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In recent years, convolutional neural networks (CNNs) have achieved great success in image recognition and
shown powerful feature extraction ability. Here we show that CNNs can learn the inner structure and
chemical information in the periodic table. Using the periodic table as representation, and full-Heusler
compounds in the Open Quantum Materials Database (OQMD) as training and test samples, a multi-task
CNN was trained to output the lattice parameter and enthalpy of formation simultaneously. The mean
prediction errors were within DFT precision, and the results were much better than those obtained using
only Mendeleev numbers or a random-element-positioning table, indicating that the two-dimensional
inner structure of the periodic table was learned by the CNN as useful chemical information. Transfer
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Using compounds with formula X,YZ in the Inorganic Crystal Structure Database (ICSD) as a second

DOI 10.1035/c85c02648¢ training set, the stability of full-Heusler compounds was predicted by using the fine-tuned CNN, and

rsc.li/chemical-science

Introduction

Machine learning is concerned with the automatic discovery of
patterns in data through the use of computer algorithms." Then
these patterns can be used to do data classification or value
prediction. With growing experimental and simulated dataset
size for materials science research,> the ability of algorithms to
automatically learn and improve from data becomes increas-
ingly useful. Various types of machine learning algorithms, such
as regression,® support vector machines,” random forest,*® least
absolute shrinkage and selection operator (LASSO),'® kernel
ridge regression,' and neural networks,"”*> have recently been
applied to materials research.

Among these machine learning algorithms, convolutional
neural networks (CNNs)' have been very attractive in recent
years due to their great success in image recognition, such as
ImageNet competition'” and AlphaGo." A CNN consists of
multilayer neural networks, of which at least one layer employs
a mathematical operation called “convolution” to enable the
CNN to extract high-level features from data directly. Compared
to many other algorithms which require artificial features based
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tungsten containing compounds were identified as rarely reported but potentially stable compounds.

on domain knowledge, a CNN needs relatively little pre-
processing as the features can be learned from the data. This
is particularly useful when the features are difficult to be exactly
defined.* Unlike their long-used basic forms such as perceptron
and fully connected neural networks,""* CNNs have been used
for solving solid state problems very recently. The applications
include, for instance, molecular fingerprint learning,* property
prediction of small molecules (ChemNet),** inorganic crystal
structure classification,* and phase transition identification in
condensed-matter.”® They clearly demonstrate the learning
ability of CNNs. Another advantage of neural networks is that
they are easy to utilize in transfer learning,* which means that
a neural network first learns from a large database with inex-
pensive labels (e.g., first principles calculation results), and then
it is fine-tuned on a small dataset where much fewer labeled
samples are available (e.g., experimental data). This technique
can be used to overcome the data scarcity problem in materials
research, and it has been applied to property prediction of small
molecules® and crystalline compounds™ very recently.

In this work, the powerful feature extraction ability of CNNs
was used to directly ‘read’ the periodic table. This was done by
using the periodic table as an input feature, which we referred
to as ‘periodic table representation (PTR)’. Such a representa-
tion is different from others in the literature.*® In other machine
learning models, the artificial sub-angstrom-level descriptors
are usually atomic properties such as the atomic number,
valence electronic states, and atomic mass/radius. These prop-
erties of one element closely relate to its position in the periodic
table. Therefore, the two-dimensional layout of the periodic
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table can represent these individual atomic properties as
a whole, and the mapping from element positions to material
properties can be learned by CNNs. Full-Heusler compounds
were chosen to demonstrate our approach of CNNs and PTR.
Heusler compounds are important materials in sustainable
technologies such as thermoelectric conversion.”® Stability
prediction of Heusler compounds has been done in the litera-

chemical models®®
31,32

ture using machine learning methods,®*

and density functional theory calculations.

Methods

Training datasets

Two training datasets were used. The first one was a density
functional theory (DFT) calculated training dataset, taken from
the Open Quantum Materials Database* (OQMD) v1.1. The
OQMD is a freely downloadable database containing nearly all
the chemical-feasible L2, structure (Cu,MnAl-type, shown in
Fig. 1a) full-Heusler compounds. Compositions with lantha-
nides were excluded from our training set because the highly
localized 4f electrons are difficult to treat with established DFT
methods. Rare earth elements were also deliberately excluded in
previous studies responding to the global need to reduced rare
earth content.** The training dataset had 65 710 entries, and
each entry had a X,YZ type chemical formula, a lattice param-
eter and enthalpy of formation. There were in total 52 elements
in this dataset.

Two data preprocessing methods, whitening and bound,
were used to normalize the target values, ie. the lattice
parameter and enthalpy of formation. The distributions of the
target values were generally consistent with Gaussian distribu-
tion, as shown in Fig. s1.1 Therefore, whitening could be used to
normalize the targets to a standard Gaussian distribution with
amean of 0 and a variance of 1. Whitening was performed using
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y* = (y — m)/a, where m and ¢ were the mean and standard
deviation of the training data, respectively, calculated from the
Gaussian distributions shown in Fig. s1.f As a comparison to
whitening, the target values were also linearly normalized into
a bound of [—1, 1] by mapping the maximum to 1 and the
minimum to —1.

The second training dataset was extracted from the Inor-
ganic Crystal Structure Database (ICSD). All compounds with
a formula of X,YZ, where X, Y or Z is one element in the 52
elements, were extracted. In this training set the target value
was the type of crystal structure, i.e. compounds with the L2,
full-Heusler structure were labeled “1”, and compounds with
other competitive structures were labeled “0”. From ICSD, 555
compounds were extracted, of which 216 had target values of
“1” and 339 had target values of “0”.

Periodic table representation (PTR)

Fig. 1b shows the PTR with 5 rows and 16 columns, and the
representation of Cu,AlMn is shown in the leftmost part of
Fig. 1c as an example. For simplification, only rows or columns
containing the 52 elements were included. This representation
was denoted by a matrix A and was initialized by —1, and the
blank squares were set to 0 (Fig. 1b). Two tricks were used to
make the CNN work smoothly: (1) the value of the corre-
sponding X element position in matrix A was set to 28 and the
values for Y and Z were set to 14. This made the mean of A equal
to zero. (2) Matrix A was multiplied by 20 to mimic a digital
image to ease the training process of the CNN.

Other representations were also used as comparisons. PTR
contained chemical information in the two-dimensional
arrangement of elements. So the representations without
a two-dimensional layout or elemental order (Mendeleev
numbers) or both were considered, as shown in Fig. s2.7 (1) The
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(a) Crystal structure of an L2, full-Heusler compound, created by using VESTA.?” (b) Illustration of the periodic table representation. Colors

were only guide for the eye, not used by the CNN. (c) Structure of the CNN.
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element positions were totally randomized in a two-
dimensional table (Figs. s2a and b?), so the elemental order
was lost. (2) The elements were aligned in one line in
a descending order according to Mendeleev numbers (Fig.-
s2ct), so the two-dimensional layout was lost. (3) The elements
were totally randomized in one line (Figs. s2d and ef), so both
were lost. For each randomized representation, two tables were
given to make the comparison more reliable.

Convolutional neural networks (CNNs)

Fig. 1c gives the neural network structure. The CNN model had
two parts, one was the feature extractor including the first three
pairs of convolutional layers and ReLU (Rectified Linear Unit)
layers® which have a nonlinear activation function f{x) = max(0,
x). The other part was the data predictor with two full connec-
tion layers. Pooling layers were not included in this model. As
the PTR mimicked a digital image, the hyperparameters used
for the CNN were chosen empirically following those used for
typical image recognition CNNs in the machine learning liter-
ature.™ To be more specific, the size of convolutional filters was
3 x 3,5 x 5 and 3 x 3 for the three convolutional layers,
respectively, and the stride was set at 1. The number of con-
volutional maps in each convolutional layer was set to 96, and
correspondingly there were 192 neurons in each full connection
layer. Padding was used for the input of the first two convolu-
tional layers by adding zeros around the border, ie. a zero
padding of one, to preserve as much information as possible in
the early layers. Therefore, the input volumes were 18 x 7, 18 x
7 and 14 x 3 for the three convolutional layers, respectively, and
the size of generated convolution maps after convolution was 16
x 5,14 x 3 and 12 x 1, respectively. The most common type of
convolution with a linear filter was used, and the value of each
filter was learned during the training process. In the training
phase, the output of the CNN fitted the ground truth, and the
smooth L; loss was used to evaluate the fitness
. 0.5d4* if |d| <1
fld) = { |d] —0.5 o‘th|erwise

where d is the difference between the ground truth and the
prediction of the CNN. Then the learned neural network was
applied to predict material properties in the test phase. The
networks in all experiments were trained for 100 000 iterations
using Nesterov's accelerated gradient* with a starting learning
of 0.01, step rate decay with a step size of 10 000, a weight decay
of 0.005 and a momentum of 0.85. The OQMD training samples
were randomly divided into eight groups, which were training
sets with 1000 (1k), 5000 (5k), 10 000 (10k), 20 000 (20k), 30 000
(30k), 40 000 (40Kk), 50 000 (50k) and 60 000 (60k) samples,
respectively, and the remaining samples were used as test sets
to evaluate the finally trained network. Parameters including m
and ¢ in the whitening procedure were estimated for each
training set, respectively, and they were applied to the corre-
sponding test set during the test phase.

When training on datasets from the OQMD, multi-task CNNs
were trained to output the lattice parameter and enthalpy of
formation simultaneously. CNNs with only one output neuron
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in the output layer were also trained separately on the lattice
parameter or enthalpy of formation as comparisons. These
three CNNs were independently carried out with stochastic
weights as the initialization of the CNNs.

Transfer learning

Transfer learning was used to predict the stability of all the full-
Heusler compounds in the OQMD. The CNN trained on the
OQMD cannot be directly used to predict stability. From
the point of view of the energy landscape, the free energy of all
the competitive phases must be considered, while the CNN only
had energy information about full-Heusler compounds. On the
other hand, the ICSD dataset contains experimentally stable
compounds, from which the CNN can learn stability informa-
tion.* Therefore, a second CNN was trained on the ICSD dataset
for stability prediction, and its weights were initialized from
those obtained for the previous CNN trained on the OQMD.
This transfer learning technique can prevent overfitting, as
the ICSD dataset was too small (555 entries) compared to the
number of weights in the CNN. This CNN gave values in the
range [0, 1], where “1” meant a stable full-Heusler phase.

Results and discussion
Prediction accuracy

Fig. 2a gives the total performance of different CNNs as a func-
tion of training set size. All the CNNs were well trained as their
training loss and test loss both converged with increasing iter-
ations (Fig. s3t). For the two data pre-processing methods, the
whitening normalization (orange circles) obviously out-
performed the bound method (green square), and there was
a considerable margin. The reason is that the whitening
method statistically eliminated the bias of training data, by
normalizing the data into a standard Gaussian distribution,
while the bound method could not eliminate the bias. The
multi-task CNN predicting both properties together had similar
accuracy to the single output CNN. The prediction errors
converged to a small value with increasing the number of
training samples. The mean absolute error (MAE) reached
7 meV per atom for the enthalpy of formation in Fig. 2a, and the
mean absolute percentage error (MAPE) reached 0.40% for the
lattice parameter in Fig. 2c, which was comparable to the DFT
error bar in a recent study.*® Such precision of the CNN
demonstrated its good learning ability. It is worth noting that
even for a much smaller training set of 5k samples, the
prediction errors were 14 meV per atom (Fig. 2a) and 0.63%
(Fig. 2c), respectively, only slightly lower than the best values.
The probability distribution of prediction errors with 1k, 10k,
30k and 50k training samples is shown in the inset figures
where the x and y axes are the ground truth and the predicted
value, respectively. For display clarity 4000 test samples were
randomly picked and plotted. They again indicated a systematic
improvement of the predictive accuracy with increasing training
set size. To make a comparison of accuracy vs. required training
set size, a kernel ridge regression model was trained on the
same dataset, using a vector representation like Fig. s2c.t The

This journal is © The Royal Society of Chemistry 2018
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enthalpy of formation prediction using the multi-task CNN, while “single prediction” has only one output. Inset figures give prediction errors at
different training sample sizes. (b) Comparison of prediction accuracy using six different representations for the enthalpy of formation prediction.

(c) and (d) are for lattice parameter prediction.

results show that at the same training dataset size, the accuracy
of the CNN was twice that of kernel ridge regression (Fig. s47).

Fig. 2b and d compare prediction errors using six different
representations. The PTR outperformed all the other represen-
tations in the whole range; in other words, PTR was the best
feature for the enthalpy of formation and lattice parameter
predictions. Compared to the other five representations, the
information carried by PTR was the two-dimensional layout and
the Mendeleev numbers. The fact that PTR performed better not
only means that the information was useful in the predictions,
but also means that such information could be learned by
CNNs. These statements are supported by physical chemistry
and other machine learning investigations using atomic
quantum numbers" or Mendeleev numbers.” Here we also
show that the two-dimensional layout and Mendeleev numbers
were both important, as shown in Fig. 2b and d.

For the line representations, the sequential line representation
gave lower test errors than the randomized ones, which means
that the CNN extracted some chemical information from the
sequential line pattern. However, the difference between the test
errors was quite small, especially for larger training sets. One
reason can be that the CNN has been the most successful on
a two-dimensional image topology,* and it is less effective on line
representations. In addition, the extraction of some important

This journal is © The Royal Society of Chemistry 2018

chemical information, e.g the number of valence electrons,
became more difficult on line representations compared with
PTR.

Compared to previously reported handcrafted features,*
which should be optimized for specific machine learning
problems, PTR directly learned features from the data and
hence was more robust. PTR also had the potential to be
incorporated with other features that cannot be captured at the
element level, such as structural factors. It has recently been
reported that CNNs can directly learn material properties from
the connection of atoms in various types of crystal structures,*®
and highly accurate prediction can be achieved. By integrating
the CNNs* using PTR and crystal structure based representa-
tion, structural features can also be included, which need
further investigation.

Stability prediction

Transfer learning was utilized to predict the stability of all the
full-Heusler compounds in the OQMD dataset, starting from
the weights of the CNN trained on the 60k OQMD training set.
Compounds with probability > 0.99 were considered as stable.
Such a strict criterion was used to eliminate the 'false positive’
results as much as possible. 5088 compounds were predicted to
be stable and are listed in the ESI.T Fig. 3a shows the frequency

Chem. Sci,, 2018, 9, 8426-8432 | 8429


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8sc02648c

Open Access Article. Published on 12 September 2018. Downloaded on 2/1/2026 11:22:56 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

View Article Online

Chemical Science Edge Article
600 o
=®- CNN 100 [ 40
=->& RF 80
400 A =5 ICSD k30
= F60 w N
5 ® 1200
200 40
\ L20 [10
A L
0 “.’;% D =t 0 0
(a) Li Be B NaMgAl Si K CaSc Ti V CrMnFeCo NiCuZnGaGeAsRbSr Y ZrNbMoTcRuRhPdAgCd In SnSbTeCsBaHf Ta W ReOs Ir Pt AuHg Tl Pb Bi

(b)

cRwBE2uADR=<Q5 702000 RBY (NESHEBERD 5845 PP I sA Q=323 13w

YR IRONGH O SEOEGRBBLRN NS SRR SGANYFENS LI ETRD

(c)

Fig. 3 Number of stable X,YZ full-Heusler compounds which have corresponding elements on the X site, shown in (a) a line chart and (b) the
periodic table. The experiential data from ICSD and random forest (RF) results from ref. 8 are also shown. (c) Heatmap of stable W,YZ compounds
predicted by CNN transfer learning, and red means the compound is stable in the L2, full-Heusler form.

of occurrence for each element on the X site in these X,YZ
compounds. Analysis of YZ sites is given in Fig. s5.f Two
datasets were also considered as comparisons: 216 stable full-
Heusler compounds from the ICSD and 667 compounds pre-
dicted by Oliynyk et al. using random forest (RF),® for which the
original dataset was modified to exclude rare earth metal con-
taining compounds. In Fig. 3a, the ICSD and RF show very
similar patterns, for example, a high frequency for Co/Ni/Cu
and a low frequency for Na/K/Rb. This is not surprising as RF
was trained on experimental datasets. For the CNN, while the
general pattern was similar, there were some differences,
especially the peak at tungsten. Contrast color can also be found
for tungsten in Fig. 3b. The predicted stable full-Heusler W,YZ
compounds are shown in red colour in Fig. 3¢, while blue colour
means the formation of competitive phases. As Y and Z are
equivalent in the full-Heusler structure, the heatmap is
symmetrical.

A comparison of stability prediction results using different
OQMD training set sizes is shown in Fig. s6.7 Generally, the
stability prediction results were insensitive to the training set
size. All the patterns are similar with some small deviations,
and the patterns for 50k and 60k were nearly the same. To
further demonstrate the similarity of the results for 50k and 60k
training samples, and the heatmaps for the predicted stable
full-Heusler W,YZ are compared in Fig. s7.1 The two heatmaps
showed nearly the same pattern, indicating that the CNN had
learned chemical information from the PTR, and transfer
learning was effective to prevent overfitting.

8430 | Chem. Sci., 2018, 9, 8426-8432

The scarcity of tungsten containing full-Heusler compounds
in the ICSD is probably due to synthesizability resulting from
the good stability of tungsten. This is supported by the relatively
higher enthalpy of formation for tungsten containing full-
Heusler compounds shown in Fig. s8.7 It is worth noting that
high enthalpy of formation does not necessarily mean
unstable,*” and probably high temperature and high pressure
synthesis can help to synthesise these compounds. The CNN
can find different patterns from the ICSD training set because
that its weights were initialized on the OQMD training set, by
utilizing transfer learning. And the PTR may enable the CNN to
find latent features beyond atomic properties using the power-
ful feature extraction ability of the CNN. In other words, the
combined information from the ICSD, OQMD and periodic
table enabled the CNN to make such a stability prediction.

Conclusions

Periodic table representation (PTR) was used to train convolu-
tional neural networks (CNNs), which can predict lattice
parameters, enthalpy of formation and compound stability. By
utilizing the powerful feature extraction ability of the CNN,
information was directly learned from the periodic table, which
was supported by comparison with the representation of
randomized element positions. The CNN had the following
characteristics. (1) Precise. The average prediction errors were
comparable to DFT calculation error bars. (2) Multi-tasking.
Two responses, ie. lattice parameter and enthalpy of

This journal is © The Royal Society of Chemistry 2018
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formation, can be simultaneously outputted by one CNN. (3)
Transferable. When the training dataset is small, the CNN can
be trained to start from the weight previously initialized on
a much large training set, and hence information from both
datasets can be used and the predictive accuracy can be
improved. Our results suggest that the combination of PTR and
CNNs has great potential for material property predictions.
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