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of Chemistry A new motif for artificial double helices was developed on the basis of a,a-disubstituted tripyrrin. oo/ -
Dibromotripyrrin 3 was prepared by gentle bromination at the pyrrolic a-positions of 5,10-
diphenyltripyrrane followed by oxidation with DDQ. Nucleophilic substitution reactions of 3 with anilines
proceeded efficiently to furnish a series of a,a/-dianilinotripyrrins 4-11, which displayed monomeric and
dimeric forms depending upon the solvent used for crystallization and the structures of the substituted
anilines. Dimeric forms show double helical structures with smooth m-conjugation as indicated by their

absorption spectra. van't-Hoff plot analyses revealed that the dimerizations in CDCls are enthalpy-driven.
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Introduction

An artificial double helix motif has stimulated chemists’
interest not only to mimic the biological functions as seen in
DNAs, but also to develop new functional devices for organic
electronics and photonics.* Significant efforts have been made
for synthetic oligomers that can form bimolecular double
helices through different types of non-covalent interactions.”*
One of the most useful non-covalent interactions is metal-
ligand coordination. Metal ion-directed self-assemblies in
which the organic ligands form double-helical complexes are
called double helicates.” As a pioneering study, J. M. Lehn et al.
employed copper(i)-chelation by bipyridyl ligands to obtain
double helicates (A).>* A variety of metallohelicates utilizing
pyridyl coordinations have been extensively studied later.>”
Not only transition metal complexes, but also spiroborates (B)
were found to form double helicates, in which coordination of
the central sodium ion plays an important role in shielding the
electrostatic repulsion between the two borate groups.® As for
purely organic approaches, effective salt-bridge formation was
utilized for m-terphenylene-based double helical oligomers (C).*
Yashima and co-workers have beautifully extended this motif to
well-defined double helical polymers.* On the other hand, Huc
and co-workers synthesized double-stranded helices of
aromatic oligoamides (D) in which the NH site of the amide
moiety and the N site of the pyridine moiety serve as the
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mesitylamino groups do not dimerize but undergo unique tautomerization.

hydrogen bonding donor and acceptor, respectively.® As such,
hydrogen bonding is a useful intermolecular interaction to hold
the supramolecular arrangement, and a variety of hydrogen
bonding donor and acceptor sites have been properly allocated
to form double helical structures.® However, there are only a few
examples of fully m-conjugated double helices that may be
promising for visible-light harvesting or effective career trans-
porting along the helix axis.” Recently, a large polycyclic helical
molecule (E), so called expanded helicene, was reported to
display a homochiral double helical structure in solution and in
the solid-state due to the favourable m-stacking interaction.® A
new motif of artificial double helices having smooth m-conju-
gation still remains highly desired (Chart 1).

Here, we report a new motif of a fully conjugated double helix
based on tripyrrin derivatives. Tripyrrin is a conjugated tri-
pyrrolic chain consisting of three pyrrolic moieties and two
bridging methine carbons.>** Since the tripyrrin itself is gener-
ally not so stable, the isolation of tripyrrin derivatives has been
limited to its protonated salts,> metal complexes,®* oxygenated
derivatives (tripyrrinones)' or those with steric protections at
the labile a-positions."* We developed a,a’-dianilinotripyrrins as
stable entities exhibiting a large absorption band reaching the
NIR region. Surprisingly, some of these molecules spontane-
ously form doubly helical structures via effective intramolecular
and intermolecular hydrogen bonding interactions.

Results and discussion
Synthesis of a,o’-dibromotripyrrin

5,10-Diphenyltripyrrane 1 was easily prepared according to
Gryko's report."” Bromination of 1 with 2.1 equivalents of
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Chart 1 Examples of artificial double helix molecules.?=>

N-bromosuccinimide at —78 °C afforded a,o’-dibrominated
tripyrrane 2 in 72% yield (Scheme 1)."* Subsequently, oxidation
of 2 with 2.1 equivalents of DDQ gave a key compound, oo’
dibromotripyrrin 3, in 87% yield. Fortunately, 3 is fairly stable
under aerobic conditions and can be purified by silica-gel
column chromatography. Indeed, recrystallization from
CH,Cl,/MeOH gave crystals suitable for X-ray diffraction anal-
ysis (Fig. 1). Due to the intramolecular hydrogen bonding
networks among the two imine-like pyrroles and one pyrrole-
NH, 3 takes a cis-conformation with a slight deformation from
planarity due to the steric repulsion between the two bromine
atoms. The 'H NMR spectrum of 3 is consistent with the
structure, featuring two doublets at 6.75 and 6.54 ppm due to

Scheme 1 Synthesis of a,a/-dibromotripyrrin 3: (a) NBS, THF, —78 °C,
2.5h, 72%; (b) DDQ, CH,Cl,, 0 °C, 10 min, 87%.

Fig. 1 X-ray crystal structure of 3. Solvent molecules and hydrogen
atoms except for NH are omitted for clarity. The thermal ellipsoids are
scaled to 50% probability.
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the B-protons of imine-like pyrroles, a singlet at 6.31 ppm due to
the B-protons of the central pyrrole and the NH proton signal at
13.44 ppm.

Nucleophilic substitution reactions of 3 with anilines

Next, nucleophilic substitution reactions of 3 with anilines were
examined (Scheme 2). With 4 equivalents of aniline in dry THF at
room temperature, the substitution reaction of 3 proceeded very
smoothly to give o,o-dianilinotripyrrin 4 in 96% yield.** Treat-
ment of 3 with an equimolar amount of aniline in THF/
acetonitrile at room temperature afforded a mixture, from
which o-anilino-o/-bromotripyrrin S1f was isolated in 90%
yield.* The substitution reactions of 3 were also examined with
different types of aniline derivatives. p-Trifluoromethylaniline
and p-methoxyaniline were reacted to give the corresponding
anilinotripyrrin derivatives 5 and 6 in 98% and 93% yields,
respectively. Sterically encumbering 3,5-di-t-butylaniline, 3,5-
bis(trifluoromethyl)aniline and 1-naphthylaniline also reacted to
afford 7, 8 and 9 in 89%, 91% and 80% yields, respectively.
Sterically more hindered 2,4,6-trimethylaniline did not react at
room temperature, but upon refluxing in THF for 48 h, 10 was
obtained in 80% yield. Secondary N-methylaniline also reacted
smoothly to afford N,N'-dimethylanilinoltripyrrin 11 in 95% yield.

X-ray crystallographic analysis

Single crystals of 4 were obtained from its solution in CHCIl; and
n-hexane (Fig. 2a). The X-ray diffraction analysis revealed that 4
formed a double helix in the solid state due to the interstrand
hydrogen bonding interaction between the aniline-NH and the
imine-type pyrrole (Fig. 2b, right) as well as the intramolecular

aniline derivative (4 eq.)

THF
temp., time
3
E aniline derivative tBu E
: H2N—® HZNOCFa H2N—©—0Me HzN—Q
' Bu E
' ort,14h rt,12h rt, 24 h rt,12h 1
L 4:96% 5:98% 6:93% 7:89% :
E CF3 O Me H
! HN HoN Me .
| ) =
: CFs Me :
i reflux,6 h rt., 48 h reflux, 48 h ;
r8:91% 9:80% 10: 80% '

,NMe MeN,
Ph Ph

Scheme 2 Substitution reactions of 3 with aniline derivatives.
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Fig. 2 (a) X-ray crystal structure of 4 obtained from CHCls/n-hexane.
Representations for intramolecular hydrogen bonding and interstrand
hydrogen bonding networks are shown in (b). (c) X-ray crystal struc-
ture of 4 obtained from MeOH/H,O. (d) X-ray crystal structure of 11.
Solvent molecules and hydrogen atoms except for NHs and OHs are
omitted for clarity. The thermal ellipsoids are scaled to 50% probability.

hydrogen bonding interaction among pyrrole-NH and imine-
type pyrroles (Fig. 2b, left). When grown from a protic solvent
system such as a mixture of methanol and H,0, single crystals of
4 showed a monomeric helical structure featuring intermolec-
ular hydrogen bonding interactions between the aniline-NH and
methanol (Fig. 2c¢). While doubly helical structures were also
observed in crystals of substituted anilinotripyrrins 5, 6, 7 and 8
(Fig. S5-4-S5-8; ESIt)," N,N'-dimethyanilinoltripyrrin 11 showed
a monomeric structure without any intermolecular hydrogen
bonding with solvent molecules (Fig. 2d). Therefore, it is obvious
that the two aniline NH segments and the tripyrrin segment are
both crucial to form the double stranded helix. The helical
pitches are calculated to be 5.44-5.88 A.'® The pyrrole planes are
smoothly conjugated with torsion angles along the helical twist
of 3.92-45.29°. It should be noted that tripyrrins 9 and 10 could
not form double helical structures probably due to serious steric
hindrance around the aniline NH segments. Detailed solid-state
structures of 9 and 10 will be discussed later.

NMR analysis

Solvent-dependent structural changes were also evident in the
"H NMR analysis. The "H NMR spectrum of 4 in CDCl; at room

This journal is © The Royal Society of Chemistry 2018
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temperature showed two sets of signals, namely monomer and
dimer, whose ratio was concentration dependent (Fig. 3b). The
"H NMR spectrum of 4 in a hydrogen-bonding-accepting polar
solvent, DMSO-d,, showed clear signals featuring three doublets
at 6.77, 6.53 and 5.97 ppm due to the pyrrolic B-protons and two
singlets at 13.06 and 9.55 ppm due to the tripyrrin-NH and
aniline-NH protons, respectively (Fig. 3c), which can be
assigned as a monomeric species. On the other hand, the "H
NMR spectrum of 4 in a nonpolar and aprotic solvent, cyclo-
hexane-d,,, exhibited sharp peaks but different spectral
features: a quartet at 6.39 ppm and a doublet at 5.94 ppm due to
the B-protons and two singlets at 12.41 and 11.95 ppm due to
the tripyrrin-NH and aniline-NH protons, respectively (Fig. 3a),
which can be assigned as a dimer. Therefore, collectively, the "H
NMR spectra of 4 in CDCl; indicate a slow equilibrium between
the monomeric and dimeric forms of 4. Diffusion ordered
spectroscopy (DOSY) in CDCl; supports this assignment
(Fig. S3-35; ESIt). The association constant Kg;,, for dimeriza-
tion of 4 at 25 °C in CDCl; was determined to be 2.7 x 10> M !
by 'H NMR spectral analysis. In contrast, the 'H NMR spectra of
11 were not significantly changed by solvents. The '"H NMR

N .

(b)

« dimer

9.6 mM M = monomer
| 4.8mM % |
MM
' 1.9mM ul) |
0.96 mM

- ‘/\Mw
A

0.19mM

Fig. 3 'H NMR spectra of 4 (a) in cyclohexane-dy,, (b) in CDCls with
various concentrations and (c) in DMSO-d.

Chem. Sci,, 2018, 9, 6853-6859 | 6855
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spectrum of 11 in CDCIl; showed only a set of signals: a broad
singlet peak at 6.4 ppm, doublet peaks at 6.21 and 6.68 ppm due
to the B-protons and a singlet at 13.22 ppm due to the inner NH
protons, indicating the predominant existence of the monomer
in solution.

The dimerization equilibrium was also affected by temper-
ature (Fig. S3-6; ESIf). At low temperature, the amount of
monomeric 4 decreased and the amount of dimeric 4 increased,
leading to a larger Kgin, value. A van't Hoff plot of Ky, gave
thermodynamic parameters, AH = —53.6 k] mol™" and AS =
—134 J mol ' K%, indicating that the dimerization is mostly
enthalpy-driven.

Similar to 4, the "H NMR spectra of 5, 6, 7 and 8 in CDCl;,
displayed concentration- and temperature-dependent equilib-
riums between monomeric and dimeric species (Fig. S3-10, S3-
11, S3-14, S3-15, S3-19, S3-20, S3-24 and S3-25; ESI}). The Kgim
values of 5, 6, 7 and 8 at 25 °C in CDCI; were estimated to be 52,
58, 1100 and 4000 M™', respectively. The thermodynamic
parameters of 5, 6, 7 and 8 were also determined and are
summarized in Table 1. Among these, meta-substituted dia-
nilinotripyrrins 7 and 8 exhibited larger Kyi,, values and large
negative AG values, while para-substituted dianilinotripyrrins 5
and 6 were less amenable to form the double helices, as
compared with non-substituted 4. Fig. 4 displays the space-
filling models of the solid-state structures of 7 and 8. In both
cases, aromatic stacking interactions are observed in the imine-
like pyrrole moieties with average stacking distances of 3.53—
3.60 A for 7 and 3.48-3.52 A for 8. Additionally, the meta-
substituents on the aniline moiety are in close proximity to the
central pyrrolic plane to gain a certain thermodynamic

Tablel Summary of the thermodynamic parameters for 4—8 in CDCls

Kim” AHKkImol™" ASJmol "K'  AG,gs k] mol™*
4  27x10° —53.6 —134 —13.7
5 52x10 —49.1 —131 —10.0
6 5.8x10 —47.1 —125 —9.85
7 11 x10° —57.3 —133 -17.7
8 4.0x10° —56.1 —119 —20.6
“T=298K.

(b)

e
interactiomn
3.53-3.60 A

interactiory
3.48-3.52 A

Fig. 4 Space-filling and stick representations of the solid-state
structures of (a) 7 and (b) 8. Solvent molecules included in the unit cell
are omitted. Selected intermolecular short-contacts are shown.
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stabilization. In the case of 7, however, the 3,5-di-t-butylphenyl
groups are slightly tilted in order to have an appropriate
arrangement to gain such stabilization, that likely resulted in
some entropic losses.

Different conformations

Similar to 4, the crystal structure of 9 obtained from acetone/
H,0 showed intramolecular and intermolecular hydrogen
bonding interactions as shown in Fig. 5a. The intramolecular
hydrogen bonding interactions are between the pyrrolic NH and
the pyrrolic imine nitrogen atoms, and the intermolecular
hydrogen bonding interactions are between the aniline-NH and
solvent molecules (acetone). Curiously, the crystal structure of 9
obtained from an aprotic solvent such as a mixture of CH,Cl,
and n-hexane did not show a dimeric structure but displayed
a tautomeric structure with different hydrogen-bonding inter-
actions. Judging from the bond lengths and angles, one of the

1.352(2) A—>

Fig. 5 X-ray crystal structures of (a) 9 obtained from acetone/H,O, (b)
9 obtained from CH,Cl,/n-hexane and (c) 10 obtained from CH,Cl,/
n-hexane. Solvent molecules except for acetone and hydrogen atoms
except for NHs are omitted for clarity. The thermal ellipsoids are scaled
to 50% probability.

This journal is © The Royal Society of Chemistry 2018
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arylamino-substituted imine-type pyrroles was assigned as
a different arylimino-substituted amino-type pyrrole tautomer
(Fig. 5b). Thus, the overall structure is asymmetric, and two sets
of intramolecular hydrogen bonding networks are formed. The
same structure was observed in the crystal structure of 10
(Fig. 5c and S5-13-S5-16T). Presumably due to the steric
hindrance of the 1-naphthyl and mesityl groups around the
aniline-NHs, 9 and 10 were not able to form dimeric structures.
In the case of 10, even intermolecular hydrogen bonding with
solvent molecules seemed to be prevented in the solid state
(Fig. S5-15; ESIY).

The "H NMR spectrum of 9 in CDCl; showed broad peaks
probably due to the slower tautomerism with regard to the 'H
NMR timescale. In contrast, the 'H NMR spectrum of 9 in
DMSO-ds showed sharp peaks featuring three doublets at 6.86,
6.82, and 5.98 ppm due to the B-protons and two singlets at
13.31 and 9.27 ppm due to the tripyrrin-NH and amine-NH,
respectively. This signal pattern is similar to that of 4
measured in DMSO-ds although signals assignable to the
naphthyl protons were largely shifted."”

Mixing of the two different strands in solution may give
homo-sorted or hetero-sorted dimers. To test this sorting
behaviour, to a CDCl; solution of 8 was added an equimolar
amount of 7 or 10. In the case of 7 and 8, a new signal that can
be assigned to the hetero-strand [7 + 8], was observed in the 'H
NMR spectrum (Fig. S3-4071). Interestingly, the peak intensity of
[7 + 8] is larger than that of 7 or 8, indicating a larger association
constant of the hetero-strand.*® In contrast, a mixture of 10 and
8 only showed the superposition of the signal sets (Fig. S3-417).

UV/Vis absorption spectra

The UV/Vis absorption spectra of 4-11 were measured in various
solvents. These tripyrrin derivatives exhibit mainly two
absorption bands around 400 nm and 570 nm and the
absorption tails reach a deep visible region (~700 nm) due to
the extended w-conjugation. These absorption features
resemble those of porphyrinoids and natural chlorophyll
analogs,*® thus demonstrating promising applications as func-
tional dyes. Indeed, the solution colour of 4 is vivid blue in
CH,Cl, owing to the large extinction coefficient (ca.
49 000 M~ ' em™ " at 398 nm and 14 000 M~ cm ™' at 576 nm in
CH,Cl,). In addition, the absorption spectra of 4 showed a slight
shift in polar solvents (Fig. 6a and S6-2; ESIT). Tripyrrin deriv-
atives 5-11 also display similar spectral features in some
solvents, while the UV/Vis absorption spectra of 10 are more
dramatically changed by solvent effects. In DMSO, 10 displays
blue-shifted absorption bands at 539 nm. The degree of such
shifts is likely solvent-polarity dependent, thus demonstrating
a vivid colour change from blue to purple as shown in Fig. 6b.

Molecular orbital calculations have revealed that the effects
of substituted aniline moieties are more significant in the
HOMOs rather than the LUMOs (Fig. S7-1-S7-7; ESIt). Strong
CT-like contributions are not evident in these systems. In 9 and
10, the NH tautomers are proved to be the lowest-energy
conformers when solvent molecules are not considered
(Fig. S7-8 and S7-9; ESIT). Variable probabilities of this form in

This journal is © The Royal Society of Chemistry 2018
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Fig. 6 UV/Vis absorption spectra of (a) 4 and (b) 10 in n-hexane
(red), CH,Cl, (black) and DMSO (blue). Concentrations of 4 are set at
10 x 1079 M

solution may result in the observed solvent-dependent spectral
shifts.

Conclusions

In summary, the nucleophilic substitution reactions of a,o'-
dibromotripyrrin 3 with anilines gave dianilinotripyrrins 4-11 in
high yields. Dianilinotripyrrins 4-8 form double helix structures
in the solid states and in nonpolar and aprotic solvents. The
dimerization constants are larger for 7 and 8 bearing 3,5-di-t-
butylanilino- and 3,5-bis(trifluoromethyl)anilino-substituents,
respectively, in which the dimeric structures are stabilized via
the close contacts between the meta-substituents and the central
pyrrolic -plane as well as aromatic stacking interactions. In
nonpolar and aprotic solvents, 9 and 10 carrying bulky substit-
uents at the aniline moiety do not form dimers but form different
tautomeric structures. These compounds retain m-conjugated
networks as evinced by their absorption spectra and 7-orbital
calculations. Collectively, these a,0/-dianilinotripyrrins may offer
a unique platform for novel artificial double helix molecules.
Further structural modifications and elongation of the helical
structure are actively ongoing in our laboratory.
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