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Nicotinamide adenine dinucleotide (NAD™) is an essential cofactor participating in a variety of important

enzyme-catalyzed physiological and pathophysiological processes. Analogues of NAD™ provide key and

valuable agents for investigating NAD*-dependent enzymes. In this study, we report the preparation of
a novel stable NAD* mimic, 4'-thioribose NAD* (S-NAD™), using a facile and efficient chemoenzymatic
approach. Substrate activity assays indicated the resulting S-NAD™ is chemically inert to human CD38

and sirtuin 2 enzymes, but capable of participating in redox reactions in a manner similar to NAD*. X-ray
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crystallographic analysis revealed binding of S-NAD*' to the active site of human CD38 and critical

residues involved in leaving group activation and catalysis. By more closely mimicking NAD" in geometry

DOI: 10.1039/c8sc03899f

rsc.li/chemical-science study enzymes utilizing NAD™.

Introduction

Nicotinamide adenine dinucleotide (NAD') is an essential
cofactor involved in numerous biological processes, such as
energy metabolism and homeostasis, chromatin stability, gene
expression, protein homeostasis, and signaling transduction.'™*
As a cosubstrate, NAD" participates in chemical reactions
catalyzed by various types of enzymes that are responsible for
controlling those important processes (Fig. 1).>* NAD" together
with its reduced form NADH are utilized by oxidoreductases for
electron transfer reactions. In the presence of NAD', sirtuins
catalyze protein deacetylation, forming acetyl-ADP-ribose
(acetyl-ADPR). In addition, NAD'-dependent enzymes
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and electrostatics, the generated S-NAD* offers a unique and important tool that can be extended to

covalently add the ADP-ribose moiety of NAD" to side chains of
target proteins, resulting in protein ADP-ribosylation. This is
catalyzed by a superfamily of ADP-ribosyltransferases (ARTSs),
including intracellular poly-ADP-ribose polymerases (PARPs)
and sirtuins and ecto-ARTSs. The last category of NAD'-depen-
dent enzymes includes CD38 and CD157 catalyzing formation
of ADP-ribose (ADPR) and cyclic ADPR (cADPR) by consuming
NAD" (Fig. 1). As membrane glycoproteins, CD38 and CD157 are
multifunctional enzymes. In addition to catalyzing formation of
cADPR from NAD', they possess NAD" glycohydrolase and base
exchange activities. Compared with CD157, CD38 exhibits
significantly higher enzymatic activity and catalytic efficiency in
cleaving circulating NAD', suggesting a major role in control-
ling tissue and cellular NAD" homeostasis.>® Recent studies
indicated that CD38 deficiency in mouse leads to ameliorated
pathology of Alzheimer's disease.” Pharmacological inhibitions
of CD38 can suppress glioma progression in mice, improve
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Fig. 1 NAD" participates in chemical reactions catalyzed by distinct
classes of enzymes.
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physiological and metabolic parameters, and provide beneficial
effects on metabolic syndrome.** CD38 was also shown to
regulate immune responses in physiological and pathological
conditions.*»*?

Given the extensive involvements of NAD'-dependent
enzymes in human diseases, a substantial amount of studies
have been performed to determine their mechanisms of action.
For this purpose, X-ray crystal structures of reactive complexes
can provide direct and valuable information at the molecular
levels.' Since the complexes of NAD'-bound catalytically active
enzymes are short-lived, catalytically inactive enzymes or
modified substrate proteins were used for solving crystal
structures of such binary or ternary enzyme complexes, which
often miss important information about functions and roles of
key residues involved in enzyme catalysis. Moreover,
currently available NAD' analogues for this purpose are
suboptimal in mimicking NAD" due to the lack of nicotinamide
leaving group for redox reactions or the altered ribosyl geometry
by methylene substitution.”® Herein we report chemo-
enzymatic synthesis of a novel stable NAD" mimic, 4-thioribose
NAD' (S-NAD"), which was generated through two-step enzy-
matic reactions in a high yield following chemical synthesis of
nicotinamide 4’-thioriboside (S-NR). Biochemical studies indi-
cated that the resulting S-NAD' is resistant to enzymatic

15-17

cleavage by human CD38 and sirtuin 2 enzymes, but still able to
participate in redox reactions. The determined high-resolution
X-ray crystal structure of S-NAD" with human CD38 revealed
molecular interactions between S-NAD" and key catalytic resi-
dues. These results demonstrate a facile chemoenzymatic
approach for the preparation of S-NAD'. As a novel stable NAD"
mimic, the generated S-NAD' may offer a unique and important
tool that can be extended to investigate mechanisms of action
for enzymes utilizing NAD".

Results and discussion

Considering the chemical structure of NAD', we envisioned that
replacing the endocyclic oxygen with sulfur can possibly
generate a stable analogue more closely mimicking NAD'
in geometry and electrostatics. Furthermore, inspired by
nicotinamide riboside (NR) kinase (NRK)- and nicotinamide
mononucleotide  adenylyltransferase =~ (NMNAT)-mediated
biosynthesis of NAD" from its NR precursor, we hypothesized
that S-NR may be enzymatically converted to S-NAD" in high
efficiency by human NRK and NMNAT enzymes (Fig. 2A). The
human genome encodes two NRK isoforms (NRK1 and 2) and
three NMNAT isoforms (NMNAT1-3). Previous studies indicated
that human NRK1 and NMNAT1 exhibit adequate catalytic
activities for NR+adenosine triphosphate (ATP) and nicotin-
amide mononucleotide (NMN)+ATP, respectively, and promis-
cuity towards other substrate analogues.>*® In contrast to total
chemical synthesis of NAD" analogues which has proven chal-
lenging due to synthetic complexity and low yields for the
difficult pyrophosphate coupling, using recombinant NRK and
NMNAT may afford a facile and efficient approach for the
generation of stable NAD" mimics.
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Fig.2 Enzymatic synthesis of NAD* and chemoenzymatic synthesis of
S-NAD™". (A) Scheme of enzymatic conversion of NR to NAD™. (B)
Scheme of chemoenzymatic synthesis of S-NAD™. (C)-(F) HPLC
analysis of enzymatic synthesis of NAD™ ((C) and (D)) and S-NAD™ ((E)
and (F)) by human NRK1 and NMNAT1 as measured by UV absorbance
at 260 nm. 2 mM NR or S-NR was incubated with 6 mM ATP and 5 uM
NRK1 and 5 uM NMNAT1 at RT for O h and 4 h, followed by HPLC
analysis.

To test this notion, S-NR was first chemically synthesized. As
shown in Scheme S1,} 1-acetoxy thioribose 9 was prepared from
p-gulonic acid y-lactone according to the reported procedures.”
Despite established methods for synthesis of NR via introduc-
tion of nicotinamide onto ribose, S-NR is yet to be devel-
oped.”®3! By testing the substitution of nicotinamide for OAc
group of 9, it was found that treatment of 9 with sequential HBr
(33% (wt) in acetic acid) in toluene at 0 °C for 4 hours and
nicotinamide in CH3CN at room temperature for 18 hours
successfully afforded 10 in a 58% yield (Fig. 2B). S-NR was then
generated through subsequent deprotections of the 4’-thio-
ribose ring.

Human NRK1 and NMNAT1 were then expressed and puri-
fied from Escherichia coli (Fig. S1%). In vitro biosynthesis of NAD"
and S-NAD' from NR and S-NR, respectively, were carried out
using purified NRK1 and NMNAT1. In the presence of NRK1

This journal is © The Royal Society of Chemistry 2018
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and NMNAT1 and ATP, a large amount of NAD" and S-NAD"
were rapidly formed within 4-hour incubation (Fig. 2B-F and
S2-S47). The formation rate of S-NAD" was comparable to that
of NAD". In contrast to the last two steps of chemical synthesis
of NAD"' analogues that usually take two to four days and are
characterized by tedious purification procedures and low yields,
enzymatic conversion of S-NR to S-NAD" by NRK1 and NMNAT1
could be completed within four hours with a final yield of 70%
and requires significantly less efforts on purification (Fig. 2B
and Scheme S17}). These results demonstrate a facile and effi-
cient chemoenzymatic approach for the generation of S-NAD".
The sulfur substitution seemed to have no effect on substrate
activities of S-NR and 4'-thioribose nicotinamide mono-
nucleotide (S-NMN) for human NRK and NMNAT, respectively.
In addition, the UV absorption spectrum of the generated
S-NAD' is nearly identical to that of NAD" (Fig. S51).

To evaluate chemical stability of the generated S-NAD',
recombinant extracellular domain of human CD38 was chosen
as a model enzyme (Fig. S61), which catalyzes rapid formation
of ADPR and cADPR from NAD". HPLC analysis revealed that in
contrast to NAD" that was completely consumed by human
CD38 after an overnight reaction, S-NAD' still remained
unchanged after overnight incubation with CD38 (Fig. 3). These
results indicate that relative to NAD", the synthesized S-NAD" is
more resistant to cleavage catalyzed by CD38 enzyme and
support that 4’-thioribose substitution for NR ribosyl group
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Fig. 3 Activity of NAD* and S-NAD* for human CD38. HPLC analysis
of substrate activities of NAD* (A and B) and S-NAD™ (C and D) with
human CD38 as measured by UV absorbance at 260 nm. 1 mM NAD*
or S-NAD* was incubated without and with CD38 at RT overnight,
followed by HPLC analysis.
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results in an NAD" analogue chemically inert to catalysis for N-
glycosidic bond breakage.

Next, the generated S-NAD' was examined for its competitive
inhibition activity for human CD38 enzyme by performing
a continuous fluorescence-based activity assay using nicotin-
amide guanine dinucleotide (NGD") as a substrate. The cyclase
activity of CD38 catalyzes formation of fluorescent cyclic GDP-
ribose (¢cGDPR) from NGD'.> On the basis of cGDPR-derived
fluorescence, kinetics for human CD38-catalyzed conversion
of NGD"' to ¢GDPR was examined and the K, of NGD" for
human CD38 cyclase activity was determined to be 8.5 £ 0.6 uM
(Fig. S7f). Competitive inhibition assays showed that S-NAD"
exhibits a dose-dependent inhibition of ¢cGDPR formation by
CD38 with a K; of 28.5 + 3.1 uM (Fig. 4), comparable to previ-
ously determined K, values of NAD" for CD38 enzyme.***
These results suggest that by mimicking NAD", S-NAD" could
bind to the active site of human CD38 to inhibit its enzymatic
activity and a single atomic substitution within the ribosyl ring
seems to induce no adverse effects on its binding to the CD38
enzyme. Additionally, no slow-onset inhibition was observed for
S-NAD' in direct competition assays with extended incubation
or in studies of preincubating CD38 with S-NAD".

In addition to human CD38, the chemical stability of S-NAD"
was evaluated for human sirtuin 2 (SIRT2), an NAD"-dependent
protein  deacetylase. Trypsin-coupled fluorescence-based
activity assays indicated that in contrast to NAD" that could
participate in SIRT2-catalyzed protein deacetylation, S-NAD"
alone revealed no substrate activity for SIRT2 after overnight
incubation with SIRT2 and a fluorogenic, acetylated peptide
substrate and co-incubation of S-NAD" with NAD" significantly
inhibited protein deacetylation catalyzed by SIRT2 (Fig. S8%).
These results suggest that as a stable mimic of NAD', S-NAD"
could bind to the SIRT2 active site and inhibit its catalytic
activity. It is expected that the replacement of the endocyclic
oxygen with less electronegative sulfur would reduce chemical
reactivity of the N-glycosidic bond, making it more resistant to
enzymatic cleavage. Moreover, sulfur substitution may induce
minimal changes in ribosyl geometry, causing little effects on
enzyme binding. By altering bond stability and retaining

[S-NAD"]
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Fig. 4 Inhibition activity of S-NAD* for human CD38. Recombinant
human CD38 (8 nM) was incubated with 50 uM NGD™ in the presence
of varied concentrations of S-NAD*. CD38 cyclase activities were
monitored on the basis of the formation of fluorescent cGDPR as
measured at 410 nm.
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molecular geometry, the single atomic substitution results in
the S-NAD" as a stable mimic of NAD".

In addition to enhancing stability of the N-glycosidic linkage
between nicotinamide and ribose ring, replacing the endocyclic
oxygen with sulfur is expected to have no impact on reduction of
nicotinamide ring in oxidation-reduction reactions. To deter-
mine whether S-NAD' could participate in electron transfer
reactions, bovine glutamate dehydrogenase (GDH) and Leuco-
nostoc mesenteroides glucose-6-phosphate dehydrogenase
(G6PDH) were utilized, which are known to catalyze oxidation of
glutamate and glucose-6-phosphate by NAD", respectively.>>*®
Enzymatic activity assays revealed that incubation of S-NAD"
with bovine GDH and L. mesenteroides G6PDH resulted in
characteristic increases of UV absorbance at 340 nm in
a manner similar to those of NAD'-containing reactions
(Fig. S91). HPLC analyses of the reduction of NAD" and S-NAD"
by bovine GDH and L. mesenteroides GGPDH showed enzyme-
dependent formation of NADH and S-NADH peaks, which
were confirmed by mass spectrometry (Fig. S10 and S11%).
These results suggest that the single atomic substitution within
NR ribosyl ring has little effects on accepting electrons and
S-NAD' can participate in redox reactions.

To explore the binding mode of S-NAD" with human CD38,
X-ray crystallographic analysis was carried out. The extracellular
domain of wild-type human CD38 except four mutated glyco-
sylation sites was recombinantly expressed in mammalian cells
(Fig. S61). Enzymatic activities of purified CD38 were verified by
fluorescence- and HPLC-based activity assays using NGD' and
NAD" as substrates. Recombinant human CD38 in high purity
was successfully cocrystallized with S-NAD' and its X-ray crystal
structure was solved at a resolution of 2.4 A (Fig. 5 and Table
S2}). The determined crystal structure clearly revealed the
binding of S-NAD" to the active site of human CD38 and multiple
interactions formed between S-NAD' and active site residues.
The 4'-thioribose ring of S-NAD" adopted a C3’-endo-C2'-exo
conformation. It was seen that the distances between S-NR 2/-OH
of S-NAD" and side chains of S193 and E226 are 2.8 A and 3.6 A,
respectively. The S-NR 3/-OH of S-NAD' is 2.7 A away from the
side chain of E146 (Fig. 5). These observations support that these
three residues play important roles in catalysis of human CD38
and are consistent with previous reports, in which it was shown
that E226 and S193 are catalytic residues involved in stabilization
of formed oxacarbenium ion intermediate and E146 controls
cyclizing and hydrolyzing activities.****” The most striking
finding for the determined X-ray structure is that the nicotin-
amide ring of S-NAD" is fully stacked on top of the indole ring of
W189 (Fig. 5). The planes of S-NAD' nicotinamide and W189
indole are nearly parallel with an interplanar spacing of
approximately 3.4 A. On the basis of the solved X-ray structure,
the relative position, orientation, and distance of the nicotin-
amide moiety of S-NAD" at the active site of human CD38 suggest
that W189 plays an important role in activation of the leaving
group upon binding of substrate. This finding is consistent with
previous studies which showed that mutations of W189 cause
significantly decreased enzymatic activities of human CD38.

Comparative analysis of S-NAD"-bound CD38 with apo-CD38
(PDB ID: 1YH3) and NAD"-bound CD38 (E226Q) (PDB ID: 2165)
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Fig. 5 X-ray crystal structure of catalytically active human CD38 in
complex with S-NAD*. CD38 and S-NAD* are shown in grey and
magenta, respectively. (A) Overall crystal complex structure of human
CD38-S-NAD™. (B) and (C) Bound S-NAD™ at the active site of human
CD38 with indicated catalytic residues and interacting water mole-
cules. PDB ID: 6EDR.

showed no significant changes in overall structure
(Fig. S12).13°® Relative to S-NR of S-NAD", the NR moiety of
NAD" at the binding site of catalytically inactive CD38 (E226Q) is
closer to the bottom of the binding pocket. As a result, the
nicotinamide ring of NAD' forms very minor stacking interac-
tion with the indole ring of W189 (Fig. S12}). The nicotinamide
rings of NAD" and S-NAD" at the CD38 active sites reveal distinct
orientations with C2-N1-C1’-C2" dihedral angles of 174.3° and
34.7°, respectively, which enable the amide group of NAD" to be
in hydrogen bond distance to the side chain of E146. In addi-
tion, the ribose ring of NAD' adopted a C2'-endo-C3'-exo
conformation. These structural differences between NAD" and
S-NAD" at the active sites of CD38 suggest that the sulfur
substitution results in an NAD" analogue more resistant to the
N-glycosidic bond breakage. Taken together, the X-ray structure
of S-NAD" with catalytically active human CD38 is consistent
with the substrate and inhibition activities studies and
demonstrates that as a stable mimic of NAD", the generated S-
NAD" allows X-ray crystallographic characterization of reactive
complexes of CD38 to elucidate its catalytic mechanism.

Conclusions

As a novel stable NAD" mimic, S-NAD" was successfully gener-
ated. By exploiting human NRK1 and NMNAT1, S-NAD" could

This journal is © The Royal Society of Chemistry 2018
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be efficiently prepared from its chemically synthesized S-NR
precursor through a two-step enzymatic process in a high
yield. The generated S-NAD" is chemically inert to cleavage by
human CD38 and sirtuin 2, while functioning as an electron
acceptor in redox reactions. The X-ray structure of S-NAD" with
human CD38 demonstrates its binding to enzyme active site
and revealed residues important for catalysis along the reaction
coordinate. This work provides a facile and efficient chemo-
enzymatic approach for the generation of S-NAD" and a unique
and important tool that can be extended to investigate NAD'-
dependent enzymes.
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