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Quantitative structure—activity relationships have an extensive history for optimizing drug candidates, yet
they have only recently been applied in reaction development. In this report, the predictive power of
multivariate parameterization has been explored toward the optimization of a catalyst promoting an aza-
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Introduction

Catalyst design and optimization for enantioselective syntheses
remains largely guided by meticulous and costly empirically-
driven experimentation. As such, the development of robust
methods for accurately predicting the relationship between
catalyst structure and reactivity would have a tremendous
impact on reaction development. Since catalyst activity and
selectivity are fundamentally tied to structure, one possible
approach is to apply quantitative structure-activity relationship
(QSAR) modeling, which has traditionally been applied to drug
development campaigns.’ Once identified, QSAR models can
rapidly provide activity and selectivity estimates for new struc-
tures, thus enabling high-throughput virtual assessment of key
structural components for the target of interest. Furthermore,
highly weighted descriptors in the QSAR model may indicate
structural features that influence the desired activity.>?

QSAR in the context of catalysis remains in its infancy.**" In
the reported studies, two distinct approaches have been
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provide the desired product in improved enantioselectivity relative to the parent catalyst.

investigated: (1) the use of traditional QSAR-type descriptors
evolved in the medicinal chemistry field, which are often 2D;*
and (2) the more recent use of parameters derived from
quantum mechanics (QM) to accurately model key structural
features involved in the hypothesized reaction mechanism.™
Examples of these descriptor types in the context of catalysis are
depicted in Fig. 1. Clearly, these descriptors are innately unique
and, if combined, may synergize to provide better statistical
fitting of a dataset. Thus, we hypothesized that integrating these
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Fig. 1 Descriptors used to establish structure—activity relationships.
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Scheme 1 Asymmetric bistriflamide route for Prevymis™ (letermovir).

two descriptor sets had the potential to improve a recently
developed enantioselective aza-Michael conjugate addition,
representing a key step in the industrial synthesis of the
approved pharmaceutical, Prevymis™ (letermovir; MK-8228).'>**
In the initial disclosure, the product enantioselectivity from
this key step was 88.3% ee using catalyst 2c (Scheme 1) for the
commercial process. Importantly, as part of the initial optimi-
zation effort, a library of 29 bistriflamide catalysts was generated
and evaluated under the same reaction conditions with the
resultant enantioselectivity (ee) and conversions measured in
triplicate. This library provides a wide range of ee's, offering an
excellent foundation to examine the potential benefits of QSAR
(Scheme 1). Despite the range in ee, this library failed to
demonstrate any intuitive SAR trends. For example, during
library design, it was hypothesized that amine pK, would track
with ee given the reaction mechanism; however, no relationship
was observed. Furthermore, while both electron-withdrawing and
-donating substituents (e.g., 2h and 2l, respectively) as well as
steric bulk (2f and 2c) were tolerated, only four catalysts (2a-2d)
provided improvement to the parent unsubstituted catalyst 2e.
On this basis, we set out to identify improved catalysts
through the evaluation of QSAR models and hypothesized that
the resultant models could provide a more detailed under-
standing of the salient features required for enantioselective
catalysis. Herein, we present a stepwise analysis of both 2D and
modern physical organic descriptor-based models as drivers of
this optimization campaign. Ultimately, we determined that
combining these descriptor sets enabled identification of
enhanced catalysts with non-intuitive structural features
through a highly predictive virtual screening campaign.

Results and discussion
Training set

In order to accurately model catalyst performance, bistri-
flamides producing less than 25% conversion were excluded
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from the training set. Additionally, 2-OH substituted catalyst 2w
was excluded because this catalyst with additional hydrogen
bond donating sites may occupy unique transition states. This
reduced training set totaled 21 bistriflamides, catalyzing reac-
tions with product ee's ranging from 22.9% to 89.7%. To
establish a baseline for the performance of 2D QSAR applied to
catalysis, several linear models were built based on method/
descriptor combinations with demonstrated successes in the
literature and earlier MSD (Merck Sharpe & Dohme) QSAR
models related to discovery lead optimization. These include
random forest (RF)* or support vector machines* as the
machine learning method, coupled with atom pair substruc-
tural descriptors or fingerprint descriptors. In our initial model
of the bistriflamide library, we found that RF with Carhart atom
pairs (APC)*® gave the best cross-validated (50/50 split) model of
ee, with a cv-R*> = 0.34 (model A, Fig. 2).

As all of the catalysts share a common C,-symmetric bistri-
flamide core, we envisaged that the parent arene could be used
as an efficient surrogate structure to rapidly explore quantum
mechanical-derived physical organic descriptor space. Impor-
tantly, a simple arene proxy significantly limited the number of
low energy conformations to be considered. Multi-variate linear
regression modeling”*® produced a relatively simple model
using two parameters (NBOg, and P") expressed in three terms
(NBOcy, P, and NBOc, x P) to achieve a good statistical fit
between the predicted and the measured enantioselectivity for
the initial training set of bistriflamides (R* = 0.80, LOO-Q*> =
0.77, model B) (Fig. 3). Given the physical organic descriptors
identified by our simple arene model, we could interrogate
several new structural hypotheses. The unsubstituted C2 NBO
charge (NBOg,) represents a general electronic parameter
describing the overall electron density of the arene.**** Addi-
tionally, the NBO(¢, term could describe a hydrogen bond
interaction between the ortho C-H and the substrate. The
partition-coefficient (P) describes the hydrophobicity of the
arene. This parameter is often used in drug design to predict
water solubility of molecules and due to its broad numeric
range, is typically reported as log P. We postulated that, in the
current case, the partition-coefficient could describe complex
attractive interactions between the catalyst and the substrate.
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Fig.2 Cross-validated random forest QSAR model of the training set.
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Fig. 3 Modern physical organic descriptors and a predictive model for
the initial training set.

Model validation screen: round 1

To validate our initial 2D and 3D models, a set of 30 new cata-
lysts was proposed, 10 of which were synthesized based on
predicted product ee (VS1, Table 1, see ESIT for details). Since
ortho-fluoro substitution seemed a preferred feature, we chose
to synthesize several derivatives that incorporated this group,
while introducing various para-substituents to probe further
subtle effects. Additionally, alternative halide- and CF;-substi-
tution patterns were explored.

Although both models were able to predict enantioselectivity
reasonably well, some catalysts were captured better by one of
the two QSAR approaches: 2,4- and 3,4-dichlorinated catalysts
(2ae and 2ai, respectively) were more accurately predicted by
model B (3D parameters), while model A (2D parameters) gave
better predictions for the best three catalysts 2ab-2ad. It is
worth noting that all of the best performing catalysts (2ab-2ad)
were under-predicted by both models. Overall, the models

Table 1 Virtual screen 1: prospective predictions from the initial
models®

Predicted% ee (AAGY)

2 Ar Model A Model B Measured% ee (AAGY)
ab 2-F-4-BrCeH;  86.7(1.64) 85.9(1.60) 90.2(1.85)
ac 2-F4-Cl-CgH;  87.0(1.66) 85.8(1.60) 89.3(1.79)
ad 2-F-4-CF;-CgH; 87.7(1.70) 83.6(1.50) 88.3(1.73)
ae  2,4-Cl,-C4Hj 73.3(1.16)  85.3(1.58) 86.2(1.62)
af  4-CF3-CgH, 84.9(1.56) 81.3(1.43) 85.3(1.58)
ag 4-F-C¢H, 82.0(1.44) 84.0(1.52) 84.1(1.52)
ah 3-F-CgH, 82.8(1.47) 76.6(1.26) 79.9(1.36)
ai  3,4-Cl,-C¢Hj 69.8(1.07) 81.9(1.44) 78.9(1.33)
aj 2-F-4-CN-C¢H; 87.1(1.66) 84.6(1.54) 78.5(1.32)
ak  3,4,5-F53-C¢H, 62.3(0.91) 66.3(0.99) 75.9(1.24)

“ AAG* given in parentheses in kcal mol .
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displayed uneven predictive capability for the poorer perform-
ing catalysts (2ah-2ak).

Focused virtual screen: round 2

The ten new compounds used as external validations in round 1
were incorporated into our existing dataset to inform and
improve our QSAR models. Since the dataset is weighted
towards high ee catalysts, we split the data into test and training
sets by selecting every other catalyst, starting from the best
performing catalyst, until we had a third of the data in a new
validation set. The updated 3D QSAR model B’ was then used to
design and predict a new virtual screening set of 35 bistri-
flamides (VS2, see ESIT for details). The 2D model was updated
likewise. Unfortunately, neither the 2D nor the 3D QSAR model
predicted any of the new catalysts would give the product in
greater than 90% ee. These modest predictions for VS2 could be
the result of the inherent difficulty of extrapolating beyond the
best identified catalyst (2ab, 90.2% ee). In fact, RF is recognized
for having a ceiling to predicted activity that is set by the highest
activities in the training data.'* However, given the orthogonal
accuracies observed for the 2D and 3D models within VS1, we
hypothesized that combining substructural and physical
organic descriptors into a hybrid 2D/3D model might be
a beneficial strategy. These two model types have been
compared, yet very few studies have investigated their potential
for synergy,”* and, to the best of our knowledge, none exist in
the field of catalyst optimization.

We selected the 20 highest-weighted descriptors from model
A and added these to the physical organic descriptor set. Both
2D and 3D QSAR parameters were thus available during the
process of linear regression modeling."” Interestingly, one 2D-
QSAR parameter, FX1sp3CX2sp207, stood out as highly syner-
gistic with the 3D physical organic descriptors. The
FX1sp3CX2sp207 parameter is a substructural atom pair
describing fluorine atoms seven bonds away from an sp’-
hybridized carbon with two non-hydrogen substituents (Fig. 4).
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Fig. 4 FX1sp3CX2sp207 single parameter model.
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Within the bistriflamide catalyst scaffold, this represents
areadout for the unsubstituted ortho and meta positions and, of
particular note, ortho- and meta-fluorine substitutions
contribute as well. This 2D-descriptor was decisively the best
single descriptor (R* = 0.62) and was found to be a significant
predictor in nearly all hybrid models. The fundamental draw-
back of this parameter is the difficulty to extrapolate beyond
current structures within the bisaryltriflamide scaffold.

From our model building process, we obtained four new
hybrid models (C-F) in addition to our standalone models A’
and B’ (Scheme 2C, see ESIf for details). All four new models
provided a statistically satisfactory fit to the training set (R*> =
0.78-0.90 and LOO-Q*> = 0.70-0.77) and were well-validated
against the test set.

Hybrid model C incorporates the C1 NBO charge as an
electronic parameter and the previously used partition-
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coefficient together with FX1sp3CX2sp207 parameter. Out of
the virtual screening set, model C predicted the OCF;-
substituted catalyst 2aq to be the most selective (94.3% ee).

The second hybrid model D combines the symmetrical aryl
IR vibrational frequency®® and the average of C2 NBO charges as
physical organic descriptors for the arene ring, and the
substructural descriptor FX1sp3CX2sp207. Model D accurately
predicted the best performing catalyst in the training and vali-
dation sets. Prediction of ee in VS2 with model D identified four
catalysts with potential outputs above 90% ee. In agreement
with model C, 2aq was predicted at 95.4% ee. Additionally,
catalysts 2al, 2an, and 2ao were predicted to give 90.0%, 92.3%,
and 91.2% ee, respectively.

The models E and F both include C1 and C2 NBO charge,
FX1sp3CX2sp207, and a polarizability parameter. Additionally,
both models show an excellent fit to the training and validation

MODEL C MODEL D
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2D QSAR Phys. Org. Hybrid
2 Ar Model A’ Model B* Model C Model D Model E Model F
al 2-F-4-SiMe3-CgHs 82.3(1.45) 83.3(1.49) 85.6(1.59) 90.0(1.83) 95.2(2.30) 85.5(1.86) 90.4(1.86)
am 2-F-4-1-CgHy 86.7(1.64) 85.9(1.60) 86.1(1.61) 92.3(2.00) 88.1(1.72) 88.1(1.76) 88.8(1.76)
an 2-F-4-Bpin-CgH3 81.8(1.43) 82.5(1.46) 85.5(1.59) 86.8(1.65) 99.2(3.41) 86.4(1.66) 87.3(1.68)
ao 2-F-4-SnMe3-CgHs 82.3(1.45) 83.5(1.50) 85.8(1.60) 91.2(1.91) 98.2(2.91) 85.7(1.60) -
ap Fc 70.6(1.09) 56.9(0.80) 88.7(1.75) 83.2(1.49) 90.4(1.86) 90.3(1.85) -
aq 2-OCF3-CgHa 80.9(1.40) 83.1(1.48) 94.3(2.20) 95.4(2.33) 63.9(0.94) 75.6(1.23) -

Scheme 2 Physical organic descriptors (A), hybrid models (B), and virtual screen 2 (C); AAG* given in parentheses in kcal mol ™.
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sets. The only difference between the two models was the means
by which the polarizability was expressed. For model E,
isotropic polarizability (polar;) was used, which is the calculated
average of the ax, ay, az polarizability vectors. In the arene
models used in this study, the az term was typically small and
the isotropic polarizability was effectively the average polariz-
ability along the xy-plane. In the model F, anisotropic polariz-
ability (polar,) is used instead. Whereas isotropic polarizability
can be readily used to compare the polarizability of equally
spherical (or planar) molecules, anisotropic polarizability can
be used to better describe asymmetrical structures.”” As ex-
pected, where most of the training set consists of flat structures
with negligible polarizability along the z-axis, the two terms are
collinear (Fig. 5). However, the situation changes dramatically
when bulkier substituents that increase polarizability along the
z-axis are incorporated: the 2-OTf substituted catalyst 2c is the
greatest outlier from the training set. Due to this difference in
the polarizability term, the predictions between the two models
are dramatically different. While isotropic model E predicts the
silicon (2al), tin (2a0), and boron (2an) substituted catalysts at
95.2-99.2% ee, the anisotropic model F predicts them to give
only 85.5-86.4% ee. Interestingly, both models E and F predict
the ferrocene catalyst 2ap at 90% ee.

Based on the predictions from the six models (Scheme 2c¢), as
well as synthetic accessibility, we synthesized three catalysts
that were expected to yield high product enantioselectivities: 2-
F-4-SiMe; (2al), 2-F-4-1 (2am), and 2-F-4-Bpin (2an). Gratifyingly,
the three catalysts all gave full conversion and good ee, with 2-F-
4-SiMe; giving the highest enantioselectivity observed for this
reaction to date, 90.4% ee.
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N 4 L]
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isotropic polarizability

Fig. 5 Correlation between different polarizability terms.

Table 2 Focused solvent screening for selected catalysts®
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Of the six models used for the virtual screening, both the
pure 2D and pure 3D models failed to accurately predict the
behavior of the best catalysts. Although models E and F con-
taining the polarizability terms accurately predicted the iodine-
substituted catalyst 2am, they over- or underestimated the
silicon (2al) and boron (2an) catalysts, respectively. The best
effective predictions for VS2 were obtained with the hybrid
model D.

Focused solvent screening

In our earlier investigation,*® we had observed that the choice of
solvent could have a significant effect on the reaction. There-
fore, we performed a focused solvent screen on the best per-
forming catalysts located in this study. While most catalysts
performed equally or worse in ethereal solvents compared to the
standard toluene conditions (Table 2), the selectivity with best
performing catalyst 2al was further increased giving the highest
ee (93.7%) in methyl tert-butyl ether (MTBE).

Structural interpretation of the hybrid models

While the combinations of parameters used in the hybrid
models do not lend themselves to immediate 3D interpretation,
our results made it clear that the strongest-performing models
of this reaction require: (1) an electronic parameter, NBO charge
or IR frequency; and (2) the substructural parameter
FX1sp3CX2sp207. While we anticipated the observed impor-
tance of an electronic parameter, its combination with the
strong predictive power of the substructural descriptor
confirmed our hypothesis that 2D and 3D information could
provide orthogonally beneficial information for guiding
structure-based design. The atom-pair substructural parame-
ters condense a steric estimate into one numerical value and, in
this case, simultaneously amplified the score for fluorine-
substituted catalysts. The positive effect of an ortho-fluorine
substituent is undeniable, but the precise explanation for this
effect remains uncertain. We propose that certain ortho-
substituents, especially fluorine, lock the catalyst in a favorable
conformation for the transition state.

Our previous investigation of this reaction mechanism
revealed that hydrogen bonding between the catalyst and
substrate is a key driver for enantioselectivity.’® Furthermore,
structural modifications of the backbone demonstrated that
both sulfonamide N-H's are critical for conversion. DFT

Measured% ee

2 Ar Anhydr. toluene Wet toluene MTBE CPME EtOAc 2-MeTHF
ab 2-F-4-Br-C¢Hj3 90.2 90.2 86.8 88.6 77.8 79.0
al 2-F-4-SiMe;-CeHj 90.4 91.8 93.7 92.3 88.9 89.2
am 2-F-4-1-C¢Hj3 88.8 88.6 87.1 87.0 78.1 80.5
an 2-F-4-Bpin-C¢Hj3 87.3 87.8 89.4 88.7 83.2 84.9

“ AAG* given in parentheses in kcal mol~; MTBE = methyl tert-butyl ether; CPME = cyclopentyl methyl ether.
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(density functional theory) calculations with 2¢ showed that
ring closure most probably occurs via aza-Michael conjugate
addition; however, we believe that, following substrate tauto-
merization, a 6-1v electrocyclization mechanism can be ener-
getically accessible with some catalysts as well. This structural
information from the mechanistic work is consistent with our
2D, 3D, and hybrid models, indicating the utility of performing
both machine learning as well as density functional calcula-
tions to fully capture the dynamics of a catalyst system.

Conclusions

QSAR offers advantages for catalyst design because well-
validated models can facilitate rapid selection and optimiza-
tion of catalyst properties while lowering labour and resource
cost. Here, the best catalyst was found using a hybrid 2D/3D
modelling approach. Although only modest gains in enantio-
selectivity were achieved, it is unlikely that the unusual 2-F-4-
SiMe; catalyst 2al would have been identified in a traditional
intuition-driven screening. This hybrid 2D/3D QSAR modeling
strategy should enable guided design and rapid screening of
large catalyst libraries, thus facilitating faster route optimiza-
tion at substantially reduced cost.
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