Radical difluoromethylthiolation of aromatics enabled by visible light†

Jianbin Li, † Di’anhu Zhu, ‡ Leiyang Lv, † and Chao-Jun Li † *

Direct introduction of a difluoromethylthio group (–SCF₂H) to arenes represents an efficient route to access a valuable catalogue of organofluorines; however, to realize this transformation under metal-free and mild conditions still remains challenging and rarely reported. Herein, a metal-catalyst-free and redox-neutral innate difluoromethylthiolation method with a shelf-stable and readily available reagent, PhSO₂SCF₂H, under visible light irradiation is described. This light-mediated protocol successfully converts a broad spectrum of arenes and heteroarenes to difluoromethylthioethers in the absence of noble metals and stoichiometric amounts of additives.

The difluoromethylthio group, as a member of the fluoroalkyl family, has been receiving growing attention from both academia and industry.† This is not only because it incorporates two instrumental elements, sulfur and fluorine, into one functionality, but also due to its unique properties (Fig. 1b): (1) –SCF₂H is an intermediate lipophilic (Hansch lipophilicity parameter, πᵣ = 0.68 for –SCF₂H, 0.56 for –CH₃ and 1.44 for –SCF₃),‡ providing flexibility to medicinal chemists in the rational design of drug candidates; (2) –SCF₂H features a slightly acidic proton, rendering it a weak hydrogen bond donor (pKₐ = 35.2; hydrogen bond acidity parameter A = 0.098) to tune the molecule’s binding ability;¹³⁻¹⁵ (3) the electron-withdrawing nature of –SCF₂H could promote the metabolic stability of target compounds; and (4) difluoromethylsulfides can participate in some late-stage modification events, which could diversify this functionality and may regulate the bio-activity of host molecules. Pyriprole, patented in 2008 as a novel pest control agent, showed advantageous performance (Fig. 1a).⁴ Its invention detailed that the C-4 position bearing –SCF₂H was identified as the most preferable structure. Furthermore, the important role of –SCF₂H in pharmaceuticals and agrochemicals is evidenced by its frequent enrolment in other bioactive compounds, e.g., herbicide SSH-108,³ nifedipine analogue,⁴ and thymol analogue⁷ (Fig. 1a).

Despite the intriguing pharmaceutical potential exhibited by difluoromethylthioethers, their widespread application remains limited possibly owing to a lack of efficient preparative methods.⁸ Classical and commonly used approaches to synthesize difluoromethylthioethers employ the nucleophilic attack of an appropriate thiolate (RS⁻) to some “CF₃” species,⁹ typically a difluoromethyl carbene (:CF₂),¹⁰ (Scheme 1a, left). A complementary but less common approach to assemble –SCF₂H is difluoromethylation of disulfides using nucleophilic difluoromethyl sources [e.g., activated TMSCF₂H].¹¹ A major step forward to expand the substrate scope was made by the Gooßen group who described a stepwise synthetic route involving pre-formed thiocyanates and the subsequent copper-mediated Langlois type nucleophilic substitution by TMSCF₂H (Scheme 1a, right).¹³⁻¹⁵ Nevertheless, these indirect methods still suffer from a limited substrate scope. In addition, they usually necessitate strong bases, harsh thermal conditions and environmentally unfriendly reagents to generate reactive thiolates and “CF₃” species.

To address these issues, a key contribution was made by Shen and his co-workers who delineated the first nucleophilic difluoromethylthiolating reagent 1, [[(SiPr)Ag(SCF₂H)] (Scheme 1b).¹¹ In the presence of transition metals (M = Pd, Cu), this complex could couple with diverse aryl and heteroaryl halides,
Heterocycles under copper catalysis.

ylide reagent uncovered a hypervalent di...
essential role played by light was illustrated by the control experiment as the dark condition disabled the reaction completely (entry 5 and see ESI† for details on control experiments). Recent work by our group revealed the unique properties of NaI, e.g., high reducing ability along with low nucleophilicity,

which were helpful in radical generation. Therefore, we expected the SCF₂H radical generation would be accelerated by a complementary reductive pathway. Gratifyingly, catalytic incubation of iodide gave similarly good yield in a shortened reaction time (entries 6–8). Among the tested iodides, tetrabutylammonium iodide (TBAI) offered the highest yield (entry 8). Further increment of TBAI loading could promote the reaction to be quantitative (entry 9). Conforming to other electrophilic difluoromethylthiolation studies, 1a as a limiting reagent would be more preferable as an excess of difluoromethylthiolating reagent is crucial to maintain a decent level of active difluoromethylthiolating species (entries 10 and 11).

With the optimal conditions identified, the generality of this method was examined (Scheme 3). Initially, the functional group tolerance of different indoles was investigated. In general, indoles bearing substituents with different electronic and steric properties at various sites are compatible with the optimal conditions. Reaction rates of substrates with electron-donating groups were higher than those with electron-withdrawing groups. Satisfactorily, quantitative yield was obtained for non-substituted indole (2b). Product formation was not

Table 1 Selected results of evaluation under various conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>1a : [SCF₂H]</th>
<th>additive(equiv)</th>
<th>time</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>cd</sup></td>
<td>1 : 2</td>
<td>-</td>
<td>16 h</td>
<td>NR</td>
</tr>
<tr>
<td>2<sup>d</sup></td>
<td>1 : 2</td>
<td>-</td>
<td>16 h</td>
<td>20%</td>
</tr>
<tr>
<td>3<sup>b</sup></td>
<td>1 : 2</td>
<td>-</td>
<td>16 h</td>
<td>64%</td>
</tr>
<tr>
<td>4<sup>b</sup></td>
<td>1 : 2</td>
<td>-</td>
<td>48 h</td>
<td>80%</td>
</tr>
<tr>
<td>5<sup>b</sup></td>
<td>1 : 2</td>
<td>-</td>
<td>16 h</td>
<td>NR</td>
</tr>
<tr>
<td>6</td>
<td>1 : 2 NaI (5 mol%)</td>
<td>-</td>
<td>16 h</td>
<td>80%</td>
</tr>
<tr>
<td>7</td>
<td>1 : 2 KI (5 mol%)</td>
<td>-</td>
<td>16 h</td>
<td>80%</td>
</tr>
<tr>
<td>8</td>
<td>1 : 2 TBAI (5 mol%)</td>
<td>-</td>
<td>16 h</td>
<td>86%</td>
</tr>
<tr>
<td>9</td>
<td>1 : 2 TBAI (20 mol%)</td>
<td>-</td>
<td>16 h</td>
<td>99%</td>
</tr>
<tr>
<td>10</td>
<td>1 : 1 TBAI (20 mol%)</td>
<td>-</td>
<td>16 h</td>
<td>65%</td>
</tr>
<tr>
<td>11</td>
<td>2 : 1 TBAI (20 mol%)</td>
<td>-</td>
<td>16 h</td>
<td>80%</td>
</tr>
</tbody>
</table>

^a Abbreviations: CFL, compact fluorescent lamp; rt, room temperature; TBAI, tetrabutylammonium iodide; NR, no reaction. ^b All reactions were conducted with 0.10 mmol 1a, 0.20 mmol PhSO₂SCF₂H, 0.020 mmol TBAI in 1.0 mL CH₃CN under argon with irradiation of two 40 W CFL unless otherwise noted. The yield was determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as the internal standard. ^d 1_bTBAI as the difluoromethylthiolating source. Six 254 nm 2.5 W UV lamps (photo-box). In the dark.

Scheme 3 Scope of arenes. Method A: arene (0.10 mmol), PhSO₂SCF₂H (0.20 mmol), TBAI (0.020 mmol) in 1.0 mL CH₃CN under argon for CFL irradiation at rt for 16 h. Method B: arene (0.10 mmol), PhSO₂SCF₂H (0.20 mmol) in 1.0 mL CH₃CN under argon for CFL irradiation at rt for 48 h. The yields in the parentheses refer to the isolated ones unless otherwise specified. Volatility resulted in the low isolated yield of 17b and 18b. ^aReaction performed on the 0.40 mmol scale. ^bThe reactions were performed for 24 h. ^cThe reactions were performed for 48 h. ^d4 equiv. PhSO₂SCF₂H were used. ^eYields are quantified by GC-MS due to the volatility of target compounds.
affected by the methyl group at the C-5 or C-7 position (3b and 4b). Even in the presence of a phenyl group at the C-2 position, a decent yield can also be achieved (5b). Notably, the reaction proceeded smoothly in indole tethering a phenolic proton (6b). Methoxylated indoles could result in 98% and 78% of desired products respectively (7b and 8b). Indole derivatives bearing the chloro, bromo and boryl groups resulted in good to excellent yields of products, which allow further cross coupling to achieve more complex settings (9b to 11b). Unexpectedly, regioomers were isolated for substrates with an ester group (12b and 12b'). Then we moved the focus to a class of closely related N-heterocycles, pyrroles. Pyrroles with phenyl, methyl, benzyl, dimethylamino and carbonato groups all gave around 70% of target difluoromethylthioethers (13b to 17b). Of note is the substituent bearing a double bond, which is known to be reactive toward PhSO₂SCF₂H. Gratifyingly, the Csp²=H difluoromethylthiolation product was selectively obtained (18b).

Other heteroarenes, e.g., azaindole, pyrazole, isoxazole, and chromone, which are pharmaceutically important scaffolds, were also effective (19b to 22b). Notably, this protocol was viable for thiophene, which was generally unreactive in other difluoromethylating recipes (23b).³⁸,³⁹ Finally, the versatility of this method on some arenes was explored. 1,3,5-Tri-methoxybenzene was difluoromethylated successfully (24b). As this method was proved adaptable to phenolic protons, installing –SCF₂H on phenol (25b) and resorcinol derivatives (26b and 27b) was efficient. Aniline and sulfide underwent difluoromethylthiolation smoothly as well, resulting in good yields (28b and 29b).

Generally, high regioselectivity was observed for this difluoromethylthiolation reaction, which was a combined effect of electronics and steric factors. In most cases, the site of the highest electron density was difluoromethylated, e.g., C-2 in indoles and C-1 in pyrroles. When multiple sites of similar electron richness were available, the reaction occurred at the sterically less hindered Csp²=H (25b and 29b). Although an excess amount of PhSO₂SCF₂H was used, the difunctionalization product was rarely detected during our scope exploration (see ESI† for details of mono-/difunctionalization and regioselectivity issues).

Knowing that the difluoromethylsulfoxides and difluoromethylsulfinones are valuable entities in medicinal chemistry, we were encouraged to alter the oxidation state of sulfur in –SCF₂H. As expected, the oxidation of difluoromethylthioethers could be accomplished in a controlled manner under different oxidizing conditions (Scheme 4a). Besides, the reactivity of this photochemical strategy was extended to produce other synthetically useful thyl radicals. Under the optimal conditions, phenylthioether (30b) and naphthylthioether (31b) were furnished smoothly. However, alkylthiolation (32b) was undermined by the homocoupling event of alkylthyl radicals. Moreover, 33a was subjected to a gram-scale experiment to demonstrate the practicality of this method (Scheme 4c). We were pleased to see that the reaction proceeded smoothly and a good yield of the desired product was obtained (33b).

Although the underlying mechanism remained obscure at this stage, our preliminary study hints at the radical nature of this reaction as designed. The presence of various radical quenchers significantly impacted the desired reactivity (Scheme 5, eqn (1) and (2)). When diallylmalonate (34a) was employed as the radical clock-type trapper, a cyclization adduct (34b) with PhSO₂SCF₂H was observed irrespective of the presence of 1a (eqn (2) and (3)). This result, to a degree, supports our postulation of the radical mechanism.

Based on the previous literature⁵⁰,⁵¹ and the above-mentioned experiments (see ESI† for details of the radical mechanism), we envisioned that a radical-involved mechanism was operative. Under light irradiation, a difluoromethylthyl radical resulted from either the homolysis of PhSO₂SCF₂H or the photo-induced electron transfer (PET) event between PhSO₂SCF₂H and iodide. Subsequently, the action of SCF₂H radical on arenes was followed by hydrogen abstraction of the phenylsulfonyl (radical) to furnish the target compound. The resulting phenylsulfonic acid was unstable and further transformed into thiosulfonate.⁵²

Scheme 4 Application. (a) Controlled oxidation of thiocarboxylic acids to corresponding sulfoxides and sulfones; (b) modified reagents to afford arythiolation products; (c) scaled-up experiments.

Scheme 5 Mechanistic study. (a) Termination of the desired reactivity in the presence of radical trappers; (b) plausible mechanism.
Conclusions

In summary, we have developed a metal-catalyst-free aromatic difluoromethylthiolation reaction at room temperature enabled by visible light. This operationally simple strategy features the synthesis of a series of difluoromethylthioethers under mild conditions, which are a class of compounds with high medicinal value. These difluoromethylthioethers could be readily diversified into corresponding sulfones and sulfoxides. Moreover, this “dummy group” strategy holds great potential for achieving other types of radical thiolations by simply switching the functionalities tethered on thiosulfonate reagents. Details of mechanistic insight remain to be explored and we are dedicated to introducing fluorine-containing functional groups on arenes with similar strategies.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are grateful to the Canada Research Chair Foundation (for supporting C.-J. L.), the Canada Foundation for Innovation, the FQRNT Center in Green Chemistry and Catalysis, the Natural Sciences and Engineering Research Council of Canada, and McGill University for supporting our research. The authors also thank the Shanghai Institute of Organic Chemistry (SIOC) for supporting D. Zhu with a postdoctoral fellowship and supporting L. I. with a National Postdoctoral Program for Innovative Talents fellowship (BX201700110). We are also grateful to Prof. Dr Dmitrii Perepichka (McGill University) for our access to the fluorescence facilities and Dr Robin Stein for her patience and helpful guidance on spectrometry.

Notes and references

19 (a) X. Zhao, A. Wei, T. Li, Z. Su, J. Chen and K. Lu, Org. Chem. Front., 2017, 4, 232–235; (b) Q. Yan, L. Q. Jiang, W. B. Yi,

