is pushed out at the front and back of the swimmer.
The theoretical predictions for both the puller [Fig. 2(b)] and
the pusher [Fig. 2(d)] show a good quantitative agreement with
the simulated flow fields. For the Stokesian algebraic decay of
u(r), the reader is referred to Section I in the ESI.†

The effective velocity veff � |he�Ui| of an isolated swimmer in
the steady state depends linearly on the active force f0.1 Here, e
is the swimmer’s orientation and U is the swimmer’s velocity.
From our simulations, we calculate veff for a pusher [see Fig. 3].

Fig. 2 Time-averaged flow field generated by (a) our model puller, (b) theoretical puller, (c) our model pusher, and (d) theoretical pusher. We show
cross-sections on the x–y plane at z = 0. The force strength is f0 = 50kBT/a. The large central white regions show the hard cores of the active swimmers.
The thin lines with arrows mark the streamlines, while the color code shows the magnitude of the flow velocity normalized to the thermal velocity. The
large black arrows indicate the direction of motion.
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The linear fit has a slope of a ¼ 1:45� 5� 10�2
� �

� 10�3

ffiffiffiffiffiffiffiffiffi
ma2

kBT

s
.

The analogous results for pullers are also shown in Fig. 3, where

the slope of the linear fit is a ¼ 4:4� 7� 10�2
� �

� 10�3

ffiffiffiffiffiffiffiffiffi
ma2

kBT

s
.

The linear dependence of veff on f0 shows that our simulations
correspond to the Stokes flow regime.

Further simulations on the two particle interaction statistics
and two particle flow fields can be found in Section I (ESI†).

IV. Density heterogeneities

In the following we will study the nonequilibrium phase
behavior of our active swimmer model. The filling fraction we
employ here is computed using the volume of the swimmer’s
body VB, as well as the volume that is spanned by the flagella
sphere VF, while taking into account their overlap volume VOl

f ¼ VB þ VF � VOlð ÞN
V

; (3)

where V is the volume of the simulated system. Note, that in an
experiment only the body of the cell would be taken into
account, thus the filling fraction should then be rescaled by
VB/(VB + VF � VOl) = 7.5 � 10�2. Furthermore, we vary the
strength of the active force f0, which changes the propulsion
speed veff as well as the strength of the hydrodynamic inter-
actions between the swimmers. The Péclet number captures the
ratio of advection to diffusion, and can be computed using

P ¼ veffs
D

; (4)

where we used the linear relation (fitted slope) between active
velocity and force dipole strength from Section III. Further-
more, s = 5a is the typical length of the swimmer and for the

diffusion constant we assume D ¼ kBT

6pZs
.

We analyze the system’s density using a Voronoi
tessellation56 and compute the local volume for each swimmer.

A global measure for the heterogeneity of a configuration of
swimmers is given by the standard deviation of the distribution
of local Voronoi volumes sloc. In order to remove trivial scaling
factors, we compare sloc to the standard deviation srnd of local
Voronoi volumes for random homogeneous configurations of
nonoverlapping, passive dumbbells (as in Fig. 1) with the same
filling fraction. Fig. 4 shows the resulting phase diagram, with
the dependence of sloc/srnd on Péclet number and filling
fraction. Here, positive values of P correspond to pusher-type
swimmers, whereas negative values are puller-type swimmers.

The phase diagram shows that for both pullers and pushers,
initially sloc/srnd grows with P and filling fraction, then it
reaches a maximum and drops to lower values. The initial
increase is related to an instability that is mediated by the
hydrodynamic interactions of the microswimmers which has
also been found in ref. 1, 2 and 48–50. Intuitively this can
be understood in the following way: the hydrodynamic flow
field from the swimmers creates heterogeneities in the fluid’s
velocity, which couple back to the swimmers and produce
heterogeneities in the density. It should be noted that the
Péclet number of the system has to be rather large, such that
the hydrodynamic interaction between the swimmers is strong
enough to produce heterogeneous structures. As the filling
fraction increases, steric interactions grow in importance and
compete with the hydrodynamic instability. Thus, we ascribe
the presence of the maximum in sloc/srnd to a tapering effect of
the steric interactions on the hydrodynamic instability. This
tapering effect becomes visible only when steric interactions
are fully accounted for.

To test the hypothesis that steric interactions stabilize the
hydrodynamic instability, we carry out two more types of
simulations: first, we exclude the steric effects by setting the
hard-core repulsion [eqn (A6)] to zero, thus only hydrodynamic
effects are included. Second, we carry out Brownian dynamics
simulations, which completely neglect hydrodynamic interac-
tions. More details about the Brownian dynamics simulations
are given in Section III of the ESI.†

In Fig. 5 we show our original simulations that fully account
for hydrodynamic and steric interactions, the simulations

Fig. 3 Dependence of the pusher and puller velocity veff on the active
force f0. Lines are linear fits to the simulated data. The observed linear
dependence is evidence of the Stokes flow regime.

Fig. 4 Standard deviation of local Voronoi volume sloc compared to standard
deviation srnd of a homogeneous configuration. The Péclet number P as well
as the global filling fraction f are varied. Positive Péclet numbers correspond to
pusher-type and negative to puller-type swimmers.
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without steric interactions, and the active Brownian simulations.
The simulations with hydrodynamics alone give rise to a strong
increase of sloc/srnd, but no maximum occurs, while the active
Brownian simulations show a monotonic increase of sloc/srnd,
which is much less pronounced. Our original simulations (with
both hydrodynamics and steric effects) exhibit intermediate values
of sloc/srnd. Thus, we conclude that the maximum which we see is
mediated by an interplay of the hydrodynamic interactions and the
steric interactions, confirming our hypothesis.

V. Theoretical analysis

To bolster our numerical results, we develop an analytical theory of
microswimmers that explicitly includes hydrodynamic and steric
interactions. As in our numerical model (see Section II), we
consider the dynamics of an asymmetric dumbbell, which is
described by the following effective Langevin equations

drLi

dt
¼ u rLið Þ; (5)

drSi

dt
¼ u rSið Þ; (6)

where rLi is the position of the front sphere of the swimmer i with
radius aL and rSi the position of the respective back sphere with
radius aS. The front and back spheres of each swimmer are
connected by an infinitely thin rigid rod of length l. The swimmer
is coupled to the fluid velocity u, which is determined by the Stokes
equation including a stochastic and an active force term

Zr2u = rp � f active + f noise. (7)

Here, the active force is given by a force dipole

f active ¼
X
i

f ei d r� rLið Þ � d r� rSið Þ½ �; (8)

which points along the orientation of the swimmer ei and has a
force strength f. The orientation is defined as ei = (rLi � rSi)/l,
i.e., the unit vector connecting the back to the front sphere.

Furthermore, fluctuations in the swimmers motion are added
to the fluid via

f noise ¼
X
i

nLi ðtÞd r� rLið Þ � nSi ðtÞd r� rSið Þ; (9)

where nL,S
i (t) are noise terms with hnL,S

i (t)nL,S
j (t0)i = 2GL,SIkBTdijd(t� t0),

and GL,S = 6pZaL,S are the friction coefficients of the front and back
sphere. Considering only the active term eqn (7) can be solved

u ¼ f
X
i

O r� rLið Þ �O r� rSið Þ½ � � ei; (10)

with the Oseen tensor OðrÞ � 1

8pZr
ðIþ r̂� r̂Þ, which is regularized

by using O(|r| r aL,S) � I/GL,S. Given the solution (10), the flow
velocity can be eliminated from eqn (5) and (6). Using the hydro-

dynamic center rC ¼ GLrL þ GSrS

GL þ GS
, we can simplify eqn (5) and (6) to

drCi
dt
¼ v0ei þ

1

zhy

X
iaj

F ij þ ni; (11)

dei

dt
¼ 1

l2zhy

X
iaj

sij þ nRi

" #
� ei; (12)

where v0 is the propulsion speed and zhy = 3pZ(aS + al) is the
hydrodynamic friction coefficient. The leading order of the multipole
expansion of the hydrodynamic force Fij and torque sij between
swimmers i and j are given in Section IV (ESI†). The random forces
ni and nR

i are Gaussian white noises with

hxi,a(t)xj,b(t0)i = 2Ddijdabd(t � t0), (13)

hxR
i,a(t)x

R
j,b(t0)i = 2DRdijdabd(t � t0), (14)

where D is the translational and DR the rotational diffusion
coefficient.

Following,1 we derive the one-body Smoluchowski equation
from eqn (11) and (12). As we have seen in Section IV steric inter-
actions among swimmers may play a crucial role in their dynamics.

Fig. 5 Dependence on the filling fraction of the standard deviation of local Voronoi volumes sloc compared to the standard deviation srnd of a
homogeneous configuration for pushers (a), and pullers (b). The Péclet number is fixed to P = 2.6 � 103 for pushers and P = 2.4 � 103 for pullers. The
circles are the results for simulations with both hydrodynamic and steric interactions; the squares are the results for simulations including only
hydrodynamic interactions; and the triangles are simulations including only steric interactions.
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Thus, we explicitly include the effect of steric interactions by
means of the Ansatz57,58

v(c) = v0 � cz. (15)

Here, c is the concentration and the constant z quantifies how much
the swimmers are slowed down by the steric interactions (for more
details see ref. 57 and 58). The Smoluchowski equation then reads

@tp ¼ �r � ½vðcÞep� �
1

zhy
r � Fhyp
� �

� 1

zhyl2
e� @

@e

� �
� shyp

þDDpþDR e� @

@e

� �2

p;

(16)

where p(r,e,t) is the one-particle probability distribution function
of finding a swimmer at position r, with orientation e at time t.
The first term on the right hand side of eqn (16) takes into
account the active motion with a density dependent velocity, due
to steric interactions; the second term accounts for the hydro-
dynamic forces and the third term for the hydrodynamic torques;
the last two terms are responsible for translational and rotational
diffusivity respectively. Here, Fhy are the hydrodynamic two-body
forces, and shy is the hydrodynamic torque between two particles
(see also ESI,† Section V). To make progress with this equation,
we follow the standard path: we consider a multipole expansion
and compute moment equations for the concentration c, the
polarization P and the nematic order tensor Q

cðr; tÞ ¼
ð
depðr; e; tÞ; (17)

Pðr; tÞ ¼ 1

cðr; tÞ

ð
deepðr; e; tÞ; (18)

Qðr; tÞ ¼ 1

cðr; tÞ

ð
de e� e� 1

3
I

� �
pðr; e; tÞ: (19)

The full equations for c, P and Q are given in Section V (ESI†). We
linearize these moment equations around the isotropic state,
described by c = c0 + dc, P = dP and Q = dQ and turn to Fourier
space, with wave vector k, where the fields are denoted by dc̃(k),
dP̃(k), and dQ̃(k). To first order in the fluctuations the equations
governing the temporal evolution read

@td~c ¼ � iki v0c0 � zc02 þ c0
2 Dal

2f

30Z�a

� �
d ~Pi þDkikid~c

� �
; (20)

@td ~Pi ¼� ikj v0 � zc0ð Þd ~Qij þ iki
1

3

v0

c0
� 2z

� �
d~c

�

þ Dkjkj þDR

� �
d ~Pi

�
;

(21)

@td ~Qij ¼� i
2

5
v0 � zc0ð Þ kid ~Pj

	 
STþ 3lf

8pZ
c0Mij d ~Qij

� ��

þ 4DR þ knknDð Þd ~Qij

�
;

(22)

where k = |k| is the absolute value of the wavevector,

Mij

� �
¼ 4

5
p

� 2

3
d ~Q2;2 þ d ~Q3;3

� �
2

3
d ~Q2;1

�d ~Q3;1

2

3
d ~Q2;1 �d ~Q3;1

2

3
d ~Q2;2 �d ~Q3;2

�d ~Q3;2
2

3
d ~Q3;3

0
BBBBBBBB@

1
CCCCCCCCA
; (23)

[Aij]
ST is the symmetric traceless form of the tensor Aij, and we now

denote i, j = x, y, z. The terms involving the force dipole strength f
stem from the hydrodynamic interactions and can cause instabilities
in the system. To analyze the stability of the system we will first
consider pullers ( f o 0) and in the second step pushers ( f 4 0),
where we systematically keep terms up to order k2.

For pullers ( f o 0) the concentration fluctuations dc̃ are
dominant. To analyze the fluctuations in the concentration we
use a large length-scale and long time-scale (DRt c 1) approxi-
mation for the longitudinal polarization dP̃8 = k̂idP̃i, k̂i � ki/k,
which reads

d ~Pk 	 �
ik

3DR

v0

c0
� 2z

� �
d~c; (24)

whereas the fluctuations dQ̃ij are of higher order in k, when
terms of order k2 in eqn (20) are kept. Inserting the quasi-
stationary solution eqn (24) into the eqn (20) yields

@td~c ¼� k2

3DR
3DDR þ v0

2 þ c0 �3v0zþ
dal2v0f
30Z�a

� ��

þ c0
22z z� dal2f

30Z�a

� ��
d~c:

(25)

For pullers the term c0 �3v0zþ
dal2v0f
30Z�a

� �
introduces an instabil-

ity at low concentrations c0, which are counteracted by the term

c0
22z z� dal2f

30Z�a

� �
, that stabilizes the system at higher concentra-

tions. Since the first term is dominated by the hydrodynamic
interactions and the second term by the steric interactions, we
can draw the same conclusion as from the simulations: the
hydrodynamic interactions cause heterogeneities in the system
which are suppressed by the steric effects at larger c0. Moreover,
inspection of the fastest-growing eigenvalue reveals a maximum
of instability as a function of c0 and, hence, a maximum degree
of heterogeneity. The position of the maximum of the filling
fraction can be estimated from microscopic information
extracted from scattering events between two swimmers; we find
fmax = 0.12, which is consistent with the simulation in Fig. 5(b)
(for details see Appendix B).

We also find an instability in the splay fluctuations of the
nematic tensor dQ̃88 = k̂�Q̃�k̂. Here, the approximation of the
polarization fluctuations [eqn (21)] is different, since we need to
consider eqn (22) for the counting of powers of k. In the large
length and time scale limit we arrive at

d~P i ¼ �ikn
1

DR
v0 � zc0ð Þd~Qin: (26)
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Inserting eqn (26) into eqn (22) and projecting on the splay
part yields

kid ~Pj

	 
ST kikj
k2
¼ �ik2 1

2DR
v0 � zc0ð Þd ~Qkk: (27)

Combing eqn (27) with eqn (22) gives

@td ~Qkk ¼ � k2 Dþ 4v0
2

15DR

� �
þ 4DR � c0

8zv0k2

15DR
þ 2lf

25Z

� ��

þ c0
24k

2z2

15DR

�
d ~Qkk: (28)

From this term we also find a maximum instability, but the
resulting instability is sub-dominant compared to the instability
in the concentration fluctuations.

For pushers ( f 4 0) the bend component of the nematic tensor
fluctuations dQ̃8> = k̂�dQ̃�(I � k̂ # k̂) become unstable, since here
kiMij(djl� kjkl) o 0, 8l = x, y, z. For the polarization we use the large
length and time scale limit in eqn (26). Inserting eqn (26) into the
term [kidP̃j]

ST of eqn (22), and projecting onto the bend part gives

kid ~Pj

	 
ST ki
k

djl � kjkl
�
k2

� �
¼ �ik2 1

2DR
v0 � zc0ð Þd ~Qk?;l : (29)

Therefore, we have a single equation for the bend nematic fluctua-
tions dQ̃8>, which is given by

@td ~Qk? ¼ � k2 Dþ v0
2

5DR

� �
þ 4DR

�

� c0
2zv0k2

5DR
þ 3lf

25Z

� �
þ c0

2k
2z2

5DR

�
d ~Qk?:

(30)

Here, the term �c0
2zv0k2

5DR
þ 3lf

25Z

� �
destabilizes the system at low

concentrations c0 through nematic fluctuations, which are counter-

acted by the term c0
2k

2z2

5DR
, that stabilizes the system for higher

concentrations. Again, the first term, which destabilizes the system,
is dominated by the hydrodynamic interactions, whereas the
second, stabilizing term comes from the steric interactions. Addi-
tionally from microscopic information extracted from scattering
events between two swimmers we can estimate the filling fraction
of the maximum heterogeneities, with the result fmax = 0.23,
which is in accordance with the simulation from Fig. 5(a) (for
details see Appendix B).

VI. Conclusions

We have presented a new model for biological microswimmers
that is based on Stokeslets and the stroke averaged motion of
their flagella. The Stokeslets were distributed to model the flow
fields of C. reinhardtii or E. coli cells. Furthermore, our model
takes into account the anisotropic shape of a microswimmer.
Typical for this is the shape of a C. reinhardtii cell, which is well
modeled by an asymmetric dumbbell.10 Self-propulsion is
generated through a symmetry breaking due to the asymmetric
shape and force-free motion. The fluid and the hydrodynamic
interactions are explicitly included with MPCD.

We show that the flow fields produced in our simulations
can be predicted using simple formulae from the literature.
These formulae also correspond to the experimentally mea-
sured flow fields.44,45 Additionally, we test the effective velocity
of the microswimmer model, and find that it depends linearly
on the applied force, in agreement with the Stokes flow regime.

We study the phase diagram in terms of filling fraction and
Péclet number. We find that both pullers and pushers exhibit
density heterogeneities. The density heterogeneities show a
maximum at intermediate filling fractions and high Péclet
number. To determine the mechanism underpinning this
phenomenon, we perform additional simulations, in which
either the steric interactions or the hydrodynamic interactions
were switched off. Simulations with active Brownian particles
showed a small linear increase in the density heterogeneities,
while simulations without the steric interactions show strong
density heterogeneities. This is an instability caused only by the
hydrodynamic interactions, which is known from the
literature.1,2,48–50 However, no maximum arises in the simula-
tions with only hydrodynamic or only steric interactions, which
shows that the maximum in the density heterogeneities is
mediated by an interplay of the hydrodynamic and the steric
interactions. The hydrodynamic interactions destabilize the
system, whereas the steric interactions stabilize the system as
the filling fraction grows and thus a maximum in density
heterogeneity arises.

We have also developed an analytical theory based on a
Smoluchowski equation which includes steric as well as hydro-
dynamic interactions. We computed the hydrodynamic moments
of this equation and performed a linear stability analysis of the
moment equations around the homogeneous state. For both puller
and pusher-type swimmers, we found that at low concentration the
system is destabilized by hydrodynamic interactions. At higher
concentrations, however, the instabilities are counteracted by the
steric interaction. This interplay gives rise to a maximum in the
instability of the homogeneous state, and thus a maximum hetero-
geneity in the concentration of swimmers. The position of the
maxima calculated from the analytics is in accordance with the
simulations. Our continuum theory does not explicitly account for
steric effects at the microscopic level, which induce short range
correlations, and lubrication forces, and influence the short
range hydrodynamics. These effects, however, are captured by the
numerical simulations. The agreement between our theory and
simulations gives us confidence that our assumptions effectively
includes the dominant physical effects.

The physical pictures from both simulations and analytical
theory fit together: both show that the homogeneous state is
not stable and there is a maximum of instability. Also, both
analyses show that the instability arises from hydrodynamic
interactions and is suppressed by the steric interactions.

The maximum in the density heterogeneities might have
important biological implications: it points to a possible,
optimal filling fraction and Péclet number for the formation
of heterogeneous distributions of motile microorganisms.
Bacteria or microalgae exhibiting these optimal parameters
are more likely to form colonies or biofilms.
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Appendix A: model details

The microswimmer is characterized by its mass M, center of mass
position R and orientation q. In the following we describe the
equations governing the motion of the microswimmer, the fluid
dynamics implemented through the MPCD, and their coupling.

1. Rigid body dynamics of swimmers

As we do not consider shape deformable swimmers, we are only
concerned with rigid-body dynamics. The most general motion
of a rigid body is the combination of a translation along an axis
(the Mozzi axis) and a rotation around the same axis, as per the
Mozzi–Chasles theorem.59 Any orientation in space can be
described using three numbers, that are commonly represented
with the Euler angles, which correspond to three elementary
rotations. However, there are a number of issues with the
choice of the Euler angles. For instance, the composition of
rotations with Euler angles or rotation matrices is rather
complex, and involves trigonometric functions which lead to
an accumulation of rounding-off errors. Eventually the
matrices representing the rotations may become not ortho-
gonal. Importantly, for some values of the Euler angles there
are discontinuous jumps in the representation. More funda-
mentally, the Euler angles do not generate a covering map of
the rotation group SO(3), that is, the map from Euler angles to
SO(3) is not always a local homeomorphism. Fortunately, the
topology of SO(3) is diffeomorphic to the real projective space
P3(R) which admits a universal cover represented by the group
of unit quaternions q = (q0,q1,q2,q3)T, where the superscript T
indicates the matrix transposition.

The equations of motion for the rigid body dynamics in
three dimensions and in terms of quaternions read60

m€R ¼ F; (A1)

€q ¼ 1

2
Wð _qÞ

0

Xb

 !
þWðqÞ

0

_Xb

 !" #
; (A2)

_q ¼ 1

2
WðqÞ

0

Xb

 !
; (A3)

_Ob
a ¼ Ibm

� �
a
�1 Tb

a þ Ibm
� �

b� Ibm
� �

g

� 

Ob

bO
b
g

� 

; (A4)

where Xb is the angular velocity of the swimmer, Ib
m the

moment of inertia tensor of the swimmer in the body frame,
and the indices (a,b,g) take on as values the cyclic permutations
of (x,y,z). In eqn (A1), F = �rF and T = RF � F are the force and
torque, respectively, acting on the swimmer due to steric
interactions with the neighbor, where RF is the vector connecting
the center of mass of the swimmer to the point of contact with
the neighbor, and the matrix W is (see also ref. 61)

WðqÞ ¼

q0 �q1 �q2 �q3

q1 q0 �q3 q2

q2 q3 q0 �q1

q3 �q2 q1 q0

0
BBBBBB@

1
CCCCCCA
: (A5)

The repulsive, steric interactions among swimmers are mod-
eled using a Weeks–Chandler–Andersen potential62

F rij;ab
� �

¼ 4e
sab
rij;ab

� �12

� sab
rij;ab

� �6
" #

þ e (A6)

if rij,ab o 21/6sab, and F(rij,ab) = 0 otherwise, where rij,ab �
|ria � rjb| is the distance between sphere a of swimmer i and
sphere b of swimmer j, e is the energy scale and sab is the sum
of the radii of sphere a and sphere b. For the numerical
integration we use the Verlet algorithm proposed in ref. 60,
which was also used and discussed in detail in ref. 25.

Given a vector in the laboratory frame f the transformation
to the body frame vector f b is given by

f b = Df, (A7)

where the matrix D(q) is constructed from the quaternions.
Quaternions are represented as q = q0 + q1i + q2 j + q3k, with

q0,. . .,q3 A R, and i2 = j2 = k2 = ijk = �1.
The unitary matrix D that transforms vectors from the lab to

the body frame is (see also ref. 61)

D¼

q0
2þq12�q22�q32 2 q1q2þq0q3ð Þ 2 q1q2�q0q2ð Þ

2 q2q1�q0q3ð Þ q0
2�q12þq22�q32 2 q2q3þq0q1ð Þ

2 2q3q1þq0q2ð Þ 2 q3q2�q0q1ð Þ q0
2�q12�q22þq32

0
BBB@

1
CCCA:

(A8)

Thus, the orientation of the swimmer at any given time is
found from D�1(q(t))(0,0,1)T.

Note that all quantities that do not carry an index b are
calculated in the laboratory frame.

2. Center of mass and moment of inertia

Fig. 6 shows the detailed geometry and dimensions of our
model microswimmers (both pullers and pushers). In the body
frame, the swimmer is aligned with the z direction and the
coordinates of the centers of the B and F spheres are z1 and z2,
respectively. Given a homogeneous mass distribution the center
of mass of the swimmer is given by

zCoM ¼ V1z1 þ V2z2 � VSc1 z1 þ
3

4

df � h1ð Þ2

3df=2� h1

" #(

�VSc2 z2 þ
3

4

db � h2ð Þ2

3db=2� h2

" #)
V1 þ V2 � VSc1 � VSc2

� ��1
;

(A9)

where Vi are the volumes of the spheres and VSci
are the volumes

of their spherical caps, which are cut by the other sphere63

VSci ¼
1

3
phi2 3di=2� hið Þ; (A10)
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and hi are the heights of the spherical caps

h1 ¼
db=2� df=2þ lð Þ db=2þ df=2� lð Þ

2l
;

h2 ¼
df=2� db=2þ lð Þ df=2þ db=2� lð Þ

2l
:

(A11)

The moment of inertia for a spherical cap about the x- as well as
y-direction is

ISci ;ðx;yÞ ¼ r
ð
V

x2 þ z2
� �

dV

¼ r
ð2p
0

dj
ða cos di=2�hi

di=2

� 

0

dy sin y

�
ðdi=2
di=2�hi
cos y

drr2 ðcosj sin yrÞ2 þ ðcos yrÞ2
	 


¼ rp
1

60
hi
2 �9hi3 þ 45hi

2di=2� 80hi di=2ð Þ2þ60 di=2ð Þ3
� 


;

(A12)

and about the z-direction is

ISci ;z ¼ r
ð
V

x2 þ y2
� �

dV

¼ r
ð2p
0

dj
ða cos di=2�hi

di=2

� 

0

dy sin y

�
ðdi=2
di=2�hi
cos y

drr2 ðcosj sin yrÞ2 þ ðsinj sin yrÞ2
	 


¼ rp
1

30
hi
3 3hi

2 � 15hidi=2þ 20 di=2ð Þ2
� 


:

(A13)

By using the moment of inertia of a sphere ISpi ¼
8

15
rp di=2ð Þ5

and with the use of the parallel axis theorem, we compute the
moments of inertia of the swimmer as

I(x,y) = ISp1,(x,y) � ISc1,(x,y) + r(V1 � VSc1
)x1

2, (A14)

Iz = ISp1,z + ISp2,z � ISc1,z � ISc2,z. (A15)

3. Multiparticle collision dynamics

To simulate a fluid at fixed density r and temperature T
surrounding the swimmers, we use the MPCD algorithm, which
is a mesoscopic, particle based method46 to simulate a fluid at
the Navier–Stokes level of description. We include the Andersen
thermostat and the conservation of angular momentum into
the MPCD dynamics; the resulting algorithm is usually denoted
as MPC-AT+a.47,64,65 The fluid is modeled using Nfl point-like
particles of mass m, whose dynamics are executed through two
steps: the streaming step and the collision step. In the stream-
ing step the fluid particles’ positions ri, i A [1,Nfl] are updated
according to

ri(t + dt) = ri(t) + vi(t)dt, (A16)

where vi(t) is their velocity and dt is the MPCD timestep.
The collision step mediates the interactions between the

particles. Here, the system is divided into Nc collision cells with
a regular grid of lattice constant a. The center of mass velocity
in each cell CðiÞ is calculated and remains constant during the
collision step, whereas the fluctuating part of the velocity of
every fluid particle i is randomized, which mimics the collision
between particles. Hence, the velocity of particle i is updated as
follows64

vi
0 ¼ 1

NCðiÞ

X
j2CðiÞ

vj þ vrani �
1

NCðiÞ

X
j2CðiÞ

vranj

þm P�1
X
j2CðiÞ

rj;c � vi � vrani

� �	 
8<
:

9=
;� ri;c;

(A17)

where the random velocity vran
i has components sampled from

a Gaussian distribution with zero mean and variance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
,

NCðiÞ is the number of fluid and ghost particles (see Section A4)

in cell CðiÞ. The vector rj,c is the position of the neighboring
particle j relative to the center of mass of the cell CðiÞ. In
eqn (A17), P�1 is the inverse of the moment of inertia tensor
P �

P
j2CðiÞ

m rj � rj
� �

I� rj � rj
	 


for the fluid particles in cell CðiÞ.

Note that P�1 is a dynamical quantity that has to be updated at
every timestep, and it also includes the ghost particles within
the swimmer (see Section A4).

To ensure Galilean invariance and avoid the build-up of
spurious correlations in the velocities,66 the usual grid shift is
performed at each timestep, that is, the grid is shifted by a
random vector, whose components are uniformly distributed in
the interval [�a/2,a/2].

Fig. 6 Details on the geometry of our model puller-type swimmer (a) and
pusher-type swimmer (b). Regions B (green) and F (empty circle) are the body with
diameter db, and stroke-averaged flagella with diameter df, respectively, and they
are separated by a distance l. The red arrow denotes the swimmers orientation
and C is the center of mass. Black circles are the force poles acting on the fluid. For
pullers (a) the region Rpl,1 has the diameter dpl,1 and the regions Rpl,2, Rpl,20 have
the diameter dpl,2. For pushers (b) the regions Rps,1 and Rps,2 have the diameter dps.
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4. Coupling of the swimmer’s and fluid’s dynamics

No velocity field is prescribed in our model of microswimmers.
Locomotion is achieved by obeying the conservation of momentum
in the collisions between the fluid particles and the swimmers; the
shape asymmetry then induces self-propulsion. Two physical
effects need to be included: we impose no-slip boundary conditions
on the model swimmer’s surface, and the force poles are explicitly
included (see Fig. 1). Both effects induce modifications of the
streaming and collision steps of the MPCD algorithm that we
explain in the following.

a. Streaming step. To ensure the no-slip boundary condi-
tion the bounce-back rule67 is applied to the MPCD particles
that hit the spheres during the streaming step. The velocity of
the fluid particle is reversed and the change in momentum is
given by

Ji = 2m[vi � U � X � (r̃i � R)], (A18)

where R is the center-of-mass position of the swimmer colliding
with the fluid particle, U and X are the linear and angular velocity
of the swimmer, r̃i is the position of the fluid particle upon collision
with the sphere. The updated fluid particle velocity reads

vi
0 = vi � Ji/m. (A19)

In addition, the fluid particles are reflected back along the
direction of their initial velocity. For this, we use an exact ray
tracing method to detect the collision of the MPCD particle
onto the swimmer’s surface. If a collision is detected the MPCD
particle is propagated back onto the swimmer’s surface and
then the bounce-back rule is applied. If the particle travels a
fraction l, 0 o l o 1 of the timestep towards the swimmer,
then after the collision with the swimmer, it will travel for the
time (1 � l)dt away from the swimmer’s surface. Furthermore,
we allow for multiple collisions within the same timestep; this
has been shown to prevent spurious depletion forces among
colloids.68 The new linear and angular velocities of the swimmer
after the collision with the fluid particles read

U 0 ¼ U þ
X
i

J i=M; (A20)

X0 ¼ Xþ Im
�1
X
i

ri � Rð Þ � J i: (A21)

The force poles are added as external force regions69 in the
streaming step for each swimmer. This is done by modifying
the streaming step inside the force regions to

riðtþ dtÞ ¼ riðtÞ þ viðtÞdtþ f labac

dt2

2
; (A22)

vi(t + dt) = vi(t) + f lab
ac dt, (A23)

where the force in the lab frame reads

f lab
ac � fac � [U + X � (ri � R)]/dt, (A24)

and fac is the active force discussed in the following. The flow
fields are modeled by force poles. While mathematically such
force poles are point forces, any numerical implementation
must mollify this requirement.

Pullers. The flow field is modeled by three Stokeslets, and the
active force f lab

ac is applied to Rpl,1, Rpl,2 and Rpl,20 [see Fig. 6(a)]. The
region Rpl,1 with diameter dpl,1 is located at the rear of the swimmer
and its force points into the direction of the swimmer’s orientation.
The other two regions Rpl,2 and Rpl,20 are placed on the side of the
swimmer and have the opposite orientation. The angle apl between
the orientation of the puller and the line connecting the center of
mass C and the midpoint of the region Rpl,2 (or Rpl,20) defines their
position on the boundary of the swimmer. The diameter of both Rpl,2

and Rpl,20 is dpl,2 = dpl,1/(2)1/3, such that they have half the volume of
Rpl,1, making the fluid force free. The total force in the region Rpl,1 is

f ¼ f0
1

6
pdpl;13r and in the regions Rpl,2, Rpl,20 is f ¼ f0

1

6
pdpl;23r.

Pushers. The flow field is modeled by a force dipole. We
apply the force f lab

ac to all fluid particles located within spherical
regions [see Fig. 6(b)]. The regions Rps,1 and Rps,2 where f lab

ac is
applied are equally sized spheres with diameter dps and the two
forces fac are equal and opposite, to ensure that the fluid is
overall force free. To generate a smooth flow on the boundary of
the swimmer the direction of the applied force in regions Rps,1

and Rps,2 is modeled as follows. For fluid particles ri A Rps,1 or
Rps,2 we apply the force

f bac ¼

0

0

1

0
BBB@

1
CCCAf0; if sbz 4 dps

�
2;

2sbz
dps

sbx
�
sb
�� ��

2sbz
dps

sby

.
sb
�� ��

2sbz
dps
� 1

� �
sbz
�
sb
�� ��

0
BBBBBBBBBB@

1
CCCCCCCCCCA
f0; if sbz o dps

�
2:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(A25)

Here, sb = (sb
x,sb

y ,sb
z )T is the distance between the MPCD particle

and the center of the region Rps,1 or Rps,2. The small, black
arrows in Fig. 6(b) give a schematic representation of the flow
field arising from eqn (A25). As before the superscript b denotes
the body frame, in which the swimmer’s orientation is aligned
with the z axis. The constant f0 gives the strength of the force
that is applied. The total force in one of the two regions can be

estimated by integrating eqn (A25), which yields f ¼ f0
5

48
pdps3r.

This takes into account the redirection of the force on the
boundary of the swimmer and the density r of the fluid.

b. Collision step. To guarantee the no-slip boundary con-
ditions on the surface of the swimmers, it is necessary to fill
each swimmer with ghost particles, such that the collision step
can be properly executed.65 The positions of the ghost particles
r g

i are uniformly distributed within the swimmer,‡ and
are advected with the swimmer in each timestep. The ghost

‡ We recommend to fill the swimmer with multiple ghost particles, rather than
using a single ghost particle of large mass, as this would result in a wrong value of
the torque.
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particles density is matched to the fluid’s density so as to make
the swimmer neutrally buoyant. Before every collision step the
ghost velocities vg

i are updated according to

vg
i = U + X � (rg

i � R) + vran
i , (A26)

where the components of vran
i are sampled from a Gaussian

distribution. The ghost particles then (together with the fluid
particles) take part in the collision step [see eqn (A17)], and their
velocities are updated to v

g
i

0
. The resulting change in linear

momentum due to the ghost particles is J
g
i ¼ m v

g
i

0 � v
g
i

� �
and

the change in angular momentum is Lg
i = (r g

i � R) � J g
i . These

changes are then transferred to the swimmer17

U 0 ¼ U þ
X
i

J
g
i

�
M; (A27)

X0 ¼ Xþ Im
�1
X
i

L
g
i : (A28)

5. Algorithm implementation

In this section we explain how the present algorithm is imple-
mented. First, note that the MPCD algorithm scales as O(N),
and thus is particularly prone to an efficient implementation
with parallel programming. We therefore implemented the
entire dynamics (both swimmer and MPCD) on graphics pro-
cessing unit (GPU) cards using the Nvidia CUDA language.
Parallelization of the MPCD algorithm is rather straight-
forward. The streaming step is performed for each fluid particle
independently in a separate CUDA kernel, whereas ghost
particles are simply translated together with the corresponding
swimmer. Then, a kernel for each particle is started to carry out
the bounce-back rule and afterwards a kernel for each particle
is started to apply the periodic boundary conditions. The
collision step eqn (A17) is implemented with the following
kernels:

1. the cell of each particle is found and the center of mass for
each cell is found by starting a kernel for each particle;

2. the two sums over the velocities in eqn (A17) are com-
puted, where a kernel for each velocity component of each
particle is started;

3. a kernel for each particle is started to compute the
number of particles in each cell;

4. a kernel for each cell is started to normalize the velocities
and compute the center of mass;

5. a kernel for each particle is started to compute its position
with respect to the center of mass;

6. a kernel for each particle is started to compute the cross
product in eqn (A17) and the contributions in each cell are
summed;

7. six kernels for each particle are started to compute the
contribution to the six components of the inertia tensor in the
corresponding cell;

8. a kernel for each cell is started to compute the inverse of
the respective inertia tensors;

9. for each cell a kernel is started to compute the curly
bracket in eqn (A17);

10. a kernel for each particle is started to add all contribu-
tions of eqn (A17) and finish the collision step, while consider-
ing the rule for ghost particles eqn (A26);

11. a kernel for each ghost particle is started, which com-
putes the momentum and angular momentum transfer
[eqn (A27) and (A28)] to the swimmers.

Some of these computations could be combined into
single kernels, but it is computationally more efficient to
start many kernels with small computations, which we have
opted for in this algorithm. After the MPCD steps the rigid
body dynamics part (see also Section A1) of the code is
executed. It consists of the following kernels, one for each
swimmer:

1. the velocity and angular velocity stemming from the fluid
interaction are added to the swimmers;

2. the positions and quaternions are updated;
3. periodic boundary conditions are applied;
4. the neighbor list between swimmers is updated (here we

use a linked list);
5. the steric forces and torques are computed;
6. the velocities and angular velocities are updated.
This concludes the algorithm, which now goes back to the

streaming step of the MPCD part.

6. Computational details

We carried out three-dimensional simulations with an average
of hNCi = 20 fluid particles per cell. The timestep of the MPCD

algorithm is fixed to dt ¼ 10�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2= kBTð Þ

p
, whereas the MD

timestep is dtMD ¼ 5� 10�4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2= kBTð Þ

p
. The resulting kine-

matic viscosity n = Z/r of the fluid for the MPC-AT+a algorithm
(including both kinetic and collisional contribution) can be

calculated exactly as n ¼ 3:88a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
.47,65,70 Simulations

using a forced flow (for details see ref. 69) produced a viscosity

of n ¼ 3:69a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
.

The large sphere F associated to the stroke-averaged flagella
of the swimmer has a diameter of df = 7a, while the small
sphere B associated to the body of the swimmer has db = 3a, and
the distance between the spheres centers is l = 7a. The choice of
the geometrical parameters is dictated by a combination of
factors. First, it is computationally convenient to make the
swimmers’ linear size a few times the grid spacing a. Second,
inspired by the geometric properties of C. reinhardtii a ratio
df/db \ 2 is advisable.10 For the sake of clarity in the comparison
of our results, we maintain the same geometry also for pushers.
The energy scale of the steric interactions is set to e = 10kBT. For
pushers we fix the diameter of the force dipole regions Rps,1 and
Rps,2 to dps = 3a. The region Rpl,1 of the pullers has the same
diameter dpl,1 = 3a and accordingly the regions Rpl,2 and Rpl,20 have
the diameter dpl,2 = 3a/(2)1/3. The angle between the swimmers
orientation and the line connecting the center of mass of
the pullers C to the midpoint of the regions Rpl,2 and Rpl,20 is
apl = 1071.

To initialize the simulations, we distribute the swimmers
homogeneously (and without overlaps) across a cubic box with
periodic boundary conditions.
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Appendix B: estimate of maximum
from theoretical prediction

To estimate the maximum predicted from the analytical treat-
ment, we computed the maximum of the eigenvalues in eqn (30)
for pushers and eqn (25) for pullers. As a first step, we have to
find estimates for both the wavenumber k and the constant
quantifying the steric interactions z. Since we expect the hydro-
dynamic interactions to be relevant on the size of the swimmer,
we chose the distance between the force poles l to determine the
characteristic wavenumber k = 2p/l. The constant z quantifying
the steric interactions can be estimated from ref. 58

z = v0
2sstc (A29)

where v0 is the propulsion speed, ss the geometrical cross
section, and tc is the collision time. The collision time can be
estimated from the center-of-mass distance of two colliding
swimmers, where we considered collisions as shown in Fig. S5
and S6 (ESI†). The resulting collision time for pullers is

tc ¼ 9:5a
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

and for pushers tc ¼ 18:0a
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

. The
propulsion speed is extracted from Fig. 3 and the geometrical
cross section is ss = 4ps2. Here, s = l/2 = 7.5a is the effective
steric radius of the swimmer also estimated from the distance
of the force poles. To finally obtain a filling fraction we use
f = c0(VB + VF � VOl) [see eqn (3)].
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20 A. Zöttl and H. Stark, Phys. Rev. Lett., 2012, 108, 218104.
21 F. Alarcón and I. Pagonabarraga, J. Mol. Liq., 2013, 185, 56–61.
22 K. Ishimoto and E. A. Gaffney, Phys. Rev. E, 2013, 88, 062702.
23 J. J. Molina, Y. Nakayama and R. Yamamoto, Soft Matter,

2013, 9, 4923–4936.
24 A. Zöttl and H. Stark, Phys. Rev. Lett., 2014, 112, 118101.
25 M. Theers, E. Westphal, G. Gompper and R. G. Winkler, Soft

Matter, 2016, 12, 7372–7385.
26 J. Blaschke, M. Maurer, K. Menon, A. Zöttl and H. Stark, Soft
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