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d enantioselective 1,2-borylation
of 1,3-dienes†

Yangbin Liu, Daniele Fiorito and Clément Mazet *

A highly enantioselective Cu-catalyzed borylation of 2-substituted 1,3-dienes is reported. The use of a chiral

phosphanamine ligand is essential in achieving high chemo-, regio-, diastereo- and enantioselectivity. It

provides access to a variety of homoallylic boronates in consistently high yield and enantiomeric excess

with 2-aryl and 2-heteroaryl 1,3-dienes as well as sterically demanding 2-alkyl 1,3-dienes. Preliminary

investigations based on a non-linear effect study point to a mechanism involving more than one metal

center.
Introduction

Conjugated 1,3-dienes represent a particularly attractive plat-
form for selective functionalizations. They do occur in some
natural products and have oen been used as bifunctional
building blocks for the synthesis of biologically active mole-
cules as well as in several polymerization processes.1,2 From
a selectivity standpoint, functionalization of 1,3-dienes repre-
sents a signicant challenge due to the numerous coordination
and insertion modes conceivable for a transition metal cata-
lyst.3 To date, efforts to develop selective catalytic trans-
formations have been essentially focused on linear 1,3-dienes
(i.e. 4-substituted 1,3-dienes).4 Until recently, the limited
synthetic accessibility of 2-substituted 1,3-dienes has hampered
their use in the development of selective transformations.5

Moreover, most examples were focused on isoprene and myr-
cene, two readily available substrates of this subclass of
conjugated dienes. Consequently, the effect of electronic and
steric modications has not been systematically investigated.
For instance, the introduction of an aryl instead of an alkyl
substituent at position 2- of a conjugated diene is likely to
impart substantial changes in substrate polarity and/or in steric
demand (Fig. 1A). Our laboratory recently reported a general
procedure which streamlines access to 2-substituted 1,3-dienes
and we decided to initiate a program on the selective func-
tionalization of this underexplored scaffold.6

Among the approaches to functionalize 1,3-dienes, transi-
tion metal-catalyzed hydroborations and borylations have
emerged as attractive strategies providing access to poly-
functionalized – potentially enantioenriched – structural
motifs. For 2-substituted substrates, the selectivity challenge is
ic Chemistry, 30 quai Ernest Ansermet,

t.mazet@unige.ch

SI) available: Experimental procedures,
nds and spectral data. See DOI:
highlighted by the fact that up to 6 different isomers can be
generated upon exclusive mono-functionalization (Fig. 1B).
Allylic boronates resulting from formal 1,4- or 4,1-hydro-
borations of 2-substituted 1,3-dienes have been reported by the
groups of Suzuki and Ritter using highly chemo-, regio- and
stereoselective Pd, Rh and Fe catalysts.7 Homoallylic boronates
obtained by a 4,3-selective hydroboration are less common. Ito,
Fig. 1 (A) Linear vs. 2-substituted conjugated 1,3-dienes. (B) Selectivity
challenges in hydroboration and borylation of 2-substituted 1,3-
dienes. (C) Previous hydroborations/borylations of 2-substituted 1,3-
dienes. (D) Arylboration of isoprene along with putative primary and
tertiary Cu s-allyl intermediates.

This journal is © The Royal Society of Chemistry 2018
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Table 1 Reaction optimizationa

Entry L Solvent Conv.b (%) 2a : 3a : 4ab ee 2ac (%)

1 L1 THF 86 1 : 15 : — nd
2 L2 THF 74 1 : 3 : — 5 (S)
3d L3 THF 67 1 : 7 : — 21 (R)
4 L4 THF 81 1 : 1.5 : — 24 (R)
5d L5 THF 63 4.6 : 1.3 : 1 4 (R)
6d L6 THF 80 4 : 1 : 1 20 (R)
7 L7 THF 74 6 : 1 : 2 43 (R)
8d L8 THF 87 8 : 2 : 1 48 (R)
9d L9 THF 91 27 : 2.7 : 1 67 (R)
10d,e L9 Et2O 51 12 : 1 : — 72 (R)
11d,e L9 Tol. 83 13 : 1 : — 70 (R)
11d,e L9 C6H5Cl 85 12 : 1 : — 74 (R)
13d,e L9 C5H12 88 17 : 1 : — 70 (R)
14e,g L9 C5H12 77 20 : 1 : — 85 (R)
15f,g,h L9 C5H12 89 (82)i 20 : 1 : — 90 (R)

a Reaction conditions: 1a (0.12 mmol), B2(pin)2 (0.10 mmol), 0.3 M.
b Determined by 1H NMR using an internal standard. c Determined by
HPLC using a chiral stationary phase aer oxidation to the
corresponding alcohol 20a. d 20 mol% of ligand. e 0.1 M. f 0.15 M.
g �40 �C, 40 h. h CuOtBu (10 mol%), without base. i Yield over 2 steps
aer oxidation to 20a and purication by column chromatography.
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Fout and Chirik only described such products in studies where
the focus was initially set on the hydroboration of cyclic 1,3-
dienes and terminal alkenes.8 To our knowledge, methods to
access products of 1,2-, 2,1- and 3,4-selective hydroboration are
absent from the current literature (Fig. 1B). Cu/Pd-catalyzed
cooperative carboboration of alkenes represents another
emerging class of transformation which involves the transient
generation of copper-alkyl intermediates prior to trans-
metalation to a palladium catalyst.9 In this context, only few
reports have placed emphasis on 1,3-dienes.10 The Brown group
recently disclosed the highly selective arylboration of isoprene
and myrcene unexpectedly leading to the exclusive formation of
A when 4-dimethylaminopyridine (DMAP) was employed as
additive (Fig. 1D).10a Interestingly, to account for this unusual
selectivity preliminary mechanistic investigations do not
support the formation of a congested Cu-s-allyl intermediate
such as B (Fig. 1D) but rather transmetalation to Pd from
a putative 1,4-borocupration species such as C. Within this
context, at the outset of our investigations, we aimed at estab-
lishing a perfectly 1,2-selective borylation of 2-substituted 1,3-
dienes to access valuable enantioenriched homoallylic boro-
nates.11 Herein, we describe the successful realization of our
objective with the development of a highly chemo-, regio-, and
enantioselective Cu-catalyzed borylation of a variety of 2-
substituted 1,3-dienes.

Results and discussion

Our study commenced by evaluating several chiral ligands
for the Cu-catalyzed borylation of 1a using prototypical
reaction conditions favoring borylcupration (B2(pin)2/MeOH;
Table 1).12,13 With ligands L1–3, homoallylic boronate 3a was
obtained predominantly along with trace amount of the desired
1,2-borylated product 2a (conv. ¼ 67–86%; Entry 1–3). The
commercially available bisphosphine (R)-BDPP afforded 2a and
3a in a nearly 1 : 1 ratio with a low but measurable enantiose-
lectivity for the former (2a: 24% ee, Entry 4). Using either dia-
stereoisomers of the well-established phosphoramidite ligands
L5 and L6, 2a was obtained as major regioisomer albeit in
mixture with both 3a and (E)-4a (a product of formal 1,4-bor-
ylation) and in low ee (Entry 5–6). The chiral heterotopic ligand
(R)-Quinap L7, enabled to increase both the relative ratio in
favor of 2a as well as its enantiomeric excess (2a: 43% ee; Entry 7).
A slightly improved result was achieved with Simplephos L8 –

a structure introduced by the Alexakis group which rapidly
established itself as a ubiquitous ligand in numerous Cu-catalyzed
enantioselective transformations.14 Given the higher modularity
of L8 compared to L7, several members of the Simplephos family
were evaluated next (See ESI† for details) and allowed for identi-
cation of L9 as the best congener for the borylation of 1a (Entry
9). Further optimization of the solvent, temperature, concentra-
tion, time and copper source led to a system which afforded
homoallylic boronate 2a as a single regioisomer (2a : 3a > 20 : 1) in
82% yield and 90% ee (Entry 10–15).

The scope of the process was rst evaluated for 2-(hetero) aryl
substituted 1,3-dienes. In most cases only products resulting
from 1,2- and 4,3-borylation were detected. The selectivity was
This journal is © The Royal Society of Chemistry 2018
assessed by analysis of the crude reaction mixture aer bor-
ylation and the yields and enantiomeric excess were measured
aer oxidation into the corresponding homoallylic alcohols (20
examples, Fig. 2). Overall, most conjugated 1,3-dienes contain-
ing electron-rich, electron-neutral and electron-decient
aromatic substituents participated well in the Cu-catalyzed
borylation reaction, delivering the product in moderate to
good yield, good to excellent regioselectivity and high enantio-
selectivity (20a–20l: 56–82% yield; chemoselectivity: 2.6 : 1 to >
20 : 1; 86–91% ee). Several functional groups (methoxy, uoro,
amino, triuoromethyl, chloro) are tolerated. Whereas a homo-
allylic alcohol having a p-CN substituent (20n) was isolated in
much reduced yield albeit in high ee, 20o which displayed an
alkyne substituent was generated in high yield, chemo- and
enantioselectivity. Reduced performances were observed in the
borylation of heteroaromatic-containing 1,3-dienes although
satisfactory enantioinduction were still measured for 20p and
Chem. Sci., 2018, 9, 5284–5288 | 5285
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Fig. 2 Sequential borylation/oxidation of 2-(hetero)aryl substituted 1,3-dienes. Reaction conditions: 1a (0.36 mmol), B2(pin)2 (0.30 mmol).
Chemoselectivity assessed by 1H NMR after borylation. Yields of isolated alcohols 20. Enantioselectivity determined after oxidation by HPLC, GC
or SFC using a chiral stationary phase. aThe minor isomer is 40n. bIsolated as a 5 : 1 mixture.
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20r. Finally, skipped dienes 2's-t – which derived from the parent
dendralenic 1,3-dienes – were isolated as single regioisomers in
good yield and high enantioselectivity.

Subsequently, conjugated 2-alkyl-1,3-dienes were investi-
gated (Fig. 3). Counter-intuitively – perhaps – the reactivity,
the chemoselectivity and the enantioselectivity were all found to
increase drastically when going from primary (1u-v), to
secondary (1w) and nally tertiary alkyl substituents (1x). While
primary and secondary alkyl favored 4,3-borylation, a sterically
Fig. 3 Sequential borylation/oxidation of 2-alkyl substituted 1,3-
dienes. Reaction conditions: 1u-x (0.18–0.36 mmol), B2(pin)2 (0.15–
0.30 mmol). Chemoselectivity assessed by 1H NMR after borylation.
Isolated yields for alcohols 20v-x. Enantioselectivity determined after
oxidation by HPLC, GC, SFC using a chiral stationary phase. aCon-
version of non-separable isomers determined by 1H NMR (20u + 30u).
bAt 0 �C for 24 h.

5286 | Chem. Sci., 2018, 9, 5284–5288
demanding 1-adamantyl group restored preferential 1,2-bor-
ylation (7 : 1) generating 20x in good yield and excellent enantio-
selectivity. At rst sight, these data suggest that enantio-
differentiation may preferentially occur during 1,4-protodecupra-
tion from intermediate C rather than during 1,2-borocupration as
a particularly congested quaternary Cu-s-allyl species B would be
formed in the case of 20x. The situation is likely to be more subtle
and complex. Indeed, non-linear-effect studies revealed a substan-
tial deviation from linearity – a signature for catalyst aggregation as
is apparent from Fig. 4.15
Fig. 4 Non-linear effect study. Reaction conditions: 1a (0.12 mmol),
B2(pin)2 (0.10 mmol). Chemoselectivity > 20 : 1 in all cases as assessed
by 1H NMR. Enantioselectivity determined after oxidation by HPLC
using a chiral stationary phase. Average of two experiments.

This journal is © The Royal Society of Chemistry 2018
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Catalyst-controlled diastereoselective transformations where
a chiral catalyst can install one (or several) new stereocenter(s)
independently of the stereochemical complexity of the substrate
have gained a certain momentum recently.16,17 Hence, the
innate bias imposed by (S)-1y on the Cu-catalyzed borylation
was assessed using DrewPhos (L10) leading to a 2 : 1 diaste-
reomeric ratio in favor of (S,S)-20y (Fig. 5).18 Diastereoselective
borylation reactions were performed with both enantiomers of
the chiral ligand. In the match situation (S,S)-20y was isolated
in 86% yield and > 20 : 1 dr with (R,R)-L9. In the mismatch
situation, the enantiomeric ligand (S,S)-L9 proved able to
substantially override the substrate bias, generating (R,S)-20y
preferentially (85% yield; 1 : 7 dr). In addition to serving as
a prototype for further developments, this example highlights
the high chemoselectivity of our protocol as only one of the four
olenic functionalities present in (S)-1y underwent borylation.

Finally, double borylation of bis-diene 1z led preferentially
to the formation of (S,S)-20z (>99% ee) over the meso isomer
(R,S)-20z (8 : 1 dr) (Fig. 6). This approach is based on the Horeau
duplication principle and demonstrates that the catalyst can
induce high levels of selectivity of each diene moiety indepen-
dently of the other leading to an overall amplication.19,20
Fig. 5 Catalyst-controlled diastereoselective borylation of (S)-1y.
Reaction conditions: (S)-1y (0.24 mmol), B2(pin)2 (0.20 mmol). Che-
moselectivity > 20 : 1 in all cases as assessed by 1H after borylation.
Diastereoselectivity assessed by 1H and 13C{1H} NMR after borylation
and oxidation. Isolated yields after oxidation.

Fig. 6 Borylation/oxidation sequence of bis-diene 1z (0.36 mmol
scale). a1,2-/4,3-selectivity ¼ 10 : 1. bInseparable mixture.

This journal is © The Royal Society of Chemistry 2018
Conclusions

In conclusion, we have developed a highly chemo-, regio- and
enantioselective Cu-catalyzed borylation of 2-aryl and 2-alkyl
substituted 1,3-dienes using a chiral phosphanamine ligand.
The method is compatible with a broad range of functional
groups and provides rapid access to synthetically relevant
homoallylic boronates/alcohols and is amenable to a catalyst-
controlled diastereoselective process. Further mechanistic
investigations into the origin of the selectivity of this catalytic
reaction are underway.
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2 (a) H. Leicht, I. Göttker-Schnetmann and S. Mecking, ACS
Macro Lett., 2016, 5, 777; (b) C. Yao, N. Liu, S. Long, C. Wu
and D. Cui, Polym. Chem., 2016, 7, 1264; (c) H. Leicht,
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