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Beyond the lanthanide organometallic single-ion magnet (SIM) (Cp*)EHCOT)! (ICp*]~ = pentamethyl-
cyclopentadienide; COT?™ = cyclooctatetraenide) that has a good performance, we managed to replace
one coordinated carbon atom on the [Cp*]™ ring by a soft phosphorus atom and obtained (Dsp)Er(COT)
(CCDC No. 1835955; Dsp~ = 3,4-dimethyl-2,5-bis(trimethylsilyl)phospholyl) whose sandwich structure is
reported here for the first time. This substitution results in a remarkable change of magnetic dynamics. It

exhibits slow magnetic relaxation under a zero applied direct current (DC) magnetic field with an energy
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Accepted 1st August 2018 barrier (A/kg) of 358 K and magnetic hysteresis up to 9 K, both of which are higher than those of (Cp*)

Er(COT). With the descended local symmetry of (Dsp)Er(COT), the energy barrier and blocking temperature

DOI: 10.1039/c85c016269 (Te) both improve unexpectedly and are among the highest ones in Er(i)-based single-molecule
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Magnetism is one of many basic physical properties of mole-
cules which we chemists could explore and understand by
studying the geometrical and electronic structures.” This area
has flourished as a lively crossroad for physics, chemistry and
materials science. Single-molecule magnets (SMMs) are one of
the most cutting-edge fields in molecular magnetism thriving
from the inception of the noted {Mn;,} in 1993.> SMMs belong
to a class of molecules which can exhibit slow magnetic relax-
ation purely of a molecular origin rather than the collective
behavior facilitated by magnetic exchange coupling in ensem-
bles through a 3D network.* If there's only a single spin center,
they're also noted as single-ion magnets (SIMs).* The famed
[Pc,Tb]™ ([Pc]*” = dianion of phthalocyanine) opened the
prosperous stage to lanthanide SIMs (Ln-SIMs) because of their
unparalleled single-ion anisotropy due to unquenched orbital
angular momentum especially for heavy lanthanide ions.*® The
success of [Pc,Tb] ™ offers an intriguing possibility for molecular
spintronics.” In 2011, an organometallic SIM (Cp*)Er(COT)"
was reported by our group. It shows two magnetic relaxation
processes under a zero applied DC magnetic field arising from
two statically disordered conformers with energy barriers of 197
and 323 K, respectively, which were several times higher than
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those of cluster-based SMMs at that time. From then on
concerted efforts have been made toward Ln-SIMs with a high
energy barrier (A/kg) for the reversal of magnetic quantum
states and magnetic blocking temperature (Tg).*

In order to construct a good SIM, hard bases containing O or
N coordinating atoms are often introduced to enhance the
uniaxial ligand field and hence the zero field splitting which is
the main source of Ising-type anisotropy for Ln-SIMs.*° But in
this work we do exactly the opposite. Based on (Cp*)Er(COT),
using a soft phosphorus analogue of the Cp™~ ligand - a phos-
phacyclopentadienyl (phospholyl) ligand - can improve the SIM
performance unexpectedly.

Phospholyl ligands have already become well-established
alternatives to cyclopentadienyl (Cp~) groups' in organome-
tallic chemistry for polymerization catalysis'* and have capti-
vated synthetic chemists in coordination chemistry.'> Thanks to
the isolobal analogy" between -C(H/Me) and phosphorus,
phospholyl ligands can retain aromaticity to some extent rela-
tive to Cp~ or [Cp*].**** And they still tend to keep their n®
mode like Cp~ in coordinating with Ln ions in most cases.*
However, according to the theory of hard and soft acids and
bases,"” the substitution of C by a larger and floppy P makes
them softer bases and poor m-donors.*®* This substitution will
undoubtedly lead to the lowered affinity of phospholyl ligands
with some high-valent metal ions Ln(u) for instance which act
as hard acids. Furthermore, in Dsp~ two electron-withdrawing
groups -SiMe; further reduce the nucleophilicity. Meanwhile,
they are less inclined to be in 1" coordination mode using the
lone-pair electrons of P atoms for the lower affinity of P with Ln
ions with only three exceptions.”® So we can safely replace the
Cp’ ring by a phospholyl group and keep the same coordination

This journal is © The Royal Society of Chemistry 2018
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mode, and make a rational structural comparison between the
two. For Ln(II), the lower oxidation state, larger ionic radius and
hence softer acidity make it more easily bind to phospholyl
ligands. Phospholyl Ln(II) complexes can be synthesized either
by salt metathesis'® or by a redox reaction between metal Ln and
1,1"-biphospholyls.”* However, especially for heavy Ln(w), it's
a different scenario. Comparatively very few phospholyl heavy
Ln(m) complexes have been successfully synthesized and
structurally characterized so far, such as, (Dtp),TmI (Dtp~ =
3,4-dimethyl-2,5-di-tert-butyl phospholyl),* {(Htp),TmI}, (Htp~
= 2,5-di-tert-butyl phospholyl),?, (Dtp),DyI,* {(Dsp),Dyl}, (ref.
23) and {(Dtp),Tm(p-S)},.>* Moreover, the single crystal struc-
ture of sandwiched (phospolyl)Ln(COT) has not been reported
yet, and only two close examples of early Ln(m) compounds
(Dsp)Nd(COT)(THF)* and (Tmp)Nd(COT)[OP(NMe,),;*
(Tmp~ = tetramethyl phospholyl) were found but not in
a double-decker structure in the presence of solvent THF and
other ancillary ligands OP(NMe,);. In this work, we obtained
a phospholyl heavy Ln(m) complex (Dsp)Er(COT) with a sand-
wich structure.

With the change of coordination capability described above
when phospholyl ligands replace [Cp*]”, ligand field and
consequently the electronic structure of the whole complexes
will be different accordingly, which may bring about significant

"BuLi (2.5 M in hexane) \SiMSi/\
o7

— SiMe;

CpoZrCl,
Toluene, R. T.

i I\ K
PCl3 (2 M in CH,Cl) /\Sil—i\&/\

CH,Cly, R. T., - Cp,ZrCl, oy

-78°CtoR.T., 48 h

\.
Pc
/ ?
\S‘lds/ {EN(COT)(THF);} Si
—ol P | —
/ \ Toluene, reflux, overnight, - KI
K" ¢ ->)

K(Dsp)

(Dsp)Er(COT)

Scheme 1 Synthesis of (Dsp)Er(COT).
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variation of optical and magnetic properties. Alternating
current (AC) magnetic susceptibility measurement of (Dsp)
Er(COT) demonstrated a significant change of magnetic
dynamics compared with its parent analogue (Cp*)Er(COT)
(vide infra).

Following the work by Francois Nief and Louis Ricard***’
with some modifications, we first get phospholyl potassium
K(Dsp), which then reacts with ErI(COT) (THF), (x = 2-3, see the
ESIf) in toluene under reflux to produce (Dsp)Er(COT) with
insoluble KI (Scheme 1). Trying to precipitate KCl by reacting
with {(THF)Er(COT)(n-Cl)}, is unsuccessful, although K(Dsp)
can eliminate C1™ in {(THF),Nd(COT)(u-Cl)}, (ref. 25) which is
probably due to different acidity between light and heavy Ln(u)
ions (vide supra). Orange single crystals suitable for X-ray
diffraction analysis can be obtained by cooling the concentrated
toluene solution of (Dsp)Er(COT) at —30 °C for several days
(anal. calc.: C, 45.59%; H, 6.12%; found: C, 45.73%; H, 6.12%.).

As depicted in Fig. 1, the single crystal structure of (Dsp)
Er(COT) at 180 K (structure refined according to ref. 28) reveals
itself as a double-decker structure, reminiscent of its Cp*
parent.” It crystallizes in the P2,/c space group. The nearest
Er---Er distance is 7.832 A. It's noteworthy that the COT?~ ring is
in static disorder as well with the ratios 0.56 and 0.44 (Fig. S4 in
the ESIt). The tilting angle between Dsp~ and COT>™ planes is
10.5°. The distance from Er(m) to the five-membered ring is
2.321 A, larger than that in (Cp*)Er(COT) (2.268 A), which
crystallographically shows a weaker coordination between the
two, yet Er(ur) is much closer to COT?~ (1.686 A in (Dsp)Er(COT),
1.727 A in the Cp* version and 1.875 A in [Er(COT),]").** The
Er—C(Dsp~) bond lengths range from 2.635 to 2.645 A, while
Er-C(COT*") bond lengths are from 2.471 to 2.491 A. The Er-P
bond length is 2.793 A, being close to the reported Er-P bond
length.*" To the best of our knowledge, this is the first sandwich
structure reported with a phospholyl ligand and COT*>~ coor-
dinating simultaneously to a heavy Ln(m).

We wonder if a slight change of only one coordinated atom
could trigger a pronounced difference of magnetic properties.
We resort to AC susceptometry which is often applied to probe
magnetic dynamics.* The out-of-phase component (xy,) of
molar AC susceptibility for (Dsp)Er(COT) exhibits noticeable

Fig.1 Front view (a), top view (b) and side view (c) of the single crystal structure of (Dsp)Er(COT) with pink, orange, tan, and black ellipsoids (30%
possibility) representing Er, P, Si, and C, respectively (another disorder fragment of COT?~ is shown in Fig. S4+). Hydrogen atoms and another
disordered part of COT?™ (Fig. S41) have been omitted for clarity. Selected bond lengths: Er—P = 2.793 A; Er—C(Dsp~) = 2.635-2.645 A; Er—
C(COT?") = 2.471-2.510 A.
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frequency-dependence over 1 to 1000 Hz from 2 to 28 K under
a zero applied DC field (Fig. 2). As with its prototype, this slow
magnetic relaxation of (Dsp)Er(COT) unveils itself as a SIM.
There is a single peak in the plot of xy; versus T at a given
frequency while there are two for (Cp*)Er(COT). The narrow
distribution of relaxation time 7 (¢ = 0.01-0.2) from the fitting
of the Argand plot* (Fig. S10t) indicates almost a single relax-
ation despite the existence of two static disorder conformers
which instead gives rise to two relaxation processes corre-
sponding to two peaks of yxy; in the measured temperature
range for (Cp*)Er(COT)".

A combination of an Orbach process and quantum tunnel-
ling of magnetization (QTM) (¢ " =1, ' exp[—A/(kzD)] + Torm
7 is the relaxation time) can fit the data of In t versus T~ " well
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Fig. 2 Temperature (a) and frequency-dependence (b) of molar
AC susceptibility (upper: xy, lower : xj;) for (Dsp)Er(COT) under

a zero applied DC field over the temperature range of 2—-28 K and the
frequency range of 1-1000 Hz.
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Fig. 3 Plot of natural log of relaxation time versus inverse temperature
under a zero applied DC field. The purple and red circles represent the
data from MPMS and PPMS, respectively. The black solid line repre-
sents the best fitting using a combination of Orbach and QTM
processes. The fitting gives A/kg = 358(3) K and 1o = 1.6(3) x 107 s.

(Fig. 3). It demonstrates that the thermally activated Orbach
process is dominant above 12 K and QTM considerably masks
other possible relaxations below 10 K. The fitting returns
a relaxation barrier A/kg = 358(3) K which is much higher than
that of (Cp*)Er(COT) (197, 323 K)'“ and [Er(COT),]™ (206 K), and
among the highest ones in Er(m)-based SIMs.**** Magnetic
dynamics measurements were also performed under a 1000 Oe
DC field to effectively suppress the QTM (Fig. S12}). A similar
workup to that described above gives A/kg = 367(1) K (Fig. S131).

The subsequent measurement of zero field cooled and field
cooled magnetization (ZFC-FC) presents a divergence at about
8.5 K between the two curves (Fig. S71), which reminds us of
a probable magnetic hysteresis. As expected, typical butterfly-
shaped magnetic hysteresis loops in mesoscopic SMMs** can be
observed below 9 K with a field-sweep rate of 200 Oe s™* (Fig. 4
and S87). At 2 K, there is still a magnetic remnant of 0.3 N} at
a zero field and the value of the coercive field H, is 55 Oe. The

9K
2" — 10K

—2K
—3K
—4K

-0.05
-0.02 -0.01 0,00 0.01 0.

M (NB)

Fig. 4 Variable-field magnetization for (Dsp)Er(COT) with a field-
sweeping rate of 200 Oe s~ (Inset) Expanded view of the variable-
field magnetization near the zero field at 9 K and 10 K.

This journal is © The Royal Society of Chemistry 2018
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magnetic blocking temperature (7g) of about 9 K (Fig. S87) is
much higher than that of (Cp*)Er(COT) (5 K, 550 Oe min~ ') and
almost rivals that of [Er(COT),]” (10 K, 0.78 mT s ').>* This is
a robust confirmation that (Dsp)Er(COT) is a magnet which can
reserve its magnetization even under a zero field like a block
magnet. The above results explicitly unveil (Dsp)Er(COT) as
a SIM with a good performance.

Why does the seemingly weaker ligand field of Dsp™~ produce
stronger anisotropy than [Cp*] ? For one thing, we think that
the phospholyl ligand and its parents Cp~ and [Cp*]™ are more
like axial ligands favorable for the oblate electron distribution
of Dy(u) to stabilize its Ising-type M; ground state**** as exem-
plified by plenty of excellent Cp-based Dy(m) SMMs.** But
they're unsuitable for prolate Er(m) under Ising-limit condi-
tions. This sort of difference between Dy(u1) and Er(ui) originates
from the opposite signs of axial crystal field parameters (B and
B3)*” for the two lanthanide ions. The moving away of the Dsp ™~
ligand from the axial electron cloud of Er(um) could reduce the
electron repulsion. On the other hand, a large equatorial ligand
such as the COT?" ring with high rotational symmetry is suit-
able for prolate Er(m) to stabilize its M; ground state as
corroborated by (Cp*)Er(COT) and [Er(COT),] . The closer the
Er(m) is to the COT>™ ring, the stronger the ligand field the —2
charged COT>~ exerts on Er(m), and hence the larger the
anisotropic splitting of the ground J state. Although there are
two COT>~ rings in [Er(COT),] ,** the distance between Er(um)
and COT>~ (dg,_cor) becomes larger (1.875 A) due probably to
the repulsion between the two COT>~ rings which results in
a weakened ligand field instead and its anisotropic energy
barrier is lower than that of (Cp*)Er(COT). In this regard, the
closer the Er(m) is to the COT>~ ring within a certain range, the
lower and less mixed the ground state doublets are, making
them closer to the Ising limit at least for the lowest Kramers
doublets. Compared with (Cp*)Er(COT), the weak adhesion of
Er(m) in (Dsp)Er(COT) with the phospholyl ligand leads to
a shorter distance between Er(m) and COT>~ (vide supra) in
order to maintain a balanced and conservative electrostatic
potential of Er(ur). So SIM performance improves as elaborated
above in spite of lower symmetry (Table 1). We believe that
der—cor plays an essential role in causing different magnetic
dynamics between (Dsp)Er(COT) and (Cp*)Er(COT).

As a statistical induction, we have found the COT-based
Er(m) SIMs reported to-date and plotted each scattered point
representing the data of A/kg versus dg._cor (Fig. 5a). In
a panoramic view, when the COT?>~ ring moves gradually away
from Er(m), the barrier goes through a precipitous fall below 1.7
A, and then changes less with increasing dg;_cor. In order to

Table1l Comparison of structural metrics and energy barrier between
(Cp*Er(COT)* and (Dsp)Er(COT)

(Cp*)Ex(COT)  (Dsp)Er(COT)
Er-centroid (COT>")/A 1.7267(3) 1.6855(3)
Er-centroid (five-membered ring)/A 2.2679(3) 2.3220(3)
Tilting angle between the two rings/° 7.3 10.5
A/K 197, 323 358

This journal is © The Royal Society of Chemistry 2018
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Fig. 5 (a) Scattered points representing the data of A/kg vs. dg,_cot

from reported COT-based Er(i) SIMs.23023338 The data of (Cp*)Er(COT)
are from the calculation based on the ligand field for easy comparison.
([Tpl™ = tris(1-pyrazolyl)borate and [Tp*]™ = tris(3,5-dimethyl-1-pyr-
azolyl)borate); (b) plot of energy barrier vs. series of dg,_cot for the
hypothetical fragment [Er(COT)]* calculated based on ab initio; inset:
[Er(COT*.

theoretically understand the trend, we calculated the energy
barrier of the model molecular fragment [Er(COT)]" with
a different dg,_cor using the ab initio method®” (Table S5;
Fig. 5b and S24+). Previous computation®” involved two COT>~
rings based on the single crystal structure of [Er(COT),]_.
However, we think it's not a single factor story in which high
negative charge repulsion between COT?~ rings may result in an
unstable ground state within a certain distance (vide supra). So
the result may not be very convincing if we only want to
examine the relationship between A/kg and dg;_cor. In our
model with only one COT*~ ring, as expected, when dg;_cor
becomes larger than 1.6 A, the energy barrier goes down
approximately in a linear way. The downtrend of the energy
barrier with increasing dg; cor in Fig. 5 shows that a short
dgr—_cor is conducive to a high energy barrier, and the chemi-
cally adjustable soft P atom in the five-membered ring is the
pushing hand.

Chem. Sci., 2018, 9, 7540-7545 | 7543
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From the above elaboration, we can see the main line clearly
whereby the introduction of a soft P atom leads to a larger
distance from Er(in) to the Cp analogue which reflects a weaker
affinity between the two, and hence a shorter dg,_cor which
enhances the ligand field and anisotropic splitting. So a higher
energy barrier is possibly reached.

In this series, we have also examined (Dsp)Ln(COT) (Ln = Tb
(CCDC No. 1835954), Dy (CCDC No. 1835957), and Tm (CCDC
No. 1835958)) among which (Dsp)Dy(COT) exhibits slow
magnetic relaxation under a 2000 Oe applied DC field with A/kg
= 57 K (Fig. S15%). (Dsp)Tm(COT) is also a field-induced SIM
under a 2500 Oe applied DC field with an energy barrier of 109 K
(Fig. S18t), which is almost the highest in Tm(u)-based SIMs*®
so far.

Conclusions

We have successfully synthesized (Dsp)Er(COT) whose sand-
wiched single crystal structure is reported here for the first time.
Compared with its parent compound (Cp*)Er(COT), the
replacement of only one coordinated carbon atom on the
cyclopentadienyl ligand by a softer phosphorus atom results in
a considerable change of magnetic dynamics which returns
a relaxation energy barrier of 358 K under a zero applied DC
field and blocking temperature of 9 K. Both manifest it as
a better SIM than (Cp*)Er(COT). The essential reason mainly
resides in the short distance between Er(u) and COT>~ caused
by the weak affinity of Er(m) with Dsp™~. Through the introduc-
tion of a softer coordinating atom, we have obtained a better
Er(m) SIM. Inspired by this work, we will continue to focus on
introducing more soft P atoms and expect better Er(m)-based
SIMs.
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