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A heterogeneous catalyst system, employing Au nanoparticles (NPs) and Li—Al (1:2) layered double
hydroxide (LDH) as support, showed excellent activity in aerobic oxidation of the benzylic alcohol group
in B-O-4 linked lignin model dimers to the corresponding carbonyl products using molecular oxygen
under atmospheric pressure. The synergistic effect between Au NPs and the basic Li-Al LDH support
induces further reaction of the oxidized model compounds, facilitating facile cleavage of the B-O-4
linkage. Extension to oxidation of y-valerolactone (GVL) extracted lignin and kraft lignin using Au/Li—Al
LDH under similar conditions produced a range of aromatic monomers in high yield. Hydrolysis of the
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Introduction

Due to rising political, economic, and environmental chal-
lenges associated with the extraction and use of fossil fuels,
lignocellulosic biomass has come to prominence as a logical
renewable alternative to petroleum-based resources for
commercial carbon-based products."” Although ethanol
production from the cellulosic component of lignocellulosic
biomass is being researched at a pilot scale as a replacement for
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molecular weight aromatics under mild conditions.

grain ethanol,® the utilization of lignin is limited,* despite the
fact that the cellulosic ethanol production cost is directly
correlated to the valorization of lignin.*® Enzyme-induced
combinatorial radical polymerization of monolignols leaves
lignin with a complex, amorphous chemical structure.®® In view
of its structural complexity, harnessing this resource requires
chemical transformations that can depolymerize this recalci-
trant material to useable monomers with high efficiency and
selectivity.® Although lignin possesses a heterogeneous struc-
ture, all lignins contain the alkyl aryl ether unit (i.e., contain the
B-O-4 linkage) as the most abundant structural unit (up to 60%
of all linkages)® followed by B-5, B-B, and other minor units
(Fig. 1).

Although much effort has been invested in hydrogenolytic
approaches to lignin depolymerization, the chemistry can be
non-selective;' moreover, most phenolics produced via reduc-
tive pathways would face competition from the low cost
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Fig. 1 Structural representation of a lignin fragment illustrating
selected linkages.
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phenolics produced from petroleum.” Compared to hydro-
genolytic methods, catalytic oxidative lignin depolymerization
is desirable as the products exhibit increased functionalization
and complexity,’*** otherwise not readily available from petro-
leum resources.® Many recent studies utilize homogenous
catalytic systems for oxidative lignin depolymerization, and
while promising results have been achieved for lignin model
compounds, many systems suffer from a lack of selectivity,'>**
catalyst decomposition,” and the requirement for harsh reac-
tion conditions.” In addition, problems inherent in the recy-
cling of homogenous catalysts make the industrial application
of these systems difficult. Heterogeneous catalyst systems are
generally better suited for industrial applications,'® and recent
reports have shown moderate to high yields in heterogeneously
catalyzed oxidation of lignin model compounds and mono-
aromatic substrates,'’>* albeit with few successful examples of
lignin depolymerization having been reported. Aside from
catalyst type, the oxidant is another key factor in oxidative lignin
depolymerization processes, molecular oxygen being favored as
the terminal oxidant for any large scale oxidative conversion
process.'”?* In the past 20 years, Au nanoparticles (NPs) sup-
ported on metal oxide and layered double hydroxide (LDH)
supports (Au/TiO,, Au/CeO,, Au/Mg-Al LDH, Au/Ni-Al LDH,
etc.) have been shown to selectively catalyze aerobic oxidations
of alcohols to the corresponding carbonyl compounds.**>°
Herein, we introduce a heterogeneous catalyst system for the
aerobic oxidation and depolymerization of lignin by targeting
the lignin B-aryl ether fragment, utilizing Au NPs supported on
a basic Li-Al LDH* under molecular oxygen at atmospheric
pressure. We highlight the high oxidation activity of Au/Li-Al
LDH with a variety of lignin model compounds, and its appli-
cability towards lignin depolymerization.

Results and discussion

Our initial studies focused on the oxidation of simple benzylic
alcohols (Tables 1 and 2). Encouragingly, we found that by
employing a strongly basic Li-Al (1 : 2) LDH* as support, the
activity for benzylic alcohol oxidation increased significantly
compared to less basic Au/LDH catalysts. When toluene was

Table 1 Oxidation of 1-phenylethanol to acetophenone using Au/
LDHs*

Catalyst t[h] Conv.’[%] Sel’[%] TOF [h™']
Au/Mg-Al LDH 1 75 >99 5926

Au/Ni-Al LDH 1 34 >99 1317

Au/Li-Al LDH 1 98 >99 11 061 (29 708)*

¢ 1-Phenylethanol (1 mmol), catalyst (0.1 g, 1 wt% Au), diphenyl ether
(10 mL), 80 °C, p = 1 atm. O, (10 mL min~"). ” Conversion and
selectivity were determined by GC-MS using dodecane as internal
standard.  TOF values are based on the number of surface Au atoms
calculated for the mean Au particle size found via TEM analysis (see
ESI Fig. $3).**** ¢ TOF in parentheses was determined using toluene
as solvent. Note: a control experiment conducted without catalyst
showed no conversion.
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Table 2 Aerobic oxidation of simple benzylic alcohols using Au/Li—Al
LDH®

Entry Substrate t [h] Conv. [%] Product Sel. [%]
1 @ 4 80 WQ* 78
OH o
2 )@A 2 98 Q)K 98
OH o
3 @* 0.5 >99 @* >99
MeO’ MeO’
OH o
4 @/k 2 67 )@* >99
5 MJ@* 4 80 " Q* >99
OH o
6" m 2 >99 w >99
7 0.5 >99 >99

“ Substrate (1 mmol), Au/Li-Al LDH (50 mg, 1 wt% Au), diphenyl ether
(DPE, 10 mL), 80 °C, p = 1 atm. O, (10 mL min ‘). Conversion and
selectivity were determined by GC-MS using dodecane as internal
standard. ? Substrate (1 mmol), Au/Li-Al LDH (50 mg, 1 wt% Au),
diphenyl ether (DPE, 10 mL), 100 °C, p = 1 atm. O, (10 mL min").
Conversion and selectivity were determined by GC-MS using dodecane
as internal standard. Partial results shown, for full list of benzylic
alcohols tested refer to ESI (see ESI Table S2).

used as solvent for comparison with literature data, Au/Li-Al
LDH exhibited the highest turnover frequency (TOF) compared
to other supported Au NP catalyst systems that effectively
oxidize 1-phenylethanol such as Au/Mg-Al LDH (3213 h™"),%
Au/Ni-Al LDH (5310 h™"),** and Au/ALO; (825 h™").

The high oxidation activity of Au/Li-Al LDH can be explained
by the degree of charge transfer from the basic support to the Au
NPs.**** According to CO, pulse chemisorption measurements,
the basic site concentration follows the order Mg-Al LDH
(44.8 pmol g.,¢ ) < Ni-Al LDH (80.5 umol g, ') < Li-Al LDH
(102.7 pumol g... ), while evidence of charge transfer to the
supported Au NPs was provided by X-ray photoelectron spec-
troscopy (XPS): as the basicity of the support increases, the
binding energy of the Au 4f;,, peak is shifted towards lower
energy (see Fig. S1 and S2 in ESIf).

Besides the basic nature of the Li-Al LDH, the Au nano-
particle size also plays an important role. It has been well
established that reactivity towards alcohol oxidation using Au
NPs decreases significantly when the Au particle size surpasses
5 nm;***° we observe via transmission electron microscopy
(TEM) that most of the Au NPs in our catalyst are <5 nm, the
median particle size being 2.1 nm (Fig. S31), which should be
optimal for alcohol oxidation. The Li-Al LDH used in this
catalyst system possesses a crystalline structure (Fig. S4t) and
exhibits a characteristic sand rose morphology (Fig. S51) with
a relatively high surface area of 85 m® g~ (Table S17), which
favors adsorption of the alcohol and facilitates the formation of
small Au NPs on the catalyst surface.

This journal is © The Royal Society of Chemistry 2018
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The difficulty of activating O, represents one of the rate
limiting factors in oxidation catalysis.*® It is contended that Au
NPs adsorbed on the surface of a basic support contain coor-
dinatively unsaturated Au atoms that are efficient in O, disso-
ciation, and the activity of adsorbed O, on metallic Au follows
Bronsted acid-base reaction patterns.*®*° Our proposed mech-
anism (Fig. 2) suggests that catalysis occurs at the Au-O-Li
interface. Electron rich Au NPs activate molecular oxygen via
electron donation to the LUMO (7*) of O, (ref. 41) and simul-
taneously, the support deprotonates the benzylic hydroxyl
group to allow adsorption to the catalyst surface. The oxidation
process is then completed by a series of deprotonation,
elimination, and catalyst regeneration steps. It should also be
noted that the reaction proceeds via a two-electron pathway, as
evidenced by the selective oxidation of a-cyclopropyl-
benzenemethanol without ring opening (entry 6 in Table 2).
Compared to radical pathways, a two-electron oxidation mech-
anism preserves desirable aromaticity in most products, and
prevents repolymerization of intermediates that generate olig-
omers via irreversible bond formation.****

The properties of Au/Li-Al LDH in aerobic oxidation were
further evaluated using a lignin model dimer, 2a, containing
the B-O-4 interunit linkage (Fig. 3). Our catalyst system showed
selective oxidation of the secondary benzylic alcohol in 2a with
a reaction rate of 10.8 mmol h™* g.,, %, achieving a 37% yield of
2b in 5 h with 68% conversion of 2a (near complete conversion
of 2a was seen after 24 h). Under these conditions 2b reacted
further to give the dehydration product 2¢ (rate = 3.6 mmol h™*
ge.ae ) and the retro-aldol product 2d (rate = 36 mmol h™*
Zecat ). The high reaction rate of the retro-aldol product
formation may be attributed to the basic property of the Li-Al
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Fig. 2 Proposed mechanism for aerobic oxidation of benzylic alco-
hols over Au/Li—Al LDH.
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Fig. 3 Aerobic oxidation of lignin model dimer 2a using Au/Li—Al LDH.
Conditions: substrate (1L mmol), Au/Li—-AlLDH (0.1 g, 1 wt% Au), DPE (10
mL), 120 °C, p = 1 atm. O, (10 mL min~?). All reaction rates were
obtained by oxidizing the individual intermediates using the same
conditions. For full details refer to ESI (Fig. S5-S7 in ESIt). Conversion
and yields were determined by GC-MS using dodecane as internal
standard.

support, such reactions having been reported in the litera-
ture.**® While 2c was not observed to react further (Fig. S67), 2d
reached a maximum yield of 40% after 24 h, in turn producing
guaiacol (2e) and p-anisic acid (2f) at a rate of 10.8 mmol h™*
gcafl. Formation of products 2e and 2f via cleavage of the f-O-4
bond in 2d using molecular oxygen has also been observed in
various literature reports.*”~*° Indeed, the propensity of the
oxidized (ketone) form of B-O-4 model compounds to undergo
oxidative cleavage to monomers has been attributed to the
significantly weaker C-O bond present in the ketone form
compared to the initial benzylic alcohol compound, and
a decrease in pK, of the proton located at Cg.**** Schoenebeck
and coworkers* suggested that the first step would most likely
involve the formation of an enolate intermediate after depro-
tonation of the Cg-H, which can be further oxidized to give
a hydroperoxide species. Thereafter, two possible routes would
give products 2e and 2f: (1) an anionic pathway involving
formation of a dioxetane intermediate, which could undergo
subsequent fragmentation to a carboxylate and a phenyl ester;
(2) a homolytic O-O scission step forms an O centred radical,
which undergoes further C-C cleavage, as suggested by Wang
and co-workers.*’

In a subsequent esterification reaction, 2e and 2f reacted to
form 2g with a rate of 5.4 mmol h™" g.,.~". A similar rate of
product formation was observed when only the Li-Al LDH
support was used, consistent with base catalyzed esterification.
Although esterification is an undesirable side-reaction, the ester
linkage in 2g can be cleaved by means of simple hydrolysis,
which, when translated to lignin, would result in net cleavage of
the B-aryl ether linkage.

Chem. Sci, 2018, 9, 8127-8133 | 8129
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In order to examine the reusability of Au/Li-Al LDH under
these reaction conditions, recycle reactions were carried out
using a slightly simpler model compound, 3a (Table S3 and
S4t). After three runs, the conversion of 3a measured at 4 h
showed no change (~58%). However, for recycle experiments
performed at longer reaction times (16 h), a gradual decrease in
the yields of 2e and 2f, formed from 2d, was apparent. Yields of
2e, 2f, and 2g were largely restored after the spent catalyst was
washed with water at room temperature (4™ run in Table S47),
consistent with the removal of adsorbed 2e and 2d (identified in
the water washings). This indicates that over time 2e and 2d
accumulate on the catalyst surface, as would be expected for
acidic compounds, slowing the further conversion of 2d.
Leaching of the catalytically active species into the reaction
medium is an underlying concern for heterogeneously catalyzed
lignin depolymerization, as observed by Bolm and coworkers."”
In the present work, when Au/Li-Al LDH was removed via hot
filtration after 2 h of oxidation of 2a, no further conversion was
observed after an additional 10 h reaction time. Consistent with
these findings, concentrations of Au, Li, and Al in solution were
determined to be <0.1 ppm by ICP-OES.

Next, our focus shifted to the use of process lignins, namely,
Indulin AT kraft lignin (softwood, from pine) and y-valer-
olactone extracted lignin® from maple wood (hereafter referred
to as KL and GVL, respectively), as substrate. Reaction condi-
tions similar to those used in the lignin model compound
experiments were applied, albeit dimethylformamide (DMF)
was used as solvent instead of DPE due to the higher solubility

View Article Online
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of lignin in DMF. Fig. 4 shows 2D HSQC NMR spectra
comparing KL and GVL before and after oxidation with O, in the
presence of Au/Li-Al LDH (oxidized KL and GVL are abbreviated
as KLy, and GVL,y, respectively).

Analysis of the oxygenated aliphatic region of GVLx and KLy
revealed the absence of signals corresponding to B-aryl ether (A)
and phenylcoumaran (B) units, albeit compared to KL, some
resinol (C) remains in GVLy. It is hypothesized that as for the B-
aryl ether model dimer 2a, the B-aryl ether units in lignin may
have gone through a similar oxidation-cleavage-re-coupling
process forming the ester moiety, which has no sidechain
C-H signals to observe via 2D HSQC NMR. Moreover, cross
peaks correlating to the guaiacyl (G) units are no longer present
in the HSQC spectrum after oxidation of KL and GVL (KL, and
GVL,y), and vanillate (VA) analogs are the only remaining
signals for both. Additionally, the HSQC spectrum of GVL,y
displayed a significant decrease in syringyl (S) and an increase
in oxidized syringyl units (S').

The oxidized lignin samples were next subjected to hydro-
lysis with NaOH (0.1 M), after which the mixture was neutral-
ized with HCI (1 M) and the soluble material was extracted with
ethyl acetate (EtOAc). KLy yielded 20 wt% of EtOAc soluble
material after hydrolysis (Fig. 5A), which is double the amount
obtained from the initial oxidized lignin sample. Notably, GVLy
after hydrolysis afforded 56 wt% EtOAc soluble material, versus
20 wt% without the additional hydrolysis step (Fig. 5A). The low
percentage of soluble organic products formed from KL, is not
surprising given that the kraft pulping process is known to
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Fig. 5 (A) Percent organic soluble fraction obtained from KL,x and
GVLey pre- and post-hydrolysis. Oxidized lignin samples (50 mg) were
dissolved in 0.1 M NaOH (5 mL), followed by addition of 1 M HCl until
pH 2 was reached, and were then extracted with EtOAc. For additional
details refer to ESI. (B) Yields of monomer products from KLy, and (C)
GVLox after hydrolysis. Corresponding yields for control experiments
(conducted without catalyst) are shown in the ESL}

produce a recalcitrant lignin that is C-C cross-linked, and hence
difficult to depolymerize.® However, the results obtained with
GVL, are significant given that GVL more closely resembles the
structure of native lignin than does KL.** Gel permeation
chromatography (GPC) revealed two peaks for both KL,, and
GVL,y after hydrolysis (Fig. S9). The first peak in both chro-
matograms represent fractions containing high molecular
weight oligomers, and the second peak corresponds to low
molecular weight components. The high molecular weight
region shows a ~3500 Da decrease in molecular weight for KLy
post-hydrolysis while a decrease of ~1000 Da was observed for
GVL,x post-hydrolysis. The low molecular weight range shows
monomer production for both lignins, however, a significantly
higher signal intensity was obtained from GVL,, post-hydrolysis
compared to KLy post-hydrolysis, consistent with the results
previously mentioned in Fig. 5A.

Compound identification and quantification via GC-MS
revealed that S- and G-derived carboxylic acids and aldehydes
are the most prominent products (Fig. 5B and C). The yield of
GC-MS identifiable monomers from GVL totaled 40 wt%,
whereas a 10 wt% yield of GC-MS identifiable monomers was
obtained from KL. Among the identified monomers, vanillin,
vanillic acid, ferulic acid, and coniferyl alcohol were present
from both lignins. Yields of these monomers, except for
vanillin, were found to be higher from GVL,, than from KL. S-
derived products were only obtained from GVL, as the KL used
in this work was derived from pine, which consists of almost
exclusively G units, a small amount of H units, and no S units.*®
Notably, the monomers obtained, including vanillin, vanillic
acid, and syringaldehyde, are of higher market value than those
typically derived from hydrogenative methods of lignin depo-
lymerization.> These monomer yields are the highest reported

This journal is © The Royal Society of Chemistry 2018
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to date for heterogeneously catalyzed oxidative lignin depoly-
merization® and approach those reported for the most effective
homogenous catalysts.***” Notably, the lignins employed in the
latter case were either extracted enzymatically or via mild
acidolysis, which preserves a high fraction of B-aryl ether link-
ages.”” The fact that we observe a 40 wt% monomer yield from
a lignin that is extracted via a scalable method, utilizing
a biomass-derived solvent, renders the Au/Li-Al LDH catalyst
system particularly promising.

Conclusions

The heterogeneous catalyst Au/Li-Al LDH showed excellent
activity and selectivity in the oxidation of benzylic alcohols
using molecular oxygen as the terminal oxidant. XPS data
suggest the high activity of this catalyst is facilitated by charge
transfer from the basic Li-Al LDH support to the Au nano-
particles. As evidenced by the model B-O-4 linkage dimer
oxidation results, our catalytic system was able to oxidatively
cleave the linkage after selective benzylic alcohol oxidation,
ultimately forming an ester moiety that can be depolymerized
via simple hydrolysis. Similarly, NMR data obtained on oxidized
kraft lignin (KL,y) and GVL lignin (GVL,y) showed the disap-
pearance of benzylic alcohol groups, consistent with ester
formation. After hydrolysis was performed on oxidized lignin
samples, a 40 wt% yield of aromatic monomers was obtained
from GVL., while KL, afforded 10 wt% monomers. These
monomer yields are the highest reported for heterogeneously
catalyzed oxidative lignin depolymerization. Based on these
results, Au/Li-Al LDH is identified as a promising catalyst
system for lignin valorization to value-added low molecular
weight aromatics.
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