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An isothiourea-catalysed Michael addition—annulation process using B-fluoroalkyl-substituted o,fB-
unsaturated aryl esters and a range of 2-acylbenzazoles is reported for the enantioselective synthesis of
dihydropyranone and dihydropyridinone products bearing polyfluorinated stereocenters (29 examples,
up to 98% vyield, >99 : 1 er). The choice of aryl group of the aryl ester proved essential in determining
reaction enantioselectivity and dihydropyranone : dihydropyridinone product selectivity. The aryloxide
leaving group is shown to play a number of essential additional roles, operating (i) as a Bronsted base,
circumventing the need for an auxiliary base; and (ii) as a Lewis base to catalyse the isomerisation of
dihydropyranone products into thermodynamically-favoured dihydropyridinones. After optimisation, this
isomerisation process was exploited for the selective synthesis of dihydropyridinone products using
acylbenzothiazoles, and either dihydropyranone or dihydropyridinone products using acylbenzoxazoles.
Finally, the phenol derivative, produced following protonation of the aryloxide, is proposed to act as
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DOI- 10.1039/c8sc01324a a Bronsted acid, which promotes an isothiourea-catalysed kinetic resolution of benzoxazole-derived
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1. Introduction

Lewis base organocatalysis is now firmly established as
a cornerstone of modern organic synthesis, with a variety of
distinct reactivity modes allowing the construction of complex
products with high levels of regio-, chemo- and stereocontrol.” A
critical feature for the widespread adoption of any synthetic
procedure is the ease of access and handling of the required
substrates. A current focus in the fields of tertiary amine and
N-heterocyclic carbene (NHC) catalysis is the use of bench-
stable ammonium/azolium enolate and o,B-unsaturated acyl
ammonium/azolium precursors.”> This has resulted in the
replacement of notoriously-unstable ketenes and acid chlorides
in these processes with homoanhydrides, in situ formed mixed
anhydrides, and aryl esters. The use of isolated, bench-stable
aryl esters as starting materials is of particular interest due to
the simplicity of reaction set-up and improved atom economy
relative to methods using anhydrides. Chi first introduced aryl
esters as azolium enolate precursors in 2012,> demonstrating
that aryl esters bearing electron withdrawing substituents were
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essential to achieve sufficient nucleofugality of the aryloxide
leaving group (Scheme 1a). Chi subsequently applied electron-
deficient aryl esters in a range of NHC-catalysed formal cyclo-
addition and domino cascade processes involving azolium
(homo)enolate and a,B-unsaturated acyl azolium intermedi-
ates.* In each case, the aryloxide was only considered as
a simple leaving group.®

The use of electron-deficient aryl esters in enantioselective
tertiary amine catalysis was first reported by our research group
in 2014 for the 2,3-rearrangement of allylic ammonium
ylides (Scheme 1b).®” This method represented a conceptually

a) Aryl esters as azolium enolate precursors

Rg)k i via: o®
OAr! R!
+ X

NHC* (cat) X

R!_A9®
ol
RZXL OAr' R? R azolium enolate
X=0,NTs o Aryloxide used as a leaving group
b) Aryloxide-facilitated catalyst turnover
A2 O Vvia:

\k/ Hkomr1 NRs" (cat) HLNRa

R4 Br i R4 Br

ammonium ylide
» Aryloxide used as a leaving group and nucleophile for catalyst turnover

Scheme 1 Previous uses of aryl ester substrates in NHC and tertiary
amine catalysis.
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different approach, with the aryloxide released from the
substrate also required to facilitate intermolecular catalyst
turnover.® This approach, in which the aryloxide performs
a dual role, has since been successfully applied in ammonium
enolate and o,B-unsaturated acyl ammonium catalysis.’

The field of enantioselective a,B-unsaturated acyl ammonium
catalysis has seen a recent rise in popularity.'®™ Following
seminal work in 2006 by Fu on [3 + 2] annulations using a planar-
chiral DMAP catalyst,* little attention was given to this field until
publications by Lupton, Romo and ourselves using isothiourea
catalysis.™ Since 2013 a range of highly enantioselective Michael
addition-annulation, formal cycloaddition and complex cascade
methodologies have been developed.* For example, we reported
recently an isothiourea-catalysed Michael addition-annulation
process using 2-acylbenzazole pro-nucleophiles 1 and homo-
anhydrides 2 as a,B-unsaturated acyl ammonium precursors
(Scheme 2).**»** In this work, the selectivity of annulation
depended upon the identity of the 2-acylbenzazole substrate. 2-
Acylbenzoxazole substrates (X = O) exclusively gave dihydropyr-
anones 4, whilst 2-acylbenzothiazoles (X = S) preferentially gave
the corresponding dihydropyridinone 5 (typically in ~85:15
ratio of 5 : 4). Experimental and computational studies showed
the selectivity of annulation to be kinetically-derived, with non-
covalent C-H---O and S---O interactions present in the respec-
tive annulation transition states implicated in determining
product selectivity.

Due to general widespread interest in the formation of prod-
ucts containing fluorinated substituents at stereogenic centres,
we sought to apply this method to prepare fluorinated heterocy-
cles in enantiopure form. However, the prohibitive instability of
fluorinated homoanhydrides (e.g. R = CF;) led us to investigate f3-
polyfluoroalkyl-substituted o,B-unsaturated aryl esters as alterna-
tive acyl ammonium precursors. Herein, we report the develop-
ment of this process, during which the aryloxide leaving group
(ArO™) has been identified as playing a number of additional key
roles in determining catalytic efficiency and selectivity. In this
manuscript we show that the in situ generated aryloxide (ArO™)
acts as (i) a Brensted base, circumventing the previous

3 (5 mol%) X=0 dihydropyranone

i-ProNEt (1.1 equiv.) only
o dihydropyridinone
= favoured
@
NRa

1.4 equw a, ,B-unsaturated

acyl ammonium

Limitations: e Mixture of products when X = S;
» Dihydropyridinone inaccessible when X = O;
. Auxiliary base; e Excess anhydride; ¢ R = CF3

(5:4 = ~85:15)

Scheme 2 |Isothiourea-catalysed Michael addition—annulation of
homoanhydrides with 2-acylbenzazole derivatives.
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requirement for an auxiliary base; (ii) a Lewis base, which can be
exploited to selectively catalyse the isomerisation of dihydropyr-
anones into thermodynamically-favoured dihydropyridinones.
Additionally, it was found that ArOH, produced upon protonation
of the aryloxide, can act as a Brensted acid that promotes an
isothiourea-catalysed kinetic resolution of benzoxazole-derived
dihydropyranones.

2. Results and discussion
2.1 Reaction optimisation

Initial studies focused on the Michael addition-annulation of 2-
phenacylbenzothiazole 6 and B-CF;-substituted o, -unsaturated
para-nitrophenyl (PNP) ester 7 using HyperBTM 3 as catalyst. In
the presence of i-Pr,NEt as auxiliary base and 5 mol%
HyperBTM, dihydropyridinone 10 was obtained as the sole
product in quantitative yield and 86 : 14 er (Table 1, entry 1). In
the absence of i-Pr,NEt full conversion was still observed,
however a mixture of dihydropyridinone 10 and dihydropyr-
anone 11 was obtained as a 3:1 ratio (entry 2). This

N

Table 1 Reaction optimisation and controls

M@ B Cg@

Ph" FC o
3 (mol%
+0 T
/\)k i-Pr,NEt (equiv.)
NN THF (0.5M), r.t., 20 h
FsC OAr 03m).r
7-9
(1.1 equiv.)

CF, cl cl

e 3(©/ h i

% CF; cl

substrate 7 8 9

Conclusions: e non-innocent effect of ArO~ leaving group

e ArO™ acts as Brgnsted base

10 11
3 i-Pr,NEt

Entry (mol%) Substrate (equiv.) % er’ % er’

1 5 7 1.2 96 86:14 O NA®
2 5 7 0 75 95:5 23 ND?
3 0 7 1.2 75 NA° 13 NA®
4 5 8 0 73 94:6 21 94:6
5 5 9 0 54 97 :3 42 97:3
6 1 9 0 47 97:3 38 97 :3
7 0 7,80r9 0 0 NAC 0  NA®
8 0 7 0.1 63 NA° 15 NA°
9 0 8 0.1 45 NA° 21 NA®
10 0 9 0.1 17 NA° 7 NA°

“ Determined by "H NMR spectroscopy using 1,3,5- trlmethoxybenzene

as internal standard b Determined by chiral HPLC analysis. © NA =
not applicable. ¥ ND = not determined.
This journal is © The Royal Society of Chemistry 2018
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preservation of reactivity is consistent with the released aryl-
oxide operating as the Bronsted base in this case. Significantly,
the absence of i-Pr,NEt also led to vastly improved enantiose-
lectivity (95 : 5 er). This difference in enantioselectivity can be
attributed to a competitive base-mediated background reaction
in the presence of i-Pr,NEt (entry 3). Alternative isothiourea
catalysts, solvents and reaction temperatures did not improve
the er,"” so attention turned to the use of different a,B-unsatu-
rated aryl esters. 3,5-Bis(trifluoromethyl)phenyl (BCF;P) ester 8
provided a mixture of dihydropyridinone 10 and dihydropyr-
anone 11 in a similar ratio and er to PNP ester 7 (entry 4),
however 2,4,6-trichlorophenyl (TCP) ester 9 gave 10 and 11 in
close to a 1 : 1 ratio, but with excellent enantioselectivity (97 : 3
er, entry 5). Lowering the catalyst loading to 1 mol% resulted in
a slight drop in conversion; however both products were still
obtained with excellent enantiocontrol (entry 6).

The differences in product ratio and enantioselectivity using
different aryl esters provided the first indication that the aryl-
oxide ‘leaving group’ was performing additional roles in the
reaction. First, the differences in enantioselectivity were inves-
tigated. Control reactions between 2-phenacylbenzothiazole 6
and aryl esters 7-9 in the absence of HyperBTM resulted in no
conversion in each case (entry 7). The addition of a sub-
stoichiometric amount of i-Pr,NEt (0.1 equiv.) successfully
promoted the reaction, with high conversion obtained when
using PNP and BCF;P esters 7 and 8 (66-78%) (entries 8, 9). In
contrast, only modest conversion was observed when using TCP
ester 9 (24%) (entry 10). These experiments indicate that the 0.1
equiv. of base served to initiate the reaction, with conversions of
>10% consistent with the released aryloxide acting as
a Bronsted base to propagate the reaction. The lower enantio-
selectivities obtained using PNP and BCF;P esters 7 and 8 in the
Michael addition-annulation reaction may therefore be attrib-
uted to an enhanced base-mediated background reaction
promoted by the released aryloxide.

Next, the variation in the ratio of dihydropyridinone and
dihydropyranone products was probed. It was hypothesised this
variation may arise from isomerisation of dihydropyranone 11
to give the thermodynamically-favoured dihydropyridinone 10
under the reaction conditions. The isomerisation of dihy-
dropyranone 11 was therefore investigated in isolation under
various conditions (Fig. 1a). In the presence of either HyperBTM
3, i-Pr,NEt or a substituted phenol derivative alone, essentially
no isomerisation of dihydropyranone 11 was observed (<5% in
5 h, Fig. 1b —). However, a combination of i-Pr,NEt (2.2 equiv.)
and either para-nitrophenol 12 (PNPOH, 2.2 equiv., Fig. 1b—) or
3,5-bis(trifluoromethyl)phenol 13 (BCF;POH, 2.2 equiv., Fig. 1b
—) promoted effective isomerisation (¢4, = 1 h). This is
consistent with the aryloxide, formed upon deprotonation of
the phenol derivative, catalysing this isomerisation. In contrast,
a combination of 2,4,6-trichlorophenol 14 (TCPOH, 2.2 equiv.)
and i-Pr,NEt (2.2 equiv.) (Fig. 1b —) resulted in much slower
isomerisation (¢;, = 12 h). These differences in the rate of
dihydropyranone isomerisation in the presence of each aryl-
oxide are consistent with the variation in product selectivity
observed during reaction optimisation (Table 1, entries 2, 4, 5).
A more extensive study of aryloxide derivatives found that those

This journal is © The Royal Society of Chemistry 2018
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conditions Ph
_—
THF (0.215 ™)
FsC (0]
10
CF3 cl Cl
HO
HO CF3 Cl
12 13 14

b)

Time/h
Conditions
- HyperBTM 3 or i-Pr,NEt or any ArOH in isolation
— 12 (0.5 m), i-PryNEt (0.5 m), r.t.
— 13 (0.5 m), i-Pr,NEt (0.5 m), r.t.
— 14 (0.5 m), i-ProNEt (0.5 m), r.t.
12 (0.5 m), 14 (0.5 m), i-Pr,NEt (0.5 m), r.t.
13 (0.5 m), 14 (0.5 m), i-Pr,NEt (0.5 m), r.t.
13 (0.1 ™), 14 (0.5 m), i-Pr,NEt (0.1 m), reflux

lactamisation

15 (0] OAr

Conclusion: e ArO™ acts as a Lewis base

Fig. 1 Isomerisation of dihydropyranone 11 to dihydropyridinone: (a)
general reaction scheme; (b) temporal change in the concentration of
11 under different reaction conditions; (c) proposed mechanism for
isomerisation.

bearing ortho-substituents were uniformly ineffective for the
isomerisation of dihydropyranone 11."” This trend in reactivity
is synonymous with the aryloxide operating as a Lewis base in
this process (Fig. 1c). Nucleophilic attack of the aryloxide on the
dihydropyranone 11 would result in ring-opening to give aryl
ester intermediate 15, which may undergo lactonisation to
reform the dihydropyranone 11 or lactamisation to give the
thermodynamically-favoured dihydropyridinone 10.

We envisioned that this isomerisation process could be
applied following the Michael addition-annulation reaction to

Chem. Sci,, 2018, 9, 4909-4918 | 4911


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sc01324a

Open Access Article. Published on 04 May 2018. Downloaded on 11/8/2025 5:59:31 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

] S \ i) 3 (5 mol%) 0 S \
M THF (0.5 M), r.t., 20 h
Ph N T namiiaA g - PR
6 i) 13 (20 mol%)
N
a i-Pr,NEt (20 mol%) FiC™ o
F C/%)J\OTCP 70°C,4h .
3 10, 95%, 96:4 er
9 (1.1 equiv.) TCP = 2,4,6-Cl3CgH,

Scheme 3 Optimised Michael addition—annulation—isomerisation

reaction.

provide a single dihydropyridinone product. The highest
enantioselectivity was obtained using TCP ester 9, however
isomerisation was most efficient using aryloxides derived from
PNPOH 12 or BCF;POH 13. Therefore the addition of either
PNPO™ or BCF;PO™ at the end of the Michael addition-annu-
lation process would be required. As a stoichiometric amount of
TCPOH 14 would also be present at this stage in the process, the
efficiency of dihydropyranone isomerisation using either
PNPO™ or BCF;PO™ in the presence of an equivalent of TCPOH
14 was tested. The rate of dihydropyranone isomerisation using
a combination of BCF;POH 13 and i-Pr,NEt (2.2 equiv. of each)

View Article Online
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(Fig. 1b «<¢) was essentially unaffected by the additional TCPOH
14 (2.2 equiv.); however a significant retardation in the rate of
isomerisation was observed when using PNPOH 12 and i-Pr,NEt
(2.2 equiv. of each) (Fig. 1b ee¢). This confirmed the combination
of BCF;POH 13 and i-Pr,NEt to be optimal for use in a tele-
scoped Michael addition-annulation-isomerisation sequence.
Further studies found that substoichiometric BCF;POH 13 and
i-Pr,NEt could be used to affect efficient isomerisation by
heating the reaction at reflux (Fig. 1b ees).

Combining the Michael addition-annulation and isomer-
isation processes, 2-phenylbenzothiazole, B-trifluoromethyl-
substituted a,B-unsaturated TCP ester 9 and HyperBTM 3
(5 mol%) were reacted in THF at room temperature for 20 h,
followed by the addition of BCF;POH 13 (20 mol%) and i-Pr,NEt
(20 mol%) and heating at reflux for a further 4 h. This sequence
provided dihydropyridinone 10 as the sole reaction product in
95% yield and 96 : 4 er (Scheme 3).

2.2 Reaction scope: benzothiazoles

The generality of this method was investigated for a range of 2-
acylbenzothiazole derivatives and B-fluoroalkyl-substituted o, -

Table 2 Michael addition—annulation—isomerisation using 2-acyl(benzo)thiazoles: ketone, (benzo)thiazole and fluoroalkyl variation

THF (0.5 M), r.t,, 20 h

i) 3 (5 mol%)

o}
+ /\)J\
RE oTCP

(1.1 equiv.)
TCP = 2,4,6-Cl;CgH,

i-ProNEt (20 mol%), 70 °C, 1-8 h

ii) 13 (20 mol%)

FC
16, 86%, 97:3 er

O 30 a9 s
1 M /©/U\@ M
o F FC o Br Fio o O,N Fo o

17, 97%, 96:4 er

18, 85%, 96:4 er 19, 98%, 87:13 er

oY
o Fiot o)

Z\
F3C\\\. o F3C\\‘. 3
20, 94%, 97:3 er 21,2 93%, 96:4 er 22, 92%, 96:4 er 23, 93%, 97:3 er 24, 85%, 94:6 er
b) (Benzo)thiazole variation: 3 Br OMe
(o] S (0] S“j; E; O S’Q (0] s \

Ph N Ph

Fact o) Fao
25, 92%, 97:3 er 26, 88%, 96:4 er

c) Fluoroalkyl variation:
PV
Ph =~ "N

HF,CY" o
29, 85%, 90:10 er

30, 92%, 88:12 er

%10 mol% 3 used.
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31,93%, 91:9 er

Ph Ph N

ol o
28, 92%, 96:4 er

FoC
27,7 86%, 98:2 er

o

Me)k@ Ph =
HF,C" o FsC o

32, 91%, 86:14 er 33,2 89%, 97:3 er

This journal is © The Royal Society of Chemistry 2018
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unsaturated TCP esters (Table 2). Substitution of the phenacyl
group with both electron-donating and moderately electron-
withdrawing groups provided dihydropyridinones 16-18 in
excellent yield and with high enantioselectivity (Table 2a).'®
Incorporation of a strong electron-withdrawing group (NO,)
provided 19 in excellent yield, but with diminished enantiose-
lectivity (87 : 13 er). ortho-Substitution of the aryl group was also
tolerated, with 2-iodophenyl- and 1-naphthyl-functionalised
products 20 and 21 obtained in excellent yield and enantiocon-
trol. The scope was extended to include heteroaromatic and alkyl-
substituted ketones, with 22-24 all obtained in excellent yield
and enantiocontrol. Next, variation of the benzothiazole unit was
investigated (Table 2b). Substitution with fluoro, bromo, and
methoxy groups was tolerated to give 25-27 in equally high yield
and enantiocontrol. In addition, the use of 2-phenacylthiazole
proved effective in giving dihydropyridinone 28 in high yield and
enantiocontrol. The scope of the process was extended to
different B-fluoroalkyl-substituted o,B-unsaturated TCP esters
(Table 2c). Difluoromethyl substituents, which have experienced
significant recent interest in drug design,***%* were successfully
incorporated. A small scope including different (hetero)aryl- and
alkyl-substituted ketones was demonstrated giving dihydropyr-
idinones 29-32 in excellent yield and with good to high

View Article Online
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enantioselectivity. The incorporation of a pentafluoroethyl group
at the stereogenic centre was also successful, with 33 obtained in
excellent yield and enantiocontrol. The series of dihydropyr-
idinones 10, 29 and 33, bearing different polyfluoroalkyl groups
at the stereogenic centre, reveals a trend of improved enantio-
selectivity with increasing fluorine substitution.

2.3 Reaction scope: benzoxazoles

In our previously-reported Michael addition-annulation meth-
odology,** the reaction of 2-phenacylbenzoxazole with homo-
anhydrides provided dihydropyranones as the sole reaction
products. We postulated that the newly developed isomer-
isation process could allow selective access to either dihy-
dropyranone or dihydropyridinone products, broadening the
scope of this process. In the absence of an isomerisation step,
the Michael addition-annulation between 2-phenacylbenzox-
azole and B-trifluoromethyl-substituted a,B-unsaturated TCP
ester 9 using HyperBTM 3 (10 mol%) at room temperature
provided dihydropyranone 34 as the sole reaction product with
exceptional enantioselectivity (>99 : 1 er) (Table 3, left). The
scope of the acyl group was further investigated, with 3-pyridyl
and 3-thienyl substituents providing dihydropyranones 35 and
36 in good yield and excellent enantiocontrol. Substitution of

Table 3 Michael addition—annulation using 2-acylbenzoxazoles: selective formation of dihydropyranone or dihydropyridinone products

[0} N

A

3 (10 mol%)

THF (0.5 M), r.t.,, 24 h *

/\)‘k
FsC oTcP
9

N Ph
|
O ~ 70 Dihydropyranone
Fd C‘\‘. o selectivity

34, 64%, > 99:1 er
 (34:39,>99:1)

FiC" o] FaC" o
35, 64%,2 > 99:1 er 36, 77%, > 99:1 er
(35:40, 95:5) (36:41, > 99:1)
CF,4 CN

FC o FC o
37, 94%.,0 > 99:1 er 38, 72%,2 > 99:1 er
(37:42, 90:10) (38:43, 89:11)
42, 92:8 er 43, 93:7 er

(e}

(1.1-1.5 equiv.)
TCP = 2,4,6-Cl3C¢H,

Of i) 3 (5 mol%)

THF (0.5 M), 70 °C, 24 h
ii) 3,4,5-F3CgH,0H (30 mol%)
i-Pr,NEt (30 mol%
70°C, 48 h
o]

)
o]

Ph/U\éL
Be™ o

Dihydropyridinone
selectivity
39, 71%,° 98:2 er
(39:34, 98:2)
N

N7 Fe o Fac o
40, 86%, > 99:1 er 41,81%5 98:2 er
(40:35, > 99:1) (41:36, 98:2)

1 /©/U\@
o NC FC o

FsC FC
42, 73%,2 98:2 er 43, 85%,P 98:2 er
(42:37, 98:2) (43:38, 97:3)

“ Isolated as a single constitutional isomer. ? Isolated as a mixture of constitutional isomers.

This journal is © The Royal Society of Chemistry 2018
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the acyl group with electron-withdrawing groups resulted in the
formation of dihydropyranones 37 and 38 in improved yield, and
with excellent enantioselectivity, albeit with reduced selectivity
for the dihydropyranone product (~90:10 dihydropyr-
anone : dihydropyridinone). Interestingly, in these examples, the
minor dihydropyridinone products 42 and 43 were obtained with
lower enantioselectivity (~92 : 8 er) in comparison to the major
dihydropyranone products (>99 : 1 er). This effect is discussed in
more detail in Section 2.5.

The applicability of the telescoped Michael addition-annu-
lation-isomerisation sequence was next investigated for the
synthesis of dihydropyridinones. In this case, a combination of
3,4,5-trifluorophenol (30 mol%) and i-Pr,NEt (30 mol%), in
addition to longer reaction times, proved optimal for complete
conversion to the corresponding dihydropyridinones (Table 3,
right). The isothiourea catalyst loading could be reduced to
5 mol% by heating the Michael addition-annulation step at
reflux. Under these conditions the Michael addition-annulation
proceeded in higher yield over shorter reaction times with
excellent enantioselectivities (~98 : 2 er). While reduced dihy-
dropyranone : dihydropyridinone ratios were obtained, this
product ratio was considered inconsequential due to the
subsequent isomerisation step. The same five 2-acylbenzoxazole
derivatives were applied in the Michael addition-annulation—-
isomerisation sequence giving dihydropyridinones 39-43 in
good yield, excellent dihydropyridinone selectivity, and with
high enantioselectivity (=98 : 2 er) in each case.*

2.4 Extension of the isomerisation protocol

Finally, we were interested to see if the isomerisation protocol
could be applied to our previously-reported Michael addition—-
annulation reaction using 2-acylbenzothiazoles and homoanhy-
drides.*¢ Although good to excellent yields and enantioselectiv-
ities had been reported, product isolation was complicated by the
concurrent formation of dihydropyridinone and dihydropyr-
anone products as a kinetically-determined and sometimes
inseparable mixture (typically ~85:15 ratio). As the original
Michael addition-annulation process using homoanhydrides
required a small excess of i-Pr,NEt (1.3 equiv.), isomerisation was
attempted by the addition of 3,5-bis(trifluoromethyl)phenol 13
(40 mol%) after 6 h, followed by heating the reaction at reflux.
This method proved successful, with the generality of the process
demonstrated for aryl, alkyl, heteroaryl and alkenyl-substituted
derivatives (Table 4). Dihydropyridinones 44-47 were obtained
as the exclusive reaction products in excellent yield and with
comparable enantioselectivity to the previously-reported method.
This simple protocol improves the synthetic utility of the original
method, and highlights the potential for the more widespread
application of aryloxides as Lewis base catalysts.”*

2.5 Kinetic resolution

Whilst exploring the selective synthesis of benzoxazole-derived
dihydropyranones outlined in Section 2.3 (Table 3, left
column), dihydropyranones 37 and 38 were obtained in essen-
tially enantiopure form (>99:1 er), whilst the minor dihy-
dropyridinone products, 42 and 43, were obtained with
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Table 4 Michael addition—annulation—isomerisation protocol using
homoanhydrides

o S/Q i) 3 (5 mol%)
)]\/I\\ -PryNEt (1.3 equiv.)
Ph

N
THF (0.4 M), rt., 6 h
? o T4 = Ph ZON
ii) 13 (40 mol%)
R o 70°C, 14 h R o)
(1.1 equiv.)’
o) s@ o) s@
Ph Z >N Ph Z >N
PR o Me™ o
44 45
This Work: 95%, 92:8 er 87%, 93:7 er

86%, 92:8 er
88:12 pyridinone:pyranone

¥ir

Ph | Ph Z8\

@\““ o) PR o
\ 46 47

86%, 93:7 er 90%, 91:9 er

72%, 90:10 er 95%, 91:9 er
88:12 pyridinone:pyranone  90:10 pyridinone:pyranone

55%, 93:7 er

P 14e
Previous work: 82:18 pyridinone:pyranone

This Work:

Previous work:'4®

significantly lower enantioenrichment (~92 : 8 er). These differ-
ences in product er prompted further investigation. Reaction of
racemic dihydropyranone (£)-37 with HyperBTM 3 (10 mol%)
gave a mixture of enantioenriched (R)-dihydropyridinone 42 and
(S)-dihydropyranone 37 (Table 5, entry 1). This demonstrates that
HyperBTM 3 is capable of affecting the isomerisation of
benzoxazole-derived dihydropyranone 37. This is in contrast to

Table 5 Kinetic resolution of (+)-37

Conditions_ J\C& )h
(+)-37

=4 CF3CSH4
(S)-37

]@ Jow fx@ fl

AR = 35(CF3)ZCGH3 Ph

Entry Conditions® Conv. (%) 37er 42er
1 3 (10 mol%) 55 77:23 74:26
2 3 (10 mol%) + 14 (1 equiv.) 56 92:8 85:15
3 3 (10 mol%) + PhCO,H (10 mol%) 53 92:8 89:11
4 3 (10 mol%) + 48 (10 mol%) 56 92:8 83:17
5 49 (10 mol%) 64 50:50 50:50
“ See ESI for reaction times.
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the isomerisation studies using benzothiazole-derived dihy-
dropyranone 11, in which HyperBTM was inactive (see Fig. 1b —).
The observed formation of enantioenriched (R)-dihydropyr-
idinone 42 and (S)-dihydropyranone 37 in this process suggests it
can be simplistically described as a kinetic resolution.”” While the
selectivity factor metric, s, is commonly used to report the effi-
ciency of kinetic resolutions; in this case s was found to be
dependent on reaction conversion, and was therefore not
considered a valid descriptor.”” The enantioselectivity of this
process, however, can be used to rationalise the differences in
enantioenrichment observed between the dihydropyranone and
dihydropyridinone products formed in the Michael addition—-
annulation process (Table 3). Significantly, (25,3R)-HyperBTM 3
produces dihydropyranone (S)-37 as the major product in the
Michael addition-annulation reaction, but is more efficient at
catalysing the isomerisation of (R)-37 to give dihydropyridinone
42. This larger rate constant for the isomerisation of (R)-37 leads
to further enrichment of the dihydropyranone product in (S)-37,
whilst consequentially producing dihydropyridinone 42 with
a lower level of enantioenrichment.

To better simulate this kinetic resolution under the reaction
conditions of the Michael addition-annulation process, the
isomerisation of (£)-37 was next investigated using a combina-
tion of HyperBTM 3 (10 mol%) and trichlorophenol 14 (1 equiv.)
(entry 2). Improved enantioenrichment of both 37 (92 : 8 er) and
42 (85:15 er) was observed at a similar reaction conversion,
indicating that the phenol additive has a beneficial effect on the
kinetic resolution process. It was hypothesised that tri-
chlorophenol could be either: (i) operating as a Brensted acid/
hydrogen bond donor to activate the dihydropyranone to
nucleophilic attack by HyperBTM 3; or (ii) deprotonated by
HyperBTM 3 to produce an isothiouronium aryloxide ion pair,
where the aryloxide acts as a nucleophile and enantioselectivity
is induced by the chiral counterion HyperBTM-H". To test the
first hypothesis alternative non-nucleophilic Brgnsted acids/
hydrogen bond donors were applied. A combination of
HyperBTM 3 and either benzoic acid or Schreiner's thiourea 48>
resulted in similar or improved enantioselectivity relative to the
use of trichlorophenol 14 (entries 3, 4). The beneficial effect of
using benzoic acid in the planar-chiral DMAP catalysed
dynamic kinetic resolution of azlactones has been previously
noted, however the origin of this effect was not discussed.** The
second scenario was simulated using N-benzylisothiouronium
trichlorophenoxide 49, which catalysed the isomerisation, but
gave both dihydropyridinone 42 and dihydropyranone 37 as
racemates (entry 5).

These experiments are consistent with the phenol additive
providing Brensted acid activation of the dihydropyranone, and
HyperBTM acting as a chiral nucleophile (Scheme 4). Nucleo-
philic attack of HyperBTM 3 onto racemic dihydropyranone 50
would produce two diastereomeric zwitterionic acyl iso-
thiouronium intermediates 51, which may undergo lactonisa-
tion to reform dihydropyranone 50, or undergo lactamisation to
give dihydropyridinone product 52. The nucleophilic addition
of HyperBTM to dihydropyranone 50 is expected to be reversible
as zwitterionic acyl isothiouronium intermediate 51 is
a proposed intermediate in the Michael addition-annulation

This journal is © The Royal Society of Chemistry 2018
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o) Ar? Bronsted acid
_— activation
(@]

NN MR AT N
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_H Ar'OH
FsC o’ F5;C o]
(+)-50 (R)-52
NR;z* | NR;*
(6]
{.;stereoselect/v stereoselect/ve
addtion? ® [lactamisation?.
NRz*

NR;* = HyperBTM 3

Conclusion: o ArOH acts as a Brgnsted acid

Scheme 4 Proposed mechanism for the kinetic resolution of (+)-50.

process, in which dihydropyranone 50 is originally generated
(see Scheme 5). The enantioselectivity observed within this
process may therefore originate either from the preferential
nucleophilic addition of HyperBTM 3 to (R)-50, and/or through
the differential rates of lactamisation from each diastereomeric
zwitterionic acyl isothiouronium intermediate 51. We cannot
currently differentiate these possibilities.*®

2.6 Proposed mechanism

The Michael addition-annulation process is proposed to begin
with N-acylation of HyperBTM 3 by a,B-unsaturated TCP ester 53
to give a,B-unsaturated acyl isothiouronium trichlorophenoxide
ion pair 54 (Scheme 5).* Deprotonation of the 2-acylbenzazole
pro-nucleophile 55 by trichlorophenoxide provides tri-
chlorophenol and a stabilised enolate, which undergoes Michael
addition to o,B-unsaturated acyl isothiouronium 54 to give
ammonium enolate 56. Proton transfer, likely facilitated by tri-
chlorophenol, gives zwitterionic intermediate 57, which may
undergo cyclisation through oxygen or nitrogen, regenerating
the catalyst and giving dihydropyranone 58 or dihydropyr-
idinone 59, respectively. Trichlorophenoxide present in the
reaction can facilitate isomerisation of dihydropyranone 58 to
give the thermodynamically-favoured dihydropyridinone 59.
This isomerisation is most facile for benzothiazole-derived
dihydropyranones (X = S), and presumably takes place
through nucleophilic ring-opening of the dihydropyranone 58,
followed by lactamisation (see Fig. 1c). In the optimised protocol
this isomerisation step was most efficiently catalysed by the
addition of less sterically-hindered aryloxides, such as 3,5-bis-
(trifluoromethyl)phenoxide or 3,4,5-trifluorophenoxide. For
benzoxazole-derived dihydropyranones, a second isomerisation
pathway is possible, which is catalysed by HyperBTM 3 operating
as a Lewis base, and trichlorophenol acting as a Brgnsted acid.

The stereochemical outcome of the reaction can be ration-
alised by the o,B-unsaturated acyl isothiouronium 54 adopting
an s-cis conformation, with a syn-coplanar non-covalent 1,5-S---
O interaction between the acyl O and catalyst S providing
a conformational lock.t#*3#t4aei26 Michael addition of the
acylbenzazole-derived enolate to a,B-unsaturated acyl iso-
thiouronium 54 then takes place anti- to the stereodirecting
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i) Leaving group N-Acylation

Ar = 2,4,6-ClyCeH,

o

®
Ar0® RFA\)J\NR;
54

ii) Bronsted base

HOAr

Scheme 5 Proposed mechanism and stereochemical rationale.

pseudo-axial phenyl substituent of the isothiourea catalyst
(Scheme 5, bottom).

3. Conclusions

The isothiourea-catalysed enantioselective synthesis of a range
of polyfluorinated dihydropyranone and dihydropyridinone
products was achieved via a Michael addition-annulation
process using o,B-unsaturated acyl ammonium catalysis (29
examples, up to 98%, >99 : 1 er). B-Fluoroalkyl-substituted a,p-
unsaturated trichlorophenyl esters were used as the a,B-unsat-
urated acyl ammonium precursors, and a range of 2-acyl(benz)
azoles used as the nucleophilic reaction partner. Significantly,
the trichlorophenoxide leaving group was shown to play
a variety of other roles in the reaction, including acting as (i)
a Bronsted base, circumventing the need for the addition of an
auxiliary base; and (ii) a Lewis base, catalysing the isomerisation
of dihydropyranone products into thermodynamically-favoured
dihydropyridinones. The isomerisation process was most effi-
cient using less sterically-hindered aryloxide catalysts bearing
electron-withdrawing groups, such as 3,5-bis(trifluoromethyl)
phenoxide, 3,4,5-trifluorophenoxide or para-nitrophenoxide.
These findings led to the development of a sequential Michael
addition-annulation-isomerisation protocol for the synthesis of
a range of benzothiazole-derived dihydropyridinone products as
the only constitutional isomer in excellent yield and enantio-
control. The method could also be applied when using 2-acyl-
benzoxazole pro-nucleophiles, with the selective formation of
either dihydropyranones or dihydropyridinones achieved by
including or omitting the isomerisation step. The aryloxide-
promoted isomerisation protocol was further applied to our
previously-reported Michael addition-annulation process using

4916 | Chem. Sci., 2018, 9, 4909-4918
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homoanhydrides, demonstrating the wide applicability of the
method. Finally, the phenol derivative produced upon proton-
ation of the aryloxide during the reaction was shown to act as
a Brensted acid, which promoted an isothiourea-catalysed kinetic
resolution of benzoxazole-derived dihydropyranones. Overall,
this work provides a concise and efficient method for the
synthesis of polyfluorinated heterocyclic products in high yield
and enantioselectivity. Identification of the multiple roles of the
aryloxide leaving group in this process should inform future work
in this area and provide inspiration for new reaction design.*”
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