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an imaging reveals the new anti-
cancer potential of lipid targeting drugs†

Lauren E. Jamieson, Corinna Wetherill, Karen Faulds and Duncan Graham *

De novo lipid synthesis is upregulated in cancer cells and inhibiting these pathways has displayed anti-

tumour activity. Here we use Raman spectroscopy, focusing solely on high wavenumber spectra, to

detect changes in lipid composition in single cells in response to drugs targeting de novo lipid synthesis.

Unexpectedly, the beta-blocker propranolol showed selectively towards cancerous PC3 compared to

non-cancerous PNT2 prostate cells, demonstrating the potential of this approach to identify new anti-

cancer drug leads. A unique and simple ratiometric approach for intracellular lipid investigation is

reported using statistical analysis to create phenotypic ‘barcodes’, a globally applicable strategy for

Raman drug-cell studies. High wavenumber spectral analysis is compatible with low cost glass

substrates, easily translatable into the cytological work stream. The analytical strength of this technique

could have a significant impact on cancer treatment through vastly improved understanding of cancer

cell metabolism, and thus guide drug design and enhance personalised medicine strategies.
Cancer is one of the most prevalent and researched diseases in
the world today.1 In the ght against cancer, scientists are
turning to a variety of diverse resources to identify new targets
for therapy that could provide vital information in combating
the disease. In recent years attention has turned to metabolic
transformation in cancerous cells and the potential to base new
therapeutic approaches on these metabolic changes.2 It is
widely accepted that there are characteristic changes in cellular
metabolism in cancerous compared to non-cancerous cells. In
addition to providing a new therapeutic target, this could hold
the key to selectivity in cancer therapy. One of the major chal-
lenges for current therapeutic approaches is lack of selectivity
towards cancerous over non-cancerous cells, causing major
negative side effects since drugs designed to destroy cancerous
cells will also destroy healthy cells.3

Otto Warburg pioneered cancer metabolomics by observing
that cancer cells exhibited a shi in energy production, with
vastly increased aerobic glycolysis and production of lactate, as
opposed to mitochondrial respiration.4,5 This metabolic shi,
commonly associated with anaerobic conditions, was observed
in cancer cells, even in the presence of normal oxygen levels,
and was coined the Warburg effect. More recently, Warburg's
initial observations have been challenged with the proposal of
a reverse Warburg effect, where cancer cells and cancer asso-
ciated broblasts become metabolically coupled.4,6,7 In
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addition, the characteristic ‘Hallmarks of Cancer’ as dened by
Hanahan and Weinberg,8 give way to various metabolic char-
acteristics of cancer cells, for example, increased nucleic acid
synthesis, amino acid production, and lipid biosynthesis, in
order to fulll the cancer cells ability to proliferate rapidly. By
understanding these metabolic transformations at the
biochemical level, drugs could be targeted specically to exploit
these characteristics and selectively destroy cancerous cells.

One key metabolic characteristic of cancer cells is the upre-
gulation of de novo lipid synthesis.9–11 In healthy cells, lipids are
generally acquired exogenously and de novo synthesis is regu-
lated and kept minimal.9 It has been observed that cancerous
cells display a marked upregulation in de novo lipid synthesis,
and, therefore, by targeting enzymes in this pathway, cancer
cells could be selectively targeted.2,12 It has already been re-
ported that various drugs, in particular targeting fatty acid
synthase (FASN), have displayed anti-tumour properties.13

In order to exploit metabolic transformation in cancer cells
as a drug target, the biochemical basis of the metabolic shis
must be understood. This requires analytical techniques to
elucidate the underlying biochemistry. Traditionally molecular
biology approaches analyse lysed and isolated cell components
using, for example, the polymerase chain reaction, electropho-
resis and western blotting to distinguish DNA, RNA and protein
composition.14 High resolution molecular level imaging tech-
niques that allow analysis of biological systems in their native
environment and which are minimally invasive are highly
desirable. In vitro cell imaging has evolved largely around the
use of uorescent dye molecules to specically target biomole-
cules including DNA, proteins and lipids.15 However, cellular
lipid analysis and imaging is limited, largely as a result of the
Chem. Sci., 2018, 9, 6935–6943 | 6935
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lack of innate uorescence from cellular lipids, and uorescent
dyes for lipid staining are large molecules which can seriously
alter innate distribution and dynamics.16 Additionally, many
lipid dyes require chemical xation prior to staining resulting in
lengthy and complex sample preparation.17

In order to allow drugs to be optimally designed to target de
novo lipid synthesis, an analytical technique providing
a detailed understanding of the biochemistry and the effect
particular drugs have on the underlying upregulated lipid
synthesis is required. This requires a detection strategy that
enables an accurate, easily interpretable and meaningful
phenotypic readout for drug action and efficacy that offers
potential as a platform for translation to high throughput drug
screening. Advanced lipid imaging techniques have focused
largely on the use of mass spectrometry, however, the major
downfall of this technique is its destructive nature.18 Coherent
anti-Stokes Raman spectroscopy (CARS) has been reported for
cellular lipid imaging, showing promising results, however the
information gained is limited by tuning into specic bond
vibrations, as opposed to acquiring a full spectrum.17,19 Here we
propose that intracellular imaging using high wavenumber
Raman spectroscopy can give a detailed, high resolution insight
into lipid distribution and metabolism in cancer cells at
subcellular resolution in addition to a phenotypic drug
response. High wavenumber Raman spectroscopy has been
studied previously with application to biological samples,
however there are currently very few studies using this approach
and none with specic application to lipids in cells.20 The
information gained in this study gives a detailed insight into
lipid distribution and dynamics in in vitro cell models and leads
the way to new capability to enhance the matching of drug to
cancer treatment. More globally, this study develops a statisti-
cally meaningful strategy for analysis of biological Raman data
that could be adopted throughout the eld of vibrational
spectroscopy, in particular for characterising phenotypic cell
response to potential drug candidates for drug screening as this
preliminary study demonstrates. Combined with the use of
cheap glass substrates and the non-destructive and label free
nature of the technique with potential for easy translation to
analysis of live cells, the developed strategy could be a vital step
forward for translation of Raman spectroscopy into cytological
work streams.

Experimental methods
Cell culture

PC3 human prostate cancer cells were cultured in Dulbecco's
Modied Eagle's Medium (DMEM) and PNT2 human normal
immortalized prostate epithelium cells were cultured in Rose-
well Park Memorial Institute Medium (RPMI) in both cases
supplemented with 1% penicillin/streptomycin (10 000 units
per ml), 1% fungizone, and 10% heat-inactivated foetal bovine
serum (FBS). Cells were incubated at 37 �C and 5% CO2 in
a humidied incubator.

Cells were seeded (ca. 5� 105 cells) in 35 mm glass bottomed
imaging dishes (Ibidi) (or ca. 1.1 � 105 cells onto a 13 mm
coverslip in a 24 well plate for replicate measurements as
6936 | Chem. Sci., 2018, 9, 6935–6943
reported in ESI†). Aer overnight incubation at 37 �C and 5%
CO2 in a humidied incubator, media was removed and
replaced with a sufficient volume of stock solutions of 10 mM
propranolol in DMSO, 10 mM cyclosporin in DMSO, 40 mM
orlistat in DMSO, 200 mM CAY10566 in DMSO, 2 mM TOFA in
DMSO or an equal volume of DMSO in medium, resulting in
nal concentrations of 30 mM propranolol, 30 mM cyclosporin,
100 mM orlistat, 500 nM CAY10566 and 5 mM TOFA. Final
concentration of DMSO was 0.3% v/v for cyclosporin and
propranolol and 0.25% v/v for control, orlistat, CAY10566 and
TOFA. The drug concentrations were selected based on
consideration of those used in previously reported studies and
IC50 values for each drug, and in the case of propranolol and
cyclosporin based on the concentration suggested in the HCS
LipidTOX™ Phospholipidosis and Steatosis Detection Kit
(Thermo Fisher). Aer 48 h incubation at 37 �C and 5% CO2 in
a humidied incubator, cells were washed (�4) with phosphate
buffered saline (PBS) before adding 4% paraformaldehyde for
ca. 30 min. 4% Paraformaldehyde was removed and cells were
washed with PBS followed by distilled water and le to air dry.

Raman measurements

Raman spectra were acquired on a Renishaw inVia Raman
microscope equipped with a 532 nm Nd:YAG laser giving
a maximum power of 500 mW, 1800 l mm�1 grating, and a Leica
50�/NA 0.75 N PLAN EPI objective. Fixed cells were mapped
using a step size of 1 mm in x and y, with 0.5 s acquisition time,
15 mW laser power and a spectral center of 3000 cm�1. Three
maps were acquired per condition.

Data processing, analysis and statistics

Renishaw Wire 4.1 was used to perform basic pre-processing
steps using the inbuilt functions in the soware. Cosmic rays
were removed followed by noise ltering and baseline
subtraction.

CustomMATLAB® scripts were then used to perform further
analysis. Cell regions were selected based on the total spectral
intensity for the map and all associated spectra were extracted
for comparison between conditions. False colour images for the
cell regions were created based on the following peak intensity
ratios:

� 2851 cm�1/(2851 cm�1 + 2933 cm�1) ¼ ratio 1
� 2881 cm�1/(2881 cm�1 + 2933 cm�1) ¼ ratio 2
� 2974 cm�1/(2974 cm�1 + 2933 cm�1) ¼ ratio 3
� 2851 cm�1/(2851 cm�1 + 2974 cm�1) ¼ ratio 4
� 3013 cm�1/(3013 cm�1 + 2851 cm�1) ¼ ratio 5
� 3064 cm�1/(3064 cm�1 + 2933 cm�1) ¼ ratio 6.
All spectra extracted from the cells were cut to 2800 cm�1 to

3100 cm�1. A quality control step was performed removing all
spectra outside one standard deviation of the mean for each cell
map. Average spectra generated from all three maps per
condition were compared aer scaling spectra to the peak at
2933 cm�1. Intensity ratios 1–6 were then calculated for all the
remaining spectra for each condition and used to create bar
charts depicting the mean and standard deviation values in
GraphPad Prism 7. GraphPad Prism 7 was used to perform one-
This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8sc02312c


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
Ju

ly
 2

01
8.

 D
ow

nl
oa

de
d 

on
 7

/1
4/

20
25

 4
:3

6:
43

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
way ANOVA tests comparing each of the drug treated conditions
to the vector control (DMSO) for the respective cell line. Effect
size for each drug treated condition in comparison to the DMSO
control for the respective cell line was calculated using eqn (1)
and (2), where NE ¼ number of data points in the experimental
(drug) group,NC¼ number of data points in the control (DMSO)
group, SDE ¼ standard deviation of the experimental (drug)
group, and SDC ¼ standard deviation of the control (DMSO)
group.

Effect size ¼ mean experimental group�mean control group

pooled standard deviation

(1)

Pooled standard deviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNE � 1ÞSDE

2 þ ðNC � 1ÞSDC
2

NE þNC � 2

s

(2)

‘Barcodes’ for each drug treatment on each cell line were
created by assigning a whole number value between �3 and 3
for each ratio in each case such that effect size:

� #�1 ¼ �3
� >�1 and #�0.5 ¼ �2
� >�0.5 and #�0.1 ¼ �1
� >�0.1 and <0.1 ¼ 0
� $0.1 and <0.5 ¼ 1
� $0.5 and <1 ¼ 2
� $1 ¼ 3.
This formed a barcode which was represented pictorially

using a bar chart format where the size and colour of the bars
reected the numerical value assigned, and also using
a numerical tag where the values corresponded to the following:

ratio 1, ratio 2, ratio 3, ratio 4, ratio 5, ratio 6, sum of
magnitude of all values.

Data availability

Data from this work is available at DOI: 10.15129/eca751cb-
8c6d-46b7-a8b0-13133e8e2526.

Results

Raman spectroscopy was used to analyse cancerous and non-
cancerous cells in a label-free, non-destructive, chemically
specic and highly spatially resolved manner. The primary aim
was to demonstrate the capability of Raman spectroscopy to
revolutionise understanding of drug induced changes to
cellular lipid metabolism and therefore the focus was on
mapping the high wavenumber (HWN) spectral region between
ca. 2800 cm�1 and 3100 cm�1. In addition to the large volume of
lipid specic information contained in the HWN spectrum, the
signal intensity in this region is higher than in the low wave-
number (LWN) ngerprint region for biomolecules. In contrast
to the LWN spectra, there is also minimal interference from
glass background signal. Raman spectroscopic analysis of cell
samples is therefore made cost-effective and amenable to
This journal is © The Royal Society of Chemistry 2018
integration into cytological work streams.21 Raman mapping of
xed cells was carried out using a 1 mm step size in the x and y
directions, resulting in a highly spatially resolved map of
chemically specic signals relating to biochemical bond vibra-
tions. This HWN Raman measurement process was used for
assessment of subcellular lipid distribution, and localised and
global response to treatment with drugs that are known to
inhibit key enzymes in de novo lipid synthesis. Raman mapping
was carried out using a laser power of 15 mW at the sample,
which showed no evidence of burning at the sample, and was
therefore non-destructive to the sample. As the cells were xed
prior to analysis, the interaction of the laser with the sample
was unlikely to cause any disruption to the preserved cell
samples. To further evidence the non-destructiveness of this
method, an independent experiment on live cells showed no
change to cell viability in PC3 and PNT2 cells when viability was
measured using uorescence spectroscopy in samples not
subject to Raman analysis, and in samples stained aer Raman
analysis (ESI Fig. S1†).

Fig. 1 shows the average spectra obtained from PC3 and
PNT2 cells treated with different drugs. The broad peak present
in the HWN cellular spectra originates from the multitude of
overlapping C–H bond vibrations from a number of cellular
biomolecules. Due to the chemical nature of lipid molecules
which contain a number of C–H bond vibrations from their
hydrocarbon backbone, this region contains extensive infor-
mation on the cellular lipid composition. One of the key band
assignments is the relative intensity of the signal at ca.
2850 cm�1, as this is thought to reect the overall lipid abun-
dance.22,23 Prostate cell lines, PC3 (cancerous) and PNT2 (non-
cancerous), were used in this particular study due to the well-
researched role of lipids in prostate cancer and correlation
between lipids and a malignant phenotype.24–26 Research has
shown that FASN overexpression is a common and early char-
acteristic in prostate cancer27 and cholesterol levels have also
been correlated with prostate cancer incidence.28

Cellular response to treatment with three drugs known to
interfere with different stages of de novo lipid biosynthesis was
monitored. Orlistat (Xenival®) was selected as an inhibitor of
fatty acid synthase (FASN), one of the key enzymes in lipid
biosynthesis, which forms palmitic acid from acetyl-CoA and
malonyl-CoA.29,30 Orlistat is a commercially available ‘fat-
busting’ drug, marketed as a weight loss drug. However, recent
studies have revealed it to have anti-tumour activity, making it
a strong candidate for repurposing for cancer therapy.29,30

CAY10566 is an inhibitor of stearoyl-CoA desaturase (SCD), an
enzyme that creates mono-unsaturated fatty acids from satu-
rated fatty acids.31 5-(Tetradecyloxy)-2-furoic acid (TOFA)
inhibits acetyl CoA-carboxylase, which is responsible for the
conversion of acetyl CoA tomalonyl CoA, one of the rst steps in
de novo lipid synthesis.32,33 These compounds could therefore
prove to be effective anti-cancer agents through their targeting
action to a characteristic metabolic transformation in cancer
cells. Fig. 2 summarises the action of the selected drugs on de
novo lipid synthesis.

In addition to these three drugs, two control drugs, cyclo-
sporin and propranolol, known to induce the formation of
Chem. Sci., 2018, 9, 6935–6943 | 6937
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Fig. 1 High wavenumber spectral response to lipid altering drugs. Average Raman spectra from the high wavenumber spectral region from all
spectra extracted from cell regions of three different Raman maps were compared between PC3 and PNT2 control (DMSO) cells (a); PC3 cells
treatedwith DMSO (control), or a lipid altering drug (b); and PNT2 cells treatedwith DMSO (control), or a lipid altering drug (c). Cells weremapped
using 532 nm, 0.5 s acquisition, 15 mW laser power, 1 mm step size in x and y and a spectral center of 3000 cm�1.
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neutral lipid droplets and accumulation of phospholipid
respectively, were included to allow the Raman spectral
response characteristic of the cellular phenotypes associated
with these drugs to be characterised.34,35 Fig. 1 compares the
average spectra extracted from cancerous PC3, and non-
cancerous PNT2, prostate epithelial cells with each cell line
treated with each of the drug compounds. Some key differences
were observed upon visual inspection of the spectra, particu-
larly in the region from ca. 2850 cm�1 to 2900 cm�1, where
many of the drug treatments resulted in a relative increase of
intensity in this region.

Due to the broad nature of the spectra in the HWN region,
extracting species specic information is incredibly difficult.
Multivariate techniques such as principal component analysis
(PCA) can be used to assess whether there exists separation
between groups of spectra and the major spectral contributors
causing such separations, however for such broad overlapping
spectra many of the data points can confound such analysis and
mask key spectral changes. These techniques are also more
complicated and oen no consideration is given to careful
analysis of the spectra themselves. Here, analysis was therefore
simplied to comparison of the intensity ratio between signals
at key wavenumbers in the Raman spectra, identied by visual
and informed inspection of the data, thus creating a bivariate
descriptor, which reported on global rather than species
Fig. 2 Key steps in de novo lipid synthesis. Simplified steps in de novo lip

6938 | Chem. Sci., 2018, 9, 6935–6943
specic lipid changes in a simple manner. The intensity ratio
between the peaks at 2851 cm�1 and 2933 cm�1 was selected as
this ratio has been reported to correlate with lipid abundance,
a higher ratio being reective of a higher lipid content.22,23 The
signal at 2851 cm�1 is primarily attributed to C–H stretches in
CH2 groups, which are particularly abundant in the long
hydrocarbon chains of lipids, and the peak at 2933 cm�1 is
assigned to C–H stretches in CH3 groups, which are particularly
abundant in protein polypeptide chains.36,37 While neither of
these signals can be exclusively assigned to these species, the
fact that they have large contributions from lipids and proteins
respectively meant that this ratio semi-quantitatively reects
the lipid/protein ratio of the intracellular environment. In
addition, it is clear from Fig. 1 that there are spectral variations
in this ratio between control and drug treated samples, there-
fore even without a biological assignment this bivariate
measurement could provide an important analytical descriptor
for assessing cellular drug response. Fig. 3 displays false color
images of one representative example of a cell under each
condition created using this ratio (a total of three cells were
analysed per condition and additional images can be found in
ESI Fig. S2†). The particular ratio used was that of 2851 cm�1

divided by the sum of intensities at 2933 cm�1 and 2851 cm�1

(lipid/(protein + lipid)), in order to normalise the
measurements.
id synthesis with enzyme targets for drugs used in this study indicated.

This journal is © The Royal Society of Chemistry 2018
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Fig. 3 Ratiometric Raman imaging of intracellular lipid distribution. Representative examples of fixed cell regions mapped using a Raman
microscope for two prostate cancer cell lines, PC3 and PNT2, treated with DMSO (control), or a lipid altering drug. After processing in Wire 4.1
and MATLAB®, false color images of the ratio of peak intensity at 2851 cm�1 and the sum of the peak intensities at 2933 cm�1 and 2851 cm�1

were created as a reflection of lipid/(protein + lipid) ratio. White areas represent background regions of the map that were omitted after selecting
cellular regions. Cells were mapped using 532 nm, 0.5 s acquisition, 15 mW laser power, 1 mm step size in x and y and a spectral center of
3000 cm�1. Example regions of high intensity, potentially corresponding to lipid droplets, are indicted using arrows. Spatial coordinates on
images are in mm.
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In addition to considering the global spectral response to
drug application, it was signicant to consider the detail gained
in a single map in relation to subcellular lipid distribution.
Considering the lipid/(protein + lipid) ratio, the variation within
a single cell was vast and reected the function of various
subcellular organelles. Most signicantly, the nuclear region
was distinguished easily as a consequence of a markedly lower
lipid/protein abundance, reective of the known characteristics
of nuclei for storage of genetic material.38 Additionally, in some
cases, high intensity spots were observed. These could be
attributed to lipid droplets and are reective of storage of lipids
in these regions,39,40 or regions of mitochondria, where lipids
are metabolised.41 Thus, an ability to obtain high resolution
information on intracellular lipid distribution was demon-
strated. It is speculated that in the future higher resolution
maps could be generated with even higher subcellular
resolution.

Qualitative visual examination of Fig. 3 allows further trends
associated with drug treatment and comparison between
cancerous and non-cancerous cells to be made. Comparing
vector control PC3 and PNT2 cells revealed a difference in
intracellular lipid distribution, with a uniform distribution of
lipid throughout the cytoplasm in PC3 cells compared to a lower
level of lipids throughout the cytoplasm for PNT2 cells with
some distinct regions of higher intensity, particularly in the
perinuclear region. These higher intensity regions could be
indicative of the Golgi body, endoplasmic reticulum and/or
areas of endosomes and lysosomes. This agrees with reports
that endosomal biogenesis is altered in cancerous prostate cells
resulting in a more uniform cytoplasmic distribution of endo-
somes, which has previously been observed in prostate cancer
cells.42 This could reect an increased uptake of nutrients in
cancerous cells to support their growth.

Notably, upon treatment with propranolol, cyclosporin and
orlistat, the lipid abundance increased in PC3 cells, particularly
This journal is © The Royal Society of Chemistry 2018
in the cytoplasmic region. Spots of higher intensity could
represent lipids accumulating in lipid droplets. In comparison,
PNT2 cells showed a similar response aer cyclosporin and
orlistat treatment but no notable change in response to
propranolol. Propranolol and cyclosporin were included in this
study as positive controls for the phenotypes associated with
neutral lipid and phospholipid accumulation. Therefore, this
acts as an indicator that the response is associated with neutral
lipid and/or phospholipid accumulation in PC3 cells since both
compounds resulted in a marked increase in the lipid intensity
in the cytoplasm. It is also signicant that propranolol showed
no such effect in PNT2 cells, contrary to the expected increase in
phospholipids, indicating a selectivity for cancerous over non-
cancerous cells. These observations were consistent over all
three cells analysed per condition. It is worth noting that in
addition to the changes in lipids observed with subcellular
resolution, the cell images in Fig. 3 and ESI Fig. S2† allow
changes in cell morphology with drug treatment to be moni-
tored. It is expected that cell morphology would change in
response to treatment with lipid altering drugs as lipids are the
primary constituents of cell membranes, an important struc-
tural feature of cells. Therefore, changes in cell morphology and
membrane shapes of both the cell membrane andmembrane of
intracellular components provide further evidence of drug
action on cells. These changes are also evident in parallel
uorescent measurements performed (ESI Fig. S4†).

The increase in lipid abundance observed in the cytoplasm
of both PC3 and PNT2 cells on addition of orlistat is counter-
intuitive to its therapeutic activity, therefore this response was
attributed to a stress response from the cells. Upon inhibiting
a key enzyme in lipid synthesis, it is hypothesised that the cells
accumulated the lipids that they had and could acquire from
the surroundingmedium. Additionally, it is possible that, as the
signal at 2851 cm�1 was attributed primarily to lipid C–H
stretches in CH2 groups, this change could reect an increase in
Chem. Sci., 2018, 9, 6935–6943 | 6939
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long chain lipids, for example palmitate already synthesised
could continue to create longer chain fatty acids through
elongation steps, but no new palmitate could be synthesised,
resulting in a depletion in shorter chain fatty acids.

In addition, an increase in lipids has been associated with
the cellular processes ultimately leading to apoptosis, therefore
it is a possibility that the increased lipid response was pheno-
typically characteristic of initial stages of cell death.43 In order to
investigate this possibility further, cells for each condition were
stained for viability (ESI Fig. S2†). This revealed that under all
conditions, cells analysed i.e. those still attached to the glass
substrate, maintained viability, however there were notable
changes in cell conuence, particularly upon orlistat treatment,
suggesting some cells were dying ultimately causing them to
detach from the glass substrate. This conrmed that those cells
investigated using Raman were viable and it is likely that these
observations could be attributed to metabolic response to drug
application. Fluorescence staining for phospholipidosis and
steatosis was also in line with the observed Raman response
(ESI Fig. S4†). This was an important comparison when
considering the reliability of the Raman based approach, and
also helped highlight the added benets Raman provided in
comparison to a commercially available uorescence assay. The
particular assay used stained for phospholipidosis (phospho-
lipid accumulation) and steatosis (neutral lipid accumulation)
and showed strong agreement with Raman measurements.
Minimal staining for both phospholipidosis and steatosis was
observed in the control PC3 and PNT2 cells, while signicant
increase in staining for phospholipidosis and/or steatosis was
observed for cyclosporin and orlistat treated PC3 and PNT2
cells. Signicantly, measurements for propranolol indicated the
same observation made using Raman that there was a marked
increase in lipid (phospholipidosis in particular) for PC3 cells
but no apparent change for PNT2 cells. As with Raman, there
were less pronounced changes associated with CAY10566 and
TOFA. The strong agreement between these uorescence
measurements and Raman measurements served to emphasize
the reliability of the Raman based approach. In addition,
Raman allowed this information to be extracted without the
need for external labelling regents and staining steps, including
resolving cellular components at subcellular resolution e.g.
nuclei were resolved without the need to uorescently stain.
Each point in the Raman map also produced a spectrum with
more than 1000 data points associated with it, providing
a wealth of chemically specic information not accessible via
uorescence. This particular commercially available kit also
stained for particular lipid classes, while each Raman spectrum
contains a wealth of information on all lipid species present in
the cellular sample.

In order to compare the Raman results in a more quantita-
tive manner, the lipid/(protein + lipid) ratios for all points in the
three replicate cell maps per condition were extracted and
compared (Fig. 4 and ESI Table S1†). This simple bivariate
measurement revealed important biological responses to these
drug molecules that could act as a simple readout for drug
efficacy and selectivity. Efficacy was assessed by comparing
vector to drug treated cells. Selectivity for cancerous vs. non-
6940 | Chem. Sci., 2018, 9, 6935–6943
cancerous cells was assessed by comparing response in
cancerous to non-cancerous cells. One-way ANOVA tests were
performed to assess the statistical signicance between control
and drug treated cells for each compound tested. From Fig. 4 it
was observed that in most cases there was a high level of
statistical signicance between control and treated cells, with
most p values # 0.0001. For PC3 cells treated with CAY10566
and PNT2 cells treated with propranolol, there was no signi-
cant difference from respective control cells and for PNT2 cells
treated with CAY10566 the p value was #0.001. These results
were in line with previous observations from the cell images,
and conrmed the selectivity of propranolol for cancerous cells
with statistical signicance.

While one-way ANOVA tests can be used to determine
statistical signicance, when this test is applied to very large
data sets, such as those acquired in Raman mapping experi-
ments, it is highly likely that even the smallest differences are
found to be highly statistically signicant. Therefore, the results
were interpreted by measuring the effect size,44 an indicator of
the magnitude of this difference (Fig. 4(c)) (a useful table for
interpretation of effect size is given in ESI Table S2†). This
allowed quantication of phenotypic response to drug treat-
ment, with similar effect sizes suggesting a similar phenotypic
response with respect to the lipid/(protein + lipid) composition.

To strengthen this ratiometric approach, a further ve
different ratios were measured in the same way, ultimately
giving a multivariate descriptor for each combination of cell
line and drug tested (ESI Fig. S5–S10†). Again these ratios could
reect global biochemical information with regards to lipid
chain length (as a function of CH2/CH3 groups) and lipid
saturation (as a function of H–C]/CH2 or CH3 groups) where
2881 cm�1 and 2974 cm�1 are assigned predominantly to C–H
stretches in CH3 groups and 3013 cm�1 and 3064 cm�1 asso-
ciated with C–H stretch in H–C] groups.37,45 Although these are
tentative peak assignments, and cannot be made exclusively
due to the overlapping nature of the spectra, the 6 different peak
intensities selected to create the ratiometric measurements
were informed by a direct inspection of spectra. This allowed
key regions of maximal change between control and drug
treated samples to be selected, also based on knowledge
regarding the chemical origin of the spectral signatures. Thus,
instead of blindly analysing the full spectral data sets using
multivariate techniques such as PCA, key peaks were selected by
visual inspection of the spectra themselves. A large volume of
data was generated from these ratios, therefore a method to
combine these results into a simple descriptor, or ‘barcode’, was
devised. For each ratio the effect size was used to assign a whole
number value between �3 and 3 reective of the magnitude of
the change. These numbers were then used to form a ‘barcode’
for each drug treatment on each cell line (Fig. 5). This barcode
could be used as a phenotypic stamp for each drug treatment,
allowing barcodes for drugs eliciting known changes to be used
to build up a bank of paired barcodes for phenotype. The total
sum of the absolute values of all numbers in the barcode gave
the nal number in each barcode and acted as an overall indi-
cator of the extent to which any particular treatment was
altering the cells. The barcodes are simple representations of
This journal is © The Royal Society of Chemistry 2018
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Fig. 4 Quantitative Raman assessment of global lipid response. The intensity ratios of the Raman peak intensity at 2851 cm�1 divided by the sum
of the peak intensities at 2933 cm�1 and 2851 cm�1 for spectra extracted from cell regions in a total of three different cells per condition, were
compared. This ratio reflected the lipid/protein ratio in the cells, and the mean and standard deviation for control PC3 cells (DMSO) and drug
treated PC3 cells (a), and control PNT2 cells (DMSO) and drug treated PNT2 cells (b) are shown. For PC3 cells and PNT2 cells there was a statistical
significance between treatments determined using one-way ANOVA (F(5, 16 233) ¼ 1581, p # 0.0001 and F(5, 20 853) ¼ 2037, p # 0.0001
respectively). A Dunnett's multiple comparisons test revealed a statistically significant difference between control (DMSO, n ¼ 2800) and
propranolol treated (n¼ 3134, p# 0.001), cyclosporin treated (n¼ 2070, p# 0.001), orlistat treated (n¼ 2739, p# 0.001) and TOFA treated (n¼
3480, p# 0.001) PC3 cells and no significant difference between control and CAY10566 (n ¼ 2016, p ¼ 0.9700) PC3 cells. A Dunnett's multiple
comparisons test revealed a statistically significant difference between control (DMSO, n ¼ 3563) and cyclosporin treated (n ¼ 3941, p# 0.001),
orlistat treated (n ¼ 3844, p # 0.001), CAY10566 treated (n ¼ 2991, p ¼ 0.0003) and TOFA treated (n ¼ 3998, p # 0.001) PNT2 cells and no
significant difference between control and propranolol (n¼ 2522, p¼ 0.2388) PNT2 cells. ***p# 0.001; ****# 0.0001. Effect size for each drug
treatment relative to control (DMSO) was determined for both PC3 and PNT2 cells where the bar colours correspond to the direction and size of
effect size (c).
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selected spectral features aiding in the rapid analysis of the
effects of the drugs on these cells in areas of interest e.g. lipids
rather than looking at full spectral changes. Further analysis of
the barcoded data can be carried out using PCA (ESI Fig. S29–
S31†) to allow comparisons of this relatively small data set but
serves as an example of what is possible in further studies
involving much larger datasets and barcodes. The most signif-
icant overall observation from this small example study was the
marked selectivity of the beta-blocker propranolol for cancerous
PC3 over non-cancerous PNT2 cells. Therefore, this drug is
recommended for further studies and repurposing for
Fig. 5 A Raman based phenotypic ‘barcode’. Barcodes were created fo
comparison to a control cell population. Three Raman cell maps per con
a cell region, a total of six different intensity ratios were calculated. Fo
between �3 and 3 was assigned reflective of the size of this. The assigne
ratio 5, ratio 6 created the first six digits of the barcode. The final digit wa
represented pictorially where the size, direction and colour of bars corre
(2851 cm�1 + 2933 cm�1); ratio 2 ¼ 2881 cm�1/(2881 cm�1 + 2933 cm�1

(2851 cm�1 + 2974 cm�1); ratio 5 ¼ 3013 cm�1/(3013 cm�1 + 2851 cm�

This journal is © The Royal Society of Chemistry 2018
investigation as an anti-cancer drug, supporting some recent
studies on its anti-cancer activity with new biological insight
into its action on lipid metabolism and selectivity for cancerous
cells.46
Conclusions

This study has demonstrated the capability of Raman spec-
troscopy using the high wavenumber spectral region, to study
lipid distribution, metabolism and phenotypic drug response in
a label free and chemically specic manner. The power of
r PC3 and PNT2 cells treated with a number of lipid altering drugs in
dition per cell line were measured and for each point corresponding to
r each ratio, an effect size was calculated and a whole number value
d numbers in the order corresponding to ratio 1, ratio 2, ratio 3, ratio 4,
s the sum of the absolute values of all previous numbers. This was also
sponded to the assigned number for each ratio. Ratio 1 ¼ 2851 cm�1/
); ratio 3 ¼ 2974 cm�1/(2974 cm�1 + 2933 cm�1); ratio 4 ¼ 2851 cm�1/
1); ratio 6 ¼ 3064 cm�1/(3064 cm�1 + 2933 cm�1).

Chem. Sci., 2018, 9, 6935–6943 | 6941
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a simple ratiometric based approach was demonstrated,
allowing high resolution, subcellular information regarding
lipid abundance and distribution to be gained. A single bivar-
iate descriptor extracted from Raman spectra was able to
identify intracellular compartments, including nuclei, and
ascertain intracellular changes to lipid abundance without the
need for extrinsic markers, in contrast to uorescence imaging
which requires multiple dyes to achieve the same level of
information. The reliability of the approach in addition to its
added benets was conrmed by comparison with results from
a commercially available uorescence staining kit.

Comparison of ratiometric values between conditions gave
a quantitative and robust measure of changes in lipid/(protein +
lipid) content in cells. More universally, a statistically robust
and meaningful strategy for assessing drug response was
developed. Effect size as a meaningful measure of the extent of
the difference between ratiometric Raman values for different
conditions was highlighted. Moving from a single ratiometric
value, a selection of important ratios ascertained by direct visual
inspection of the spectra was used to create a phenotypic
Raman ‘barcode’ for each drug response. By including control
drugs with known phenotypic responses in the experiment,
barcodes could be paired with phenotype for comparison to new
drug candidates, and PCA could be used to determine repro-
ducibility over multiple replicate experiments as well as what
compounds elicited similar phenotypic response on individual
cell lines and which compounds showed selective response
between cell lines.

The developed strategy was applied to study the effect of
drugs known to inhibit enzymes involved in de novo lipid
synthesis as new candidates for cancer therapy. Orlistat elicited
a phenotypic response characteristic of lipid accumulation in
both cancerous and non-cancerous prostate cells, while
CAY10566 showed very little response in both, and TOFA
induced a decrease in intracellular lipids in PC3 cells in
particular. Most notable was the selectivity of propranolol
towards cancerous cells making this beta-blocker a strong
candidate for repurposing for its selective anti-tumour action
and demonstrates the power of using Raman spectroscopy to
provide lead systems for further, more extensive studies.

More globally, this non-destructive label-free ratiometric and
statistically meaningful Raman imaging strategy, using cost-
effective glass substrates, could revolutionise understanding
and analysis of drug–cell response and make this highly infor-
mative analytical technique amenable with cytological work
streams. Future incorporation of this particular analytical
approach into more high-throughput Raman work streams
would enable a full realisation of its potential, allowing
a comprehensive analysis of multiple different cell lines treated
with any particular drug compound to fully elucidate efficacy
and selectivity of any potential drug candidate.
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22 A. F. Garćıa-Flores, L. Raniero, R. A. Canevari, K. J. Jalkanen,
R. A. Bitar, H. S. Martinho and A. A. Martin, Theor. Chem.
Acc., 2011, 130, 1231–1238.
This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8sc02312c


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
Ju

ly
 2

01
8.

 D
ow

nl
oa

de
d 

on
 7

/1
4/

20
25

 4
:3

6:
43

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
23 M. Janssens, J. van Smeden, G. J. Puppels, A. P. M. Lavrijsen,
P. J. Caspers and J. A. Bouwstra, Br. J. Dermatol., 2014, 170,
1248–1255.

24 X. Wu, G. Daniels, P. Lee and M. E. Monaco, Am. J. Clin. Exp.
Urol., 2014, 2, 111–120.

25 N. W. Clarke and M. D. Brown, Eur. Urol., 2007, 52, 3–4.
26 J. Suburu and Y. Q. Chen, Prostaglandins Other Lipid

Mediators, 2012, 98, 1–10.
27 J. V. Swinnen, T. Roskams, S. Joniau, H. V. Poppel, R. Oyen,

L. Baert, W. Heyns and G. Verhoeven, Int. J. Cancer, 2002, 98,
19–22.

28 K. Shaque, P. McLoone, K. Qureshi, H. Leung, C. Hart and
D. S. Morrison, BMC Cancer, 2012, 12, 25.

29 S. J. Kridel, F. Axelrod, N. Rozenkrantz and J. W. Smith,
Cancer Res., 2004, 64, 2070.

30 J. A. Menendez, L. Vellon and R. Lupu, Ann. Oncol., 2005, 16,
1253–1267.

31 Y. Uto, Chem. Phys. Lipids, 2016, 197, 3–12.
32 C. Wang, C. Xu, M. Sun, D. Luo, D.-f. Liao and D. Cao,

Biochem. Biophys. Res. Commun., 2009, 385, 302–306.
33 E. Currie, A. Schulze, R. Zechner, T. C. Walther and

R. V. Farese, Cell Metab., 2013, 18, 153–161.
34 P. Nioi, B. K. Perry, E.-J. Wang, Y.-Z. Gu and R. D. Snyder,

Toxicol. Sci., 2007, 99, 162–173.
35 M. Grandl and G. Schmitz, Cytometry, Part A, 2010, 77, 231–

242.
36 D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon,

J. Boyle, S. Lewis, M. Garrard, S. L. Hervey-Jumper,
This journal is © The Royal Society of Chemistry 2018
H. J. L. Garton, C. O. Maher, J. A. Heth, O. Sagher,
D. A. Wilkinson, M. Snuderl, S. Venneti, S. H. Ramkissoon,
K. A. McFadden, A. Fisher-Hubbard, A. P. Lieberman,
T. D. Johnson, X. S. Xie, J. K. Trautman, C. W. Freudiger
and S. Camelo-Piragua, Nat. Biomed. Eng., 2017, 1, 0027.

37 A. C. S. Talari, Z. Movasaghi, S. Rehman and I. u. Rehman,
Appl. Spectrosc. Rev., 2015, 50, 46–111.

38 B. Alberts, Molecular Biology of the Cell, Garland Pub., 1989.
39 T. C. Walther and R. V. Farese, Annu. Rev. Biochem., 2012, 81,

687–714.
40 P. T. Bozza and J. P. B. Viola, Prostaglandins, Leukotrienes

Essent. Fatty Acids, 2010, 82, 243–250.
41 W. A. Alaynick, Mitochondrion, 2008, 8, 329–337.
42 I. R. D. Johnson, E. J. Parkinson-Lawrence, T. Shandala,

R. Weigert, L. M. Butler and D. A. Brooks, Mol. Cancer Res.,
2014, 12, 1851–1862.

43 M. Jimenez-Hernandez, M. D. Brown, C. Hughes,
N. W. Clarke and P. Gardner, Analyst, 2015, 140, 4453–4464.

44 S. Nakagawa and I. C. Cuthill, Biol. Rev., 2007, 82, 591–605.
45 D. Lin-Vien, N. B. Colthup, W. G. Fateley and J. G. Grasselli,

in The Handbook of Infrared and Raman Characteristic
Frequencies of Organic Molecules, Academic Press, San
Diego, 1991, pp. 9–28, DOI: 10.1016/B978-0-08-057116-
4.50008-0.

46 P. Pantziarka, G. Bouche, V. Sukhatme, L. Meheus,
I. Rooman and V. P. Sukhatme, Ecancermedicalscience,
2016, 10, 680.
Chem. Sci., 2018, 9, 6935–6943 | 6943

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8sc02312c

	Ratiometric Raman imaging reveals the new anti-cancer potential of lipid targeting drugsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02312c
	Ratiometric Raman imaging reveals the new anti-cancer potential of lipid targeting drugsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02312c
	Ratiometric Raman imaging reveals the new anti-cancer potential of lipid targeting drugsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02312c
	Ratiometric Raman imaging reveals the new anti-cancer potential of lipid targeting drugsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02312c
	Ratiometric Raman imaging reveals the new anti-cancer potential of lipid targeting drugsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02312c
	Ratiometric Raman imaging reveals the new anti-cancer potential of lipid targeting drugsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02312c

	Ratiometric Raman imaging reveals the new anti-cancer potential of lipid targeting drugsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02312c
	Ratiometric Raman imaging reveals the new anti-cancer potential of lipid targeting drugsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02312c
	Ratiometric Raman imaging reveals the new anti-cancer potential of lipid targeting drugsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02312c
	Ratiometric Raman imaging reveals the new anti-cancer potential of lipid targeting drugsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02312c
	Ratiometric Raman imaging reveals the new anti-cancer potential of lipid targeting drugsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02312c


