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This article describes an experimental and computational investigation on the possible aryne reactivity
modes in the course of the reaction of two highly energetic molecules, an aryne and a 1,2,4,5-tetrazine.
Beyond the triple aryne—tetrazine (TAT) reaction, it was observed that combinations of several reactivity
modes afford several heterocyclic compounds. Density Functional Theory (DFT) calculations of
competition between a second Diels—Alder reaction and the nucleophilic addition pathways indicates
the latter to be more favorable. Crossover experiments and computational study of the proton transfer
step reveal that the reaction proceeds intermolecularly with the assistance of a water molecule, rather
than intramolecularly. The resulting enamine intermediate was found to undergo either a stepwise
formal [2 + 2] or [4 + 2] cycloaddition, and their energetic profiles were compared against each other.
Isolation of an ene-product and a rearranged product shows the potential competition with oxidation/
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DOI: 10.1039/c85c01796d desaturation. These studies show how multiple arynes react with a highly reactive starting material and

rsc.li/chemical-science provide guidance for future applications of aryne-based multicomponent cascade reactions.

Introduction Results and discussion

Recently, we reported a new multistep process termed the triple  In the TAT reaction, it was observed that 1 undergoes [4 + 2]

aryne-tetrazine (TAT) reaction.' The reaction combined diverse
reactivity modes between simple 1,2,4,5-tetrazine 1 (henceforth
referred to as “tetrazine”) starting materials®> and aryne 2 into
a single multistep process, resulting in the addition of three
aryne equivalents to a tetrazine core. In the TAT reaction,
dibenzocinnoline 3 and the cycloaddition intermediate 4 were
isolated. In addition, we reported solvent participation in aryne
reactions with the two solvent-trapped intermediates 5a and 5b
(Fig. 1).? Detailed investigation of these side reactions can yield
valuable insight into aryne chemistry* and provide access to
new heterocyclic scaffolds.” Here we report new mechanistic
aspects of the reaction between a tetrazines and arynes, eluci-
dating unique divergent pathways to alternative products that
arise during the reaction course. The reaction mechanism
consists of six consecutive elementary steps. As many as five
steps can directly engage the aryne.® Using a combination of
experimental and computational methods, we elucidate the
unique competing pathways that are operational throughout
the course of the reaction to yield products 6, rac-7, rac-8, and
rac-9a.
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cycloaddition with 2 and loss of N, affords the phthalazine
intermediate 47 followed by several further mechanistic steps to
give dibenzocinnoline 3 (Fig. 2A). In the TAT reaction, anthra-
cene 10 was not observed,® indicating that the phthalazine
intermediate 4 does not undergo a further [4 + 2] cycloaddition.
Instead, 4 is observed to undergo a nucleophilic addition to
another equivalent of 2. We used Density Functional Theory
(DFT) calculations to compare free energy profiles of the Diels-
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Fig.1 Reactivity modes of 1,2,4,5-tetrazine and arynes. [4 + 2], [4 + 2]
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Fig. 2 (a) The reported TAT reaction and isolated phthalazine inter-
mediate 4. (b) Diels—Alder reaction (pathway A) vs. nucleophilic addi-
tion (pathway B) from tetrazine 11 and aryne 2. (c) Free energy profiles
of pathways A and B proceeding from tetrazine 11 and aryne 2
computed at the M06-2X/6-311+G(d,p)/SMD (CH,CLl,)//M06-2X/6-
31G(d) level of theory. (d) Nucleophilic addition (pathway C) vs. Diels—
Alder reaction (pathway D) from phtalazine 14 and aryne 2. (e) Free

This journal is © The Royal Society of Chemistry 2018

View Article Online

Chemical Science

Alder versus the nucleophilic addition reaction pathways for
both the tetrazine and benzyne pair and the phthalazine and
benzyne pair. To simplify the calculations, the ethyl substitu-
ents on tetrazine 1 were modeled with methyl groups (Fig. 2A
and B). Two pathways are possible: nucleophilic addition of
tetrazine 11 with aryne 2 ° or a Diels-Alder cycloaddition. The
two possible pathways were evaluated using DFT and the free
energy profile for the reactions are shown in Fig. 2C. The Diels-
Alder transition state TS2 is lower in energy than the nucleo-
philic addition transition state TS1 by 1.9 kcal mol " (Fig. 2B, C
and 3). For phthalazine 14 and aryne 2, the nucleophilic addi-
tion is more favorable by 5.2 kcal mol™* (Fig. 2D, E, and 3).
These results are in good agreement with the experimental
observation that the first Diels-Alder reaction is favored over the
nucleophilic addition pathway, but the second Diels-Alder
reaction is outcompeted by nucleophilic addition. Both nucle-
ophilic addition pathways are overall somewhat exergonic,
whereas both Diels-Alder pathways are strongly exergonic, with
very low barriers for dinitrogen extrusion from the Diels-Alder
adducts.>"

The standard TAT reaction is conducted with 1, 11 equiva-
lents of tetrabutylammonium fluoride (TBAF) in THF, and 10
equivalents of 2-(trimethylsilyl)phenyl tri-
fluoromethanesulfonate 18 in CH,Cl, at 24 °C, to produce
product 3 in 44% yield within 5 minutes.* The intermediate 4 is
isolable from the TAT reaction when conducted with an excess
of tetrazine 1. The reaction between 18 and the intermediate 4
under the standard TAT reaction condition afforded the desired
product 3 and rac-5b in 7% and 13% yield, respectively (Scheme
1).® Here, using anhydrous CsF instead of TBAF, which has a low
concentration of water and is considered a wet fluoride source,
we conducted the reaction in CH3;CN under reflux. Higher
conversion and higher yield of both 3 and rac-5b were observed
(Fig. 4A). The source of low mass balance for the TAT sequence
is due to competing aryne and tetrazine decomposition path-
ways under the reaction conditions. To discriminate between an
intra- versus intermolecular proton transfer pathway, the reac-
tion was performed in CD;CN and D,O under reflux (Fig. 4B).
Only deuterated dibenzo[de,g|cinnoline [D]-3 was isolated (11%
yield), as analyzed by "H NMR experiment. The result indicates
that the intermediate 19 most likely did not proceed through an
intramolecular pathway but instead through an intermolecular
proton transfer pathway, assisted by a fluoride, a hydroxide,
conjugate base of CH;CN, or a phenyl anion of another benzyne
adduct. To further probe solvent participation in the proton
transfer step, experiments were conducted in CD;CN and H,0O
(Fig. 4C). According to the result shown in Fig. 4B, the intra-
molecular pathway is unlikely to be favored. Two possibilities
arise for the intermolecular pathway, a water-mediated or
CH;CN-mediated proton transfer, assuming H,O can only serve
as the proton source and CD;CN can only provide deuterium
during the proton transfer step. After this reaction, only non-

energy profiles of pathways C and D proceeding from phthalazine 14
and aryne 2 computed at the M06-2X/6-311+G(d,p)/SMD (CH,Cl,)//
MO06-2X/6-31G(d) level of theory. Gibbs free energies are reported
in kcal mol™.
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Scheme 1 Ene or stepwise ene-type reaction and rearrangement of
the intermediate rac-30.

deuterated 3 was observed in 14% yield, which ruled out proton
transfer with the conjugate base of CH;CN, supporting a water-
mediated proton transfer pathway. These results account for
why only 3 and rac[D,}-5a were found and [D]-3 was not
observed in our previous crossover experiments performed in
CD,Cl, (Fig. 4D).>* When it comes to the stepwise mechanism in
Fig. 4D, after deuterium transfer from CD,Cl, to the interme-
diate 19, the deuterated cationic intermediate is formed.
According to the isolation of 3 and racD,]-5a, the cationic
intermediate may only react with dichloromethanide-d via 1,2-
addition to provide rac-[D,]-5a but may not undergo further
deprotonation assisted by either dichloromethanide-d or
hydroxide to afford (E/Z)-[D]-20 because [D]-3 was not detected.
A plausible pathway to account for formation of 3 may involve
a water-mediated proton transfer to give (E/Z)-20. As shown
above, water is an important proton source for the TAT reaction,

7690 | Chem. Sci., 2018, 9, 7688-7693

View Article Online

Edge Article

TMS CsF (11 equiv)
0T{ CH,CN H,0
reflux, 2h

N
3 (12%) rac-5b (25%)

“ equlv) (10 equlv)
¥
18 (10 equiv) intermolecular
o N CsF (11 equiv) SN deprotonation i N r:j
1 —_— (o
ZN

N coacn D,0 ZN N
reflux, 2h J Sol —~ HC o

19

intramolecular
deprotonation

TS7

¥
SNOH
N - [N
¢ RIS ¢ NO
O 3 A</
not observed TS8
¥
18 (10 equiv) acetonitrile
C N CsF (11 equiv) SN -assisted i ; N
|
cn,cu H,0 /f;l\© p N
reflux, 2h = ] NC /x =
H
D
o) O~
TS9
s E,
3 i
Yy
water 'v
-assisted
[D1)-3 was
not observed
=1 rpitpieo— t
1.03 2.06 1.14 1.06 4.00
[D1)-3
SN
| ey
N == 3,14%
7 HO.~ H( al
0.99 191 1.03 0.99 3.00 H
T T T T T T w_v
9 78 77 76 75 74 73
L 11 (ppm) TS10
(d)
18
SN TBAF SN,
| — N
N Cco,Clp \© ©
24°C -
B 19 D13 312%
not observed
CD,Cl, ai
H0 (Irom wet TBAF)
D
g ‘; cl, /‘H(
H c|—c0 H
H rac-[D;)-5a, 3%
: | +H0 CHDCI L
: CHDCIZ
! D~
‘C‘D‘:‘y
e
i > [D}-3
i OR ”20
(E/Z)-[D}-20
.
| J ' SN
1 'f\@ e (el N N =
- 3 -H0
" | O ; ©
D H H
o ln s T

i J (E/2)-20

Fig.4 Crossover experiment to determine intra-, acetonitrile-assisted
inter-, or water-assisted intermolecular proton transfer. (a) The reac-
tion was conducted in the mixture of 1 : 1 ratio of CHsCN/H,O. (b) The
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experiment.?
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and this result is consistent with the observation that no desired
product from the TAT reaction is observed with anhydrous tet-
rabutylammonium difluorotriphenylsilicate (TBAT).*

The transition state structure (TS11) for the concerted water-
assisted proton transfer is shown in Fig. 5. The transition state
for the direct intramolecular transfer of proton was not located.
It is possible that due to the requirement that the ¢ C-H bond
being broken in the proton abstraction must be in plane with
the 7 system of the N=C bond, only a proton abstraction from
the top or bottom face of the molecule would have been favor-
able. Due to the geometrical constraints of the molecular
structure, however, such a top- or bottom-face proton abstrac-
tion by the anionic carbon is extremely difficult to achieve.

To simplify the analysis of possible alkylidene intermediate,
3-methyl-6-phenyl-1,2,4,5-tetrazine (24) was employed (Fig. 6B);
a phenyl group at the 6-position was expected to block the
further side reaction and also stabilize the tetrazine ring, and
a methyl group at the 3-position would afford a single methyl-
idene intermediate 24 while 3,6-diethyltetrazine 1 could afford
(E/Z)-20 as an isomeric mixture (Fig. 6A). The aryne reaction of
newly employed tetrazine 22 also did not stop at the interme-
diate 24, instead proceeding to afford the dibenzo[de,g]cinno-
line 25. Even though 24 was not isolated, we were able to
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Fig. 5 Optimized geometries of intermediates, products, and transi-
tion states for the water-assisted proton transfer pathway computed at
the M06-2X/6-311+G(d,p)/SMD (CH,Cl,)//M06-2X/6-31G(d) level of
theory. Gibbs free energies of activation are calculated with respect to
isolated reactants and reported in kcal mol™ . Interatomic distances
are shown in dngstréms.
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Fig. 6 (a) The TAT reaction of 3,6-diethyltetrazine 1. (b) Alternative
probe 24 to the intermediates (E/2)-20 of the TAT reaction. (c) The
formation of 25 from the reaction of 24 and aryne.

synthesize 24 through an alternate route (Fig. 6C).”> TBAF (1.1
equiv.) was subjected to a solution containing 24 (1.0 equiv.)
and 18 (1.0 equiv.) in CH,Cl,, which afforded the desired
product 25 in 20% yield. This result supports the notion that
a methylidene intermediate, such as 24 or (E/Z)-20, might be the
key intermediate in the third benzyne addition step of the TAT
reaction.

Interestingly, the reaction between 4 and 18 with CsF in THF
at 60 °C for 2 hours followed by treatment with saturated brine
solution afforded the trapped intermediate 6 in 9% yield
(Fig. 7A). There are two possible routes leading to the formation
of 6. One possibility is that the intermediate 19 is quenched by
an external proton source such as a solvent molecule. The other
possibility is that the intermediate 19 undergoes an intermo-
lecular proton transfer to yield neutral intermediates (E/Z)-20,
followed by tautomerization, to furnish hydrazonium salt 6. The
intermolecular pathway was ruled out in Fig. 4B. The [2 + 2]
cycloaddition product rac-7 was obtained as a mixture of
inseparable diastereomers in 7% yield.'* The relatively smaller
amounts of the [2 + 2] cycloaddition product compared to [4 + 2]
product 3 indicate that the [4 + 2] mode is experimentally more
favorable than the [2 + 2] mode. Calculations support the idea
that the intermediate 21 can react with another equivalent of
benzyne in either a formal [2 + 2] or [4 + 2] cycloaddition to give
28 and 29, respectively (Fig. 7B). We performed calculations to
elucidate whether the formal [2 + 2] and [4 + 2] cycloadditions
occur via stepwise or concerted mechanisms, and whether they
proceed through zwitterionic or diradical intermediates. A
stepwise [2 + 2] pathway would be expected in light of the
Woodward-Hoffmann rules, while a stepwise [4 + 2] is also
likely for this system because aromaticity would need to be
broken to form the ¢ C-C bond on one side but not the other,
leading to very different energetic penalties. Indeed, transition
states for concerted [2 + 2] or [4 + 2] cycloadditions were not
found for this system. While all of the possible closed-shell
zwitterionic intermediates for stepwise [2 + 2] and [4 + 2]
pathways were found to be unstable, we located the common

Chem. Sci,, 2018, 9, 7688-7693 | 7691
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Fig. 7 (a) The trapped intermediate salt 6 and competitive cycload-

dition between [2 + 2] and [4 + 2]. (b) Optimized geometries of
intermediates and product structures for [2 + 2] and [4 + 2] cycload-
dition pathways from the intermediate 21 and aryne 2 computed at the
M06-2X/6-311+G(d,p)/SMD  (CH,Cl,)//M06-2X/6-31G(d) level of
theory. Gibbs free energies are calculated with respect to isolated
reactants, and reported in kcal mol™.

diradical intermediate 27 expected along stepwise pathways of
both the formal [2 + 2] and [4 + 2] cycloadditions between 21 and
2, with a free energy of +0.1 kcal mol . Gibbs free energies of
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Fig. 8 Representative NMR correlation assignments of rac-8.

486 4.84 482

Fig. 9 Determination of stereochemistry of rac-9a. J coupling
constant of A from *H NMR spectrum (left) and calculated J coupling
constant and degree between two protons on cis intermediate rac-9a
and trans intermediate rac-9b (right).

the [2 + 2] adduct 28 and [4 + 2] adduct 29 indicate that these
formal cycloadditions are strongly exergonic.

During the analysis of the standard TAT reaction in Scheme
1, 8% of rac-8 was isolated and characterized by HMBC NMR
experiments, and its relative stereochemistry was determined
by NOESY NMR experiments (Fig. 8). We propose two possible
mechanisms for the synthesis of rac-8 consisting of a concerted
ene-reaction or stepwise ene-type reaction of rac-30.** In both
mechanisms, the two possible pathways support the existence
of a currently non-isolable intermediate rac-30.

Further observation of the rearranged intermediate rac-9a
indirectly supports that the intermediate rac-30 is in the course
of the TAT reaction. The structure of rac-9a was characterized by
'H NMR and HRMS spectroscopy. The J coupling constant of two
vicinal protons (J,) was determined to be 5.5 Hz (Fig. 9). Based
on the results from the B3LYP/IGLO-III//HF/6-31G(d) calcula-
tions, cis isomer rac-9a possessed 64° dihedral angles and a J
coupling of 3.5 Hz between the two vicinal protons. Larger
dihedral angles of 160° for the trans isomer (rac-9b) resulted in
aJc of 11.1 Hz, which is quite different from the observed value.

Conclusions

We have provided a detailed mechanism of the reaction
between a tetrazine and arynes. During the course of the reac-
tion, three aryne addition steps occur consecutively with each
step displaying a distinct reactivity mode with benzyne. By

This journal is © The Royal Society of Chemistry 2018
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isolating and trapping the key intermediates, each of these
distinct aryne reactivity modes as well as alternative side
product pathways were elucidated. DFT calculations of transi-
tion states of two competitive reactions, further [4 + 2] cyclo-
addition and nucleophilic addition, support the assertion that
[4 + 2] cycloaddition has higher activation energy barrier, and
thus, the formation of anthracene is supposed to be unfavor-
able. The computational and experimental study for three
plausible proton transfer pathways were performed. This anal-
ysis showed that the intermolecular water-assisted proton
transfer is more favorable than the intramolecular proton
transfer. The dibenzocinnoline 25 was observed during the
reaction of an alternative intermediate 24 with an aryne via [4 +
2] cycloaddition. The intermediate 19 undergoes further formal
[2 + 2] and [4 + 2] cycloaddition, with both the [2 + 2] cycload-
dition product rac-7 and the [4 + 2] product 3 being observed. In
addition, the plausibility of non-isolable intermediates rac-30
was confirmed by the isolation and characterization of the ene
or the stepwise ene-type product rac-8 and rearranged product
rac-9a. The observed intermediates and byproducts are consis-
tent with the overall proposed mechanism for the TAT reaction.
We anticipate that the study of arynes-tetrazine-engaged reac-
tivity modes will serve as guidance for future explorations of
aryne chemistry, and especially in the context of intermolecular
multiple consecutive aryne addition reactions.
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