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Spontaneous symmetry breaking of
charge-regulated surfaces†

Arghya Majee, *ab Markus Bier ab and Rudolf Podgornik cd

The interaction between two chemically identical charge-regulated surfaces is studied using the classical

density functional theory. In contrast to common expectations and assumptions, under certain realistic

conditions we find a spontaneous emergence of disparate charge densities on the two surfaces. The

surface charge densities can differ not only in their magnitude, but quite unexpectedly, even in their

sign, implying that the electrostatic interaction between the two chemically identical surfaces can be

attractive instead of repulsive. Moreover, an initial symmetry with equal charge densities on both

surfaces can also be broken spontaneously upon decreasing the separation between the two surfaces.

The origin of this phenomenon is a competition between the adsorption of ions from the solution to the

surface and the interaction between the adsorbed ions already on the surface. These findings are

fundamental for the understanding of the forces between colloidal objects and, in particular, they are

bound to strongly influence the present picture of protein interaction.

1 Introduction

Within the mean-field Poisson–Boltzmann (PB) paradigm of
the electrostatic interaction between two charged surfaces
immersed in an ionic solution, one usually assumes a constant
surface charge density or a constant surface potential boundary
conditions.1 Although this simplifies the problem, most common
naturally occurring nanoparticle and macromolecular surfaces
of interest, e.g., hard colloidal particles, soft biological molecules
including proteins, membranes, and lipid vesicles rarely satisfy
either of them.2,3 They respond to their environment, especially to
the presence of each other, in such a way that both the charge
density and the surface potential vary and adjust themselves
to the separation between the surfaces as well as to the bathing
solution environment. This conceptual framework is formally
referred to as the charge regulation mechanism and can be
formalized either by invoking the chemical dissociation equili-
brium of surface binding sites with the corresponding law of mass
action, an approach pursued in the seminal work of Ninham and
Parsegian,4 or equivalently by adding a model surface free energy
to the PB bulk free energy that via minimization then leads to the

same basic self-consistent boundary conditions for surface
dissociation equilibrium but without an explicit connection
with the law of mass action.5–7 The latter approach is to be
preferred when the surface dissociation processes are more
complicated, as discussed below, and can not be captured by a
simple law of mass action.

Studies of the interaction between two charge-regulated
surfaces have been performed for chemically identical surfaces
with equal adsorption and desorption properties8–11 as well as
for chemically non-identical surfaces.2,12–15 In all of the former
cases, a certain basic symmetry of the problem was assumed
a priori16–18 and the surface charge densities have been without
exception constrained to be equal on both surfaces. However,
the underlying physical reasoning for such an assumption is
not generally applicable and is not based upon the detailed
chemical nature of the surfaces bearing charge. The fact that
the two interacting surfaces are chemically identical and,
therefore, interact in the same way with the adjacent bathing
solution, is not sufficient to infer the fundamental charge
symmetry and to invoke equal surface charge densities in the
application of the PB formalism. In fact, the charge distribution
of the system should not be assumed a priori, but should follow
from the minimization of the relevant total thermodynamic
potential, yielding the equilibrium state in terms of the equili-
brium electrostatic potential distribution between the surfaces
as well as the equilibrium charge densities on the surfaces,
without any additional assumptions. Whether this minimum
implies an equal or unequal surface charge densities may and,
as will be shown below, does depend on the parameters of the
system under consideration.
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Below we show that, depending on these parameters, a
confined electrolyte in thermodynamic equilibrium with two
chemically identical charge-regulated surfaces that can adsorb/
desorb solution ions, can indeed adopt unequal surface charge
densities, even at separations that are much larger than the
Debye length. This happens due to an interplay of the adsorp-
tion of ions from the solution to the surface and the interaction
between the already adsorbed ions at the surface. The model
surface free energy is then related to the lattice fluid model and
is composed of the surface entropy of mixing, the electrostatic
energy of the adsorbed charges, the non-electrostatic energy
penalty of adsorption and the change in the non-electrostatic
interactions between the ions upon adsorption. The latter are
assumed to be short-ranged, typically of the van der Waals type,
hydrogen-bonding and/or of quantum-chemical origin, that
allow for a nearest-neighbor-like description. Since in general
the surface charge densities can differ in magnitude as well as
in sign, an initial symmetry with equal charge densities on both
surfaces can be spontaneously broken, and the surfaces can
acquire different charge densities as they approach each other.
At short separations, this implies surface charge densities
differing even in their sign and consequently leading to an
overall attractive interaction between the surfaces. An analytical
treatment of the simpler system with only a single surface in
contact with an electrolyte indicates that these findings are
inherently related solely to the electrostatic interaction between
the surfaces.

2 Model

There are several models present in the literature, based on the
surface free energy implementation of the charge regulation
process, describing, e.g., of mineral surfaces19–21 or lipid
membranes,22,23 and here we follow the latter. We consider
two charge-regulated, chemically identical planar surfaces
situated perpendicular to a z-axis at positions z = 0 and L with
an electrolyte solution in between (see Fig. 1). Each surface
contains a fixed number of negative charges per surface area, N,
and a number of neutral sites per surface area, YN, where
adsorption and desorption of cations can take place, leading
to charge regulation of the surfaces. The charge density on a
surface is then given by s = �Ne + NeZY with e 4 0 being the
elementary charge and Z denoting the fraction of occupied sites
on a surface. Since by construction Z A [0,1], for Y = 2, i.e.,
when there are twice as many sites present compared to fixed
negative charges,24 the charge density varies within a symmetric
interval s A [�Ne,Ne]. The area per site is a2 = 1/(YN), and we
define the dimensionless charge density as

s� ¼ a2s
e
¼ Z� 1

Y
: (1)

The parameter Z and therefore s* are assumed to be uniform over
the surface. The electrolyte is considered to be a structureless,
linear dielectric medium with permittivity e = ere0, where e0 is the
permittivity of the vacuum and er is the relative permittivity.
The solute is a monovalent salt of bulk ionic strength I and the

corresponding Debye screening length is given by k�1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e=ð2be2IÞ

p
with the inverse thermal energy b = 1/(kBT).

3 Density functional theory

Considering the bulk of the electrolyte as a reservoir for the
ions, treating them as point-like particles, and ignoring ion–ion
correlations within a mean-field formalism, the grand potential
O[s*,n�] can be written in terms of the number density profiles
of ions n�(r) and surface charge density s*(r). The Euler–
Lagrange equation minimizing this grand potential with
respect to n� leads to the PB equationr2c = k2 sinhc subjected
to Neumann boundary conditions at the surfaces set by s*.
Here c(r) is the dimensionless electrostatic potential expressed
in units of be. Hence the equilibrium ion number density
profiles n�[s*] and the equilibrium electrostatic potential
c[s*] are functionals of s*. Inserting n�[s*] in the expression
for O[s*,n�] one obtains the total grand potential functional in
terms of the surface charge density profile s*. In the present
work the surface charge density profile s* is assumed to be
laterally uniform on each surface, i.e., s*(r) and consequently,
Z(r) may depend at most on z = 0, L. As a result, the electrostatic
potential c also depends on the z-coordinate only. With these,
~O[s*], which is the grand potential functional O[s*] per unit
surface area, corresponding to our system is given by

b~O s�½ � ¼ �e
be2

ðL
0

dz k2 cosh c z; s�½ �ð Þð Þ þ 1

2
c0 z; s�½ �ð Þð Þ2

� �

þ 1

a2

X
z¼0;L

�
s� zð Þc z; s�½ �ð Þ � aZðzÞ � w

2
ZðzÞ2

þ ZðzÞ ln ZðzÞ þ 1� ZðzÞð Þ ln 1� ZðzÞð Þ
�
;

(2)

where c0 � qzc and Z(z) = s*(z) + 1/Y according to eqn (1).
The first line of eqn (2) represents the volume electrostatic

Fig. 1 Schematic illustration of two chemically identical surfaces
separated by a distance L and interacting electrostatically across an
electrolyte solution with permittivity e and inverse Debye length k. Both
surfaces contain fixed negative surface charges and sites where
cations ( ) from the solution can attach or from which adsorbed cations
can detach.
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contribution to the grand potential and is identical to the
standard PB form.1 The first term on the second line represents
the standard surface electrostatic energy of the adsorbed charges.
The remaining terms on the second line describe the non-
electrostatic free energy penalty of adsorption per ion, a, being
linear in the fraction of occupied sites on a surface, as well as the
change in the non-electrostatic interactions between the ions upon
adsorption, formalized by the Flory–Huggins parameter w and
therefore quadratic in the fraction of occupied sites on a
surface.22,23 The last line in eqn (2) is describing the mixing
entropy of the adsorbed cations at neutral sites with probability
Z(z). The values of a and w are related to the specific chemistry of
the two surfaces and the dissociation processes responsible for
the charge regulation. In the case of charge-regulation by H+

dissociation, a E (pK-pH)ln 10 can be tuned by changing the pH
of the solution; pK corresponds to the equilibrium constant of the
surface dissociation process.1 Increasing a, then promotes a
favorable adsorption of protons onto the surface, while an
increase in w lowers the free energy of the system, so that an
already adsorbed proton prefers the filling of a neighboring site.
The dimensionless parameters a and w are phenomenological
and their values are obtained from fitting the experimental data.
Such an extension of the original charge regulation model by
Ninham and Parsegian4 was invoked in order to explain the

details of an experimentally observed lamellar–lamellar phase
transition in charged surfactant systems.22,25 With both surfaces
assumed to be chemically identical, and described by the same set
(a,w) of phenomenological parameters, the equilibrium values for
s*(z) at the two surfaces are then determined by minimizing b~O[s*]
in eqn (2) with respect to s*.

4 Results and discussion

As mentioned earlier, the surface charge density profile s* is
laterally uniform on each surface, i.e., it may depend at most on
z = 0, L. In the following we use the notation s*(0) = s0* and
s*(L) = sL*. Both Z(0) and Z(L) can vary in the interval [0,1] and
for Y = 2, which is the case considered here, this corresponds to
s* A [�1

2,1
2] on each surface. Fig. 2 shows the variation of the

quantity |s0* � sL*| with a and w for gradually increasing
separation kL between the surfaces. The parameters are varied in
the intervals a A [�20,5] and w A [0,40], which can be considered
as within the experimentally relevant regime.22 Moreover realistic
values T = 300 K, er = 80 (water), and a = 1 nm are used. Note that
under these conditions k�1 E 10 nm for an ionic strength
I = 1 mM. However, ionic strengths down to E0.01 mM are
used for experimental studies in the present context.27

Fig. 2 Absolute value of the difference of the dimensionless charge densities s� ¼ a2s
e
2 �1

2
;
1

2

� �
at the two surfaces, |s0* � sL*|, as function of a and w

(see eqn (2)) for (a) kL = 0.1, (b) 1, (c) 1.5, and (d) 3. The white regions in each figure correspond to a symmetric situation where s0* = sL* whereas in the
colored regions the equilibrium values of s0* and sL* differ from one another.
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First, we consider the case kL = 1. As shown by Fig. 2(b), s0*
and sL* are the same over a broad region (indicated by white)
but not everywhere. In the dark blue region, the charge asym-
metry is the highest and close to unity, implying that the two
surfaces are oppositely charged. The line w = �2a passes
through the middle of this region. Along this line, the solution
is s0* = sL* = 0 for a 4 a0 (E�13.2 in this case) and for a t a0

the dark blue region appears. For a \ a0 there are two more
regions (one below the line w = �2a and one above) where
the charge asymmetry is present albeit with a lower contrast
|s0*� sL*|. These two tails (light blue or greenish) are not inter-
connected but with decreasing a they thicken, come close to
each other, and finally merge with the dark blue region. The
charge contrast in each of these two regions increases with
decreasing a. Below the dark blue region and the lower tail, the
equilibrium states are symmetric with s0* = sL* \ �1

2 whereas
above the dark blue region and the upper tail, they are
symmetric with s0* = sL* t 1

2. In between the two tails the

states are s0* = sL* E 0. In other words, (s0*,sL*) changes from
(\�1

2,\�1
2) to (t1

2,t1
2) across the dark blue region, from

(\�1
2,\�1

2) to (E0,E0) across the lower tail, and from
(E0,E0) to (t1

2,t1
2) across the upper tail.

With decreasing separation L between the two surfaces, the
dark blue region in Fig. 2 broadens and starts to dominate over
the tails, making them hardly visible (see Fig. 2(a)). With
increasing separation all the regions shrink (see Fig. 2(c) and
(d)) and the tails become increasingly difficult to be resolved
numerically. In Fig. 2 both the interaction parameters a and
w are sampled with a tenth of the thermal energy kBT = 1/b
because ion adsorption is governed by a competition with the
bulk solvation free energy, which can usually be measured
within a similar accuracy.28,29 However, the dark blue region
seems to be very stable and it remains present even at kL = 10.
Upon increasing kL from 0.1 to 3 both a0 and the width of
the dark blue region decrease relatively fast, whereas for kL
between 3 and 10, they hardly change.

Fig. 3 Variation of D ~O(s*) (see eqn (19) of the ESI, ref. 26), which is obtained after subtracting the bulk contribution from the grand potential functional ~O
per unit surface area for a system consisting of a single charge-regulated surface in contact with an electrolyte and expressed in the units of 1/(a2b), as
function of s* for different combinations of the parameters a and w. In all cases l = be2/(4eka2) E 21.3 is used.
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In order to explain these findings we consider a single
surface in contact with an electrolyte. This problem is analyti-
cally solvable and the solution shows that on the line w = �2a,
there are two equally deep (local) minima of the grand potential
O(s*) at s1* and s2* = �s1*.26 For a \ �14, s* = 0 corresponds
to the single global minimum of the grand potential; see
Fig. 3(a). However, for a t �14, the global minimum shifts
to states with s1* \ �1

2 and s2* = �s1* t 1
2; see Fig. 3(b). For

a t �14, in the presence of a second surface, one surface
acquires the charge density s* = s1* and the other s* = s2* = �s1*
because the electrostatic attraction of two oppositely charged
surfaces leads to a decrease of the grand potential of the system.
Similarly, the one-surface problem shows equally deep global
minima of O(s*) at s* \ �1

2 and s* t 0 for points in the upper
part of the lower tail of Fig. 2(b) (e.g., see Fig. 3(c)). A second
surface leads to charge densities of s* \ �1

2 on one surface and
of s* \ 0 on the other such that the free energy cost in going
upward the curve in Fig. 3(c) is balanced by a reduction of the
free energy due to electrostatic attraction. As we go down the
lower tail of Fig. 2(b), the one-surface problem shows two
unequally deep minima at s* \ �1

2 and s* t 0 for these points;
see Fig. 3(d). Although for a single surface the minimum at
s* \ �1

2 is slightly deeper than the one at s* t 0, the
combination s0* = sL* \ �1

2 for two surfaces would be too
expensive due to strong electrostatic repulsion and s0* = sL* t 0
is also a state of higher free energy. The balance for two surfaces
is obtained for the combination (\�1

2,t0) by avoiding the
repulsive interaction energy. As is shown in Fig. 3(e) and (f),
a similar phenomenon occurs for the upper tail in Fig. 2(b)
except for the fact that there the equilibrium states are at s* \ 0
and t1

2. With increasing separation kL, the regions with charge
asymmetry shrink because of a weaker electrostatic interaction
due to screening.

Once s*(r) is known, the grand potential per unit surface
area of the system can be obtained by evaluating ~O[s*]; see
eqn (2). The dependence of ~O as function of the separation
kL describes an effective interaction potential between the
surfaces and is shown in Fig. 4 for different combinations of
the parameters a and w. In each case, ~O increases initially with
increasing kL and shows a maximum at some finite separation,
typically well above the molecular length scale. Upon increasing
kL further, the electrostatic interaction vanishes exponentially
Bexp(�kL) (see Fig. 5) and the osmotic (or entropic) contribu-
tion (=�2IL/b B L) of the ions to ~O dominates. The effective
force per unit surface area�q ~O/qL is negative up to the distance
L of the maximum in Fig. 4 and therefore, the interaction is
attractive. This implies that the electrostatic attraction is suffi-
ciently strong to overcome the repulsive osmotic pressure.
At larger separations, however, the electrostatic interaction
weakens and in the limit L - N, the effective force per unit
surface area equals the constant osmotic pressure 2I/b. The
occurrence of the maximum in Fig. 4(a) at a larger separation
compared to the cases in Fig. 4(b) and (c) is related to enhanced
electrostatic interactions due to the stronger asymmetry in
the surface charge densities. Note that an effective interaction
potential is a mesoscopic concept, which incorporates the

energy and entropy balance of all microscopic degrees of
freedom, e.g., the surface charge densities and the ion number
density profiles, by minimization of the microscopic grand
potential under the constraint of fixed mesoscopic degrees of
freedom, e.g., the wall separation. In an even more microscopic
(atomistic) approach, one could attempt to replace the parameters
a and w in favor of free energy contributions of the corresponding
processes. In that sense an effective interaction energy always
contains both energetic and entropic contributions.

The electrostatic part ~Oel of the total interaction energy ~O
after subtracting the ideal osmotic (or entropic) contribution
(= �2IL/b B L) of the ions and the surface tensions acting at
the two solid–liquid interfaces, is shown as a function of the
separation kL in Fig. 5 for the same values of the a and the w
parameters as in Fig. 4. For a = �17.0 and w = 34.0, which is a
point on the line w = �2a in Fig. 2, the interaction is attractive
due to the opposite charge densities at the two surfaces every-
where within the range of kL shown here. For the other two
cases, the interactions are attractive at short distances kL and
they become repulsive with increasing separation. These two
curves show kinks corresponding to the discontinuities of the
surface charge densities as functions of the wall separation
kL (see Fig. 2). For example, if one considers the curve corres-
ponding to a = �13.0 and w = 24.1, the two surfaces are

Fig. 4 Variation of the effective interaction potential ~O per unit surface
area between two charge-regulated surfaces in the units of kBT per nm2 as
function of the scaled separation kL for three different state points in
Fig. 2(b) from (a) the dark blue region, (b) the lower tail and (c) the upper
tail. As shown by the plots, the interaction energy increases initially, shows
a maximum, and ultimately decreases monotonically. The initial increase in
the interaction energy corresponds to a negative effective force at short
distances L, implying that the interaction is attractive there. The value of kL
at the maximum of ~O is indicated by arrows. As expected, the attraction in
the dark blue region of Fig. 2 is stronger than in the other colored regions
due to a larger contrast in the surface charge densities.
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oppositely charged up to kL E 1.5, then, from kL E 1.5 to kL E
1.9, the two surfaces carry equal charge densities (s0* = sL* t 1

2),
from kL E 1.9 to kL E 3.4 the surfaces adopt charge densities
which are different in magnitude but have equal signs
(s0* E 0, sL* t 1

2), and finally, beyond kL E 3.4, both surfaces
become equally charged (s0* = sL* E 0). A similar phenomenon
occurs for a = �12.9 and w = 26.5 where the interaction changes
from attractive to repulsive at kL E 2.9, and at kL E 3.2 the
charge densities at the two surfaces become equal. As expected,
at large separations, the electrostatic interaction in all cases
decay exponentially Bexp(�kL); see the inset of Fig. 5. Please
note that the equilibrium states are characterized by a mini-
mum of the total interaction potential ~O as function of the wall
separation L. As ~O(L) corresponds to the minimum of the grand
potential functional O[s*,n�] under the constraint of a fixed
wall separation L, it is necessarily continuous with respect to L,
but its derivatives with respect to L may be discontinuous at
first-order phase transitions. In the present work no first-order
bulk phase transitions are considered but the observed spon-
taneous symmetry breaking of the surface charge densities
corresponds to first-order surface phase transitions. Hence,
kinks can occur only in the surface contribution ~Oel(L), and
they are hardly visible in the total interaction ~O(L) (note the
widely different scales in Fig. 4 and 5).

The inter-surface force is usually measured by using a
surface forces apparatus (SFA), atomic force microscopy (AFM),
or optical tweezers.27,30 In order to observe the anomalous
attraction discussed in the preceding paragraph for a surface
with an appropriate charge regulation behavior, one can either fix
the distance between the surfaces and change the ionic strength
of the solution or fix the ionic strength and vary the separation

between the surfaces. For relatively small separations compared
to the Debye length, L t 1/k, the system is expected to exhibit a
broad parameter range of surface charge asymmetry (see, e.g., the
colored region in Fig. 2(a)). Charge asymmetry is also present for
larger separations L, but the corresponding parameter range is
smaller and more difficult to find (see Fig. 2). In order to avoid
possible additional effects occurring at short separations L in a
real experimental setup, it is advisable to use low ionic strengths,
i.e., large Debye lengths 1/k. For example, I = 0.1 mM in water
leads to 1/k E 30 nm, so that kL E 0.1 for a separation length
L E 3 nm, which is much larger than molecular dimensions and,
therefore, a mean-field-like theory as the one presented here is
expected to work well.30 Moreover, it is not necessary to go to
such small values of kL: between kL = 0.1 and 1 (e.g., kL = 0.5),
one can expect to have a sufficiently broad parameter range of
surface charge asymmetry (see the colored regions in Fig. 2).
Possible candidates for the type of surfaces described here are
biomolecules like lipids or proteins27 or solid colloidal particles
(e.g., made of silica) grafted with particular surface groups (e.g.,
�NH2 or �COOH) (see ref. 31 and 32). The parameter w can be
adjusted by means of an appropriate arrangement and density
of surface groups. On the other hand, the parameter a can be
tuned by changing counterion concentration, e.g., the pH, in
the solvent. As mentioned earlier, the parameters a and w can
be obtained, e.g., by fitting experimentally measured profiles of
the effective force. For example, for the synthetic cationic
double-chain surfactant didodecyldimethylammonium (DDA+)
the values a = �7.4, w = 14.75 for bromide (Br�) and a = �3.4,
w = 14.75 for chloride (Cl�) counterions have been obtained in
ref. 22. This demonstrates that the parameter ranges for a and
w, for which surface charge asymmetry is predicted here, are
experimentally accessible, in particular in the case of low ionic
strengths.

We finish our discussion by briefly commenting on the
importance of the possible electrostatic attraction due to surface
charge asymmetry in comparison with the van der Waals (vdW)
attraction present in the system. The vdW interaction is usually
estimated in terms of the Hamaker coefficient.33 For a pair
of parallel planar silica surfaces interacting across water,
the Hamaker coefficient is A E 4.8 � 10�21 J (see ref. 34),
so that the vdW attraction energy per unit surface area
�A/(12pL2) E 0.03kBT per nm2 for L = 1 nm, which corresponds
roughly to the thickness of the lines in Fig. 4. Hence the
vdW interaction is qualitatively and quantitatively irrelevant
for the effective interaction potentials considered in Fig. 4.
The same can be expected for biological molecules, where the
Hamaker coefficients are typically similar or smaller than 1kBT
(see ref. 35).

It is important to note that our findings are not restricted
to the case Y = 2. For an asymmetric charge interval corres-
ponding to Y a 2, the colored regions of Fig. 2 shift in the a�w
plane but the qualitative features remain the same. In fact, we
obtain asymmetric equilibrium states s0* a sL* even for Y = 1,
where both surfaces can acquire only negative charges or
remain uncharged; there the origin of asymmetry is similar to
the greenish regions in Fig. 2.

Fig. 5 Electrostatic part ~Oel of the effective interaction potential ~O per
unit surface area between two charge-regulated surfaces in units of kBT
per nm2 as function of the scaled separation kL for three different state
points as in Fig. 4. For a = �17.0 and w = 34.0, the interaction is attractive
everywhere implied by the opposite signs of the charge densities at
the two surfaces. For the other two cases, the electrostatic interaction
energies increase initially, show a maximum, and then decay to zero. Both
the curves show kinks within the repulsive part of the interaction which are
related to the discontinuities of the surface charge densities as functions of
the wall separation kL (see Fig. 2). As expected, the interaction decays
exponentially to zero which is confirmed by the semi-logarithmic plot in
the inset.
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5 Conclusions

In conclusion, our results clearly indicate that chemically
identical charge-regulated surfaces in an electrolyte are not
necessarily equally charged and need not repel each other. Even
if the surfaces are equally charged at larger separations, their
symmetry can become spontaneously broken with decreasing
inter-surface distance and they can assume charge densities
differing in magnitude as well as in sign. At short separations,
but well-above the molecular scale, the resulting electrostatic
attraction dominates over the repulsive osmotic (or entropic)
pressure due to the ions and the vdW attraction between the
surfaces. These findings contradict one of the fundamental
assumptions commonly made in the application of the PB
theory to chemically identical surfaces and puts it into an
entirely new perspective. Since charge regulation is prevalent
in most synthetic as well as natural colloids, including bio-
molecules, our findings are indeed expected to be relevant for a
wide range of systems.

Note added after first publication

This article replaces the version published on 11th January 2018,
which contained errors in the text describing eqn (2).
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