Kekulé diradicaloids derived from a classical N-heterocyclic carbene†

Dennis Rottschäfer,a Beate Neumann,a Hans-Georg Stammler,a Diego M. Andrada and Rajendra S. Ghadwal b

The direct double carbenylation of 1,4-diiodobenzene and 4,4'-dibromobiphenyl with a classical N-heterocyclic carbene, SIPr (1) (SIPr = \(\text{C}([\text{N}(2,6-\text{iPr}_2\text{C}_6\text{H}_3])_2\text{C}_6\text{H}_4]\)), by means of nickel catalysis gives rise to 1,3-imidazolium salts ([SIPr]([C_6H_4]SIPr)(I)_2 (2) and ([SIPr]([C_6H_4]_2SIPr)][Br]_2 (3) as off-white solids. Two-electron reduction of 2 and 3 with KC_8 cleanly yields Kekulé diradicaloid compounds ([SIPr][C_6H_4]SIPr) (4) and ([SIPr][C_6H_4]_2SIPr) (5), respectively, as crystalline solids. Structural parameters and DFT as well as CASSCF calculations suggest the closed-shell singlet ground state for 4 and 5. Calculations reveal a very low singlet–triplet energy gap \(\Delta E_{S-T}\) for 5 (10.7 kcal mol\(^{-1}\)), while \(\Delta E_{S-T}\) for 4 (29.1 kcal mol\(^{-1}\)) is rather large.

Stable diradicaloids delocalized over \(\pi\)-conjugated systems are appealing synthetic targets because of their unique physical properties and potential applications in nonlinear optics, molecular electronics, and organic spintronics. Therefore, different synthetic strategies have been developed over the past few years to thermodynamically and/or kinetically stabilize various analogues of TH and CH. Bis(triarylamine) dications II are isoelectronic to I, in which the Ph\(_3\text{C}\) moiety of I is replaced by an Ar\(_2\text{N}\)\(^{+}\) unit. The benzannulation approach has also been successfully employed to isolate stable polycyclic hydrocarbons such as III. In recent years, various paramagnetic compounds featuring main-group elements or transition metals have been stabilized by the use of Bertrand’s cyclic alkyl amino carbenes (CAACs). Remarkably, during the preparation of this manuscript for submission, we came across three consecutive reports dealing with the synthesis of extended cumulenes IV supported by CAACs or a classical N-heterocyclic carbene (NHC). Very recently, we reported stable crystalline radicals V derived from classical NHCs. While these reports nicely emphasize the relevance of singlet carbenes in the synthesis of carbon-centered \(\pi\)-conjugated systems and radicals, synthetic access to diradicaloids VI, which are NHC-analogues of I, remained a challenge. Herein, we report the synthesis and characterization of two crystalline Kekulé diradicaloid compounds ([SIPr][C_6H_4][SIPr]) (4) and ([SIPr][C_6H_4]_2[SIPr]) (5) derived from a classical NHC, SIPr (1) (SIPr = \(\text{C}([\text{N}(2,6-\text{iPr}_2\text{C}_6\text{H}_3])_2\text{C}_6\text{H}_4]\))

Results and discussion

The direct two-fold carbenylation of 1,4-diiodobenzene and 4,4'-dibromobiphenyl with SIPr (1) under Ni-catalysis gave the starting materials 2 and 3, respectively (Scheme 1).

Introduction

Molecules containing two unpaired electrons in two nearly degenerate molecular orbitals are called diradicals, which may have parallel (triplet) or antiparallel (singlet) spins. Depending on the interaction between unpaired electrons, singlet diradicals are further classified as open-shell (OS) and closed-shell (CS) singlets. Diradicaloids are molecules with partial singlet diradical nature in their ground state. In this context, Thiele’s (TH) and Chichibabin’s (CH) hydrocarbons I (Fig. 1), reported shortly after Gomberg’s discovery of the Ph\(_3\text{C}\) radical in 1900, are noteworthy examples. They can be described either as an OS diradical (1a) featuring a phenylene or diphenylene linker or a CS \(\pi\)-quinodimethane (1b). Since their first isolation, the ground state spin state of I has been a subject of intense experimental and theoretical investigations, leading to a very controversial discussion, the so-called “diradical paradox”.

In 1986, Montgomery et al. determined the solid-state molecular structures of these highly reactive compounds by single crystal X-ray diffraction. Currently, CH is generally described as a diradicaloid (the resonance hybrid of 1a and 1b) with a significant diradical character, whereas TH is considered as a \(p\)-quinodimethane.

†Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany. E-mail: rghadwal@uni-bielefeld.de; Web: http://www.ghadwalgroup.de; Fax: +49 521 106 6167

‡Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus C4.1, D-66123 Saarbrücken, Germany

Electronic supplementary information (ESI) available. CCDC 1825657–1825670. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c8sc01209a

DOI: 10.1039/c8sc01209a
Accepted 20th April 2018
Received 14th March 2018
View Article Online
View Journal | View Issue
This journal is © The Royal Society of Chemistry 2018
Compounds 2 and 3 are off-white solids and have been characterized by NMR spectroscopy and mass spectrometry. They exhibited characteristic 1H and 13C NMR resonances expected for C2-arylated 1,3-imidazolinium salts. Molecular structures of 2 and 3 have been determined by single crystal X-ray diffraction studies (Fig. 2). The metric parameters of 2 and 3 (Table 1) are fully consistent with those of reported mono-C2-arylated 1,3-imidazolinium species.

Having the desired compounds in hand, we analyzed the electrochemical properties of 2 and 3 by cyclic voltammetry. Cyclic voltammograms (CVs) of 2 and 3 (Fig. 3) showed two sequential quasi-reversible redox processes, suggesting that both imidazolinium fragments are electrochemically coupled. The first reduction at $E_{1/2} = -0.80$ V (2) and $E_{1/2} = -1.04$ V (3) is most probably to form a radical cation, which undergoes second reduction at $E_{1/2} = -0.95$ V (2) and $E_{1/2} = -1.28$ V (3) to give the corresponding neutral species. Note, the reduction potential for 2 and 3 is significantly lower compared to the related C2-protonated imidazolinium salt (SIPr)HCl (ca. -2.3 V). Indeed, chemical reduction of 2 and 3 with KC$_8$ at -78 °C in THF immediately resulted in the formation of a highly colored solution and a black precipitate (graphite) (Scheme 2). Upon usual workup, compound 4 (green) and 5 (blue) were isolated as air sensitive solids in an almost quantitative yield. Compounds 4 and 5 are indefinitely stable in solution as well as in solid state under an inert gas atmosphere. Single crystals of 4 and 5 suitable for X-ray diffraction were grown by storing a saturated n-hexane solution of each at -35 °C for 20 h.

The solid-state molecular structures of 4 and 5 are shown in Fig. 4. The structural parameters of 4, 5 and their precursors 2, 3 along with TH and CH are given in Table 1. The C$_{8}$-N (av. 1.328 Å), C$_{8}$-C$_{i}$ (av. 1.472 Å), and C$_{1}$-C$_{0}$-C$_{1}$-C$_{0'}$ (av. 1.391 Å) bond lengths of 2 and 3 are in accordance with those of mono C2-arylated imidazolinium salts. The C$_{8}$-N bond length of 4 (av. 1.404 Å) and 5 (1.390 Å) are considerably longer, whereas C$_{8}$-C$_{i}$ bond lengths of 4 (av. 1.371 Å) and 5 (1.386(2) Å) are significantly shorter compared to those of 2 and 3. The C$_{8}$-C$_{i}$ bond lengths of 4 and 5 are although longer than those in typical olefins (1.33–1.34 Å) and that of (IPr)CH$_2$ (1.332(4) Å) but compare well with that of the vinylsilane IPrCH(SiHCl$_2$) (1.379(2) Å) in which a considerable π-electron density has transferred to the silicon atom. In addition, the C$_{1}$-C$_{0}$ (1.442(2)-1.448(3) Å) and C$_{0}$-C$_{0'}$ (1.347(4)-1.360(2) Å) bond lengths of 4 and 5 are clearly distinguishable (i.e., no longer benzenoid). While the bond length alternation (BLA) in 4 (0.10 Å) is similar to TH (0.10 Å), the same in 5 (0.08 Å) is intermediate of 4 and CH (0.05 Å). In addition, the C$_{1}$-C$_{0'}$ bond length of 5 (1.408 Å) is shorter compared to that of CH (1.448 Å). This indicates a higher quinoidal contribution to the resonance structure of 5 compared to CH, which is however lower in comparison with 4 and TH. This becomes also evident when the planarity of imidazolide rings is compared with that of the bridging phenyl or diphenylene ring. The imidazolide rings are puckered and feature the plane twist angle of 56.42(5)° in 2 and av. 8.28(10)° in 4 from the bridging phenyl ring, indicating a significant contribution of the quinoid resonance form in the later.
Table 1 Selected bond lengths (Å) and angles (°) determined by X-ray diffractiona for 2–5, TH and CH,b and calculated (B3LYP/def2-SVP) for 4 and 5 in closed-shell (CS) and triplet (T) ground-state.b Compound 4 crystallized with two molecules in the asymmetric unit, given is the average of both molecules

<table>
<thead>
<tr>
<th>Compound</th>
<th>N–Ca</th>
<th>Cα–Ci</th>
<th>Ci–Cα</th>
<th>Ci–Cα'</th>
<th>N–C–N</th>
<th>Cα–Cα'</th>
<th>ΣN</th>
<th>BLAc</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.326</td>
<td>1.478(2)</td>
<td>1.397</td>
<td>1.390(2)</td>
<td>113.2(1)</td>
<td>—</td>
<td>356.4</td>
<td>—</td>
</tr>
<tr>
<td>TH</td>
<td>—</td>
<td>1.381</td>
<td>1.449</td>
<td>1.346</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.10</td>
</tr>
<tr>
<td>4</td>
<td>1.404</td>
<td>1.371</td>
<td>1.451</td>
<td>1.349</td>
<td>108.2</td>
<td>349.4</td>
<td>—</td>
<td>0.10</td>
</tr>
<tr>
<td>CS</td>
<td>1.413</td>
<td>1.390</td>
<td>1.461</td>
<td>1.362</td>
<td>105.8</td>
<td>355.1</td>
<td>—</td>
<td>0.10</td>
</tr>
<tr>
<td>T</td>
<td>1.407</td>
<td>1.445</td>
<td>1.421</td>
<td>1.391</td>
<td>109.0</td>
<td>353.6</td>
<td>—</td>
<td>0.03</td>
</tr>
<tr>
<td>3</td>
<td>1.331</td>
<td>1.466(3)</td>
<td>1.395</td>
<td>1.383</td>
<td>111.3(2)</td>
<td>1.494(4)</td>
<td>355.5</td>
<td>—</td>
</tr>
<tr>
<td>CH</td>
<td>—</td>
<td>1.415</td>
<td>1.424</td>
<td>1.372</td>
<td>—</td>
<td>1.448</td>
<td>—</td>
<td>0.05</td>
</tr>
<tr>
<td>5</td>
<td>1.390</td>
<td>1.386(2)</td>
<td>1.443</td>
<td>1.359</td>
<td>107.9(1)</td>
<td>1.408(2)</td>
<td>347.3</td>
<td>0.08</td>
</tr>
<tr>
<td>CS</td>
<td>1.403</td>
<td>1.398</td>
<td>1.450</td>
<td>1.367</td>
<td>107.0</td>
<td>352.9</td>
<td>—</td>
<td>0.08</td>
</tr>
<tr>
<td>T</td>
<td>1.409</td>
<td>1.424</td>
<td>1.433</td>
<td>1.387</td>
<td>107.6</td>
<td>351.4</td>
<td>—</td>
<td>0.04</td>
</tr>
</tbody>
</table>

a The values for N–Ca, Cα–Ci, Ci–Cα, and N–C–N (except Ci–Cα' of 2, Ci–Cα, and N–C–N of 2, 3, 4, and 5) are averaged and given without estimated standard deviations (esd’s). b Optimized structures and further detail are provided in the ESI (see Fig. S6–S9). c BLA = Ci–Ca – Ci–Cα'.

expected, the plane twist angle in 5 (17.56(5)$^\circ$) is also smaller compared to that of 3 (46.41(9)$^\circ$), but it is almost twice that of the 4 (8.28(10)$^\circ$). This also emphasizes the diminished quinoidal contribution to the resonance structure of 5 compared to 4.

In order to gain deeper insight into the electronic structures of 4 and 5, DFT calculations were performed at the B3LYP/def2-SVP and BH&HLYP/def2-SVP level of theory (see ESI† for details). The frontier molecular orbitals (FMOs) of 4 and 5 are shown in Fig. 5. Geometry optimizations were performed considering three electronic states namely, closed-shell singlet (CS), open-shell singlet (OS), and triplet (T) states (Table 1). As can be seen, the calculated CS singlet state structures are in a better agreement with X-ray structures. The pyramidalization of the nitrogen atom of imidazolidine ring can also be accounted for the quinoidal character of 4 and 5. The nitrogen atoms in 2 and 3 are almost planar (the sum of the angles at the nitrogen atom $\Sigma N = 355–356^\circ$), whereas one of the nitrogen atoms of NHC units in 4 ($\Sigma N = 349.4^\circ$) and 5 ($\Sigma N = 347.3^\circ$) is pyramidalized. This becomes also obvious when ΣN of 4 and 5 calculated for CS and T states are compared. The OS calculations were carried out within the Noodleman’s broken-symmetry (BS) formalism.28 All BS computations showed no spin-contamination collapsing on the CS species. In the case of 5, a broken symmetry singlet wave function -2.3 kcal mol$^{-1}$ lower compared to the CS singlet species is recognized (Table 2).

An improvement of the electronic energies of each species was performed at B3LYP/def2-TZVPP, PBE0/def2-TZVPP, BH&HLYP/def2-TZVPP, and M06-2X/def2-TZVPP levels of theory (see the ESI†). All these methods predicted that for 4 the triplet form is 29.1 kcal mol$^{-1}$ (B3LYP), 28.7 kcal mol$^{-1}$ (PBE0),

Fig. 3 Cyclic voltammograms of 2 and 3 (CH$_3$CN/nBu$_4$NP$_6$, 100 mV s$^{-1}$, vs. Fc$/^+$/Fc$^-$).

Scheme 2 KC$_8$ reduction of 2 and 3 to 4 and 5.
27.8 kcal mol\(^{-1}\) (BH&HLYP), or 32.0 kcal mol\(^{-1}\) (M06-2X) higher in energy (Table T3 in the ESI\(^{†}\)). The computed singlet-triplet energy difference \(\Delta E_{S-T}\) for 5 is 10.7 kcal mol\(^{-1}\) (B3LYP), 9.5 kcal mol\(^{-1}\) (PBE0), 4.8 kcal mol\(^{-1}\) (BH&HLYP), or 9.8 kcal mol\(^{-1}\) (M06-2X) (Table T4 in the ESI\(^{†}\)). It should however be noted that among all the functionals used, BH&HLYP was the only one that recognized a singlet broken symmetry state (Table 2). We also calculated the diradical character \(\gamma\) of 4 and 5 as described by Nakano \(\gamma = 0\) for the closed-shell and \(\gamma = 1\) for the pure singlet diradical.\(^{22}\) Compound 4 is a perfectly closed-shell species while compound 5 has 43\% diradical character (Table 2). The estimated values are however lower than those reported for the TH (0.31) and CH (0.72) HCs.\(^{6}\)

We also performed CASSCF(2,2)+NEVPT2/def2-SVP calculations on model systems 4Me and 5Me, where the 2,6-iPr\(_2\)C\(_6\)H\(_3\) groups of compounds 4 and 5 were replaced by methyl groups (See the ESI, Tables T5–T7\(^{†}\)). These calculation led to a CI (configuration interaction) vector having coefficients of 0.96 for
the closed-shell 2,0 configuration, 0.0 for the 1,1 configuration, and 0.3 for the 0,2 configuration. The diradical index computed according to Neese et al. suggests that 4Mo and 5Mo are closed-shell species with 7.0% and 7.8% diradicaloid character, respectively. Indeed, the occupation of HOMO is in both cases 1.92 electrons, while LUMO has 0.07 electrons.

From the above discussion, it becomes clear that the closed-shell singlet is the ground state for 4 and 5. Indeed, a carefully prepared sample of 4 was EPR silent and exhibit well resolved 1H and 13C NMR resonances in the expected region (see Plots P8–P10 in the ESI†). Under similar conditions, the sample prepared by dissolving crystals of 5 exhibit a doublet EPR signal (Fig. S5 in the ESI†), which corresponds to a mono-radical species. This observation is in line with the baffling controversy over the magnetic properties of CH, the so-called “diradical paradox.” Similar observations have been also made in many other closed-shell compounds reported recently. Baumgarten addressed this issue in a very recent report that described for (SIPr)(C6H4)2(SIPr)(Br)2 (3) a Bruker Avance III 500 or a Bruker Avance III 500HD NMR spectrometer. Chemical shifts are given in δ ppm and are referenced to the solvent residual peaks:24 DMSO-d6 (1H, δ = 2.50 ppm and 13C, δ = 39.52 ppm), C6D6 (1H, δ = 7.16 ppm and 13C, δ = 128.06 ppm). ESI mass spectra were recorded with a Bruker Esquire 3000 spectrometer. UV-visible spectra were recorded using a ThermoFisher Evolution 300 spectrophotometer.

Synthetic procedures of 2–5

Compounds 2 and 3 were prepared by the direct C2-arylation of SIPr (1) with 1,4-diodobenzene and 4,4’-dibromobiphenyl under nickel catalysis.25

\[
[(\text{SIPr})C_6H_4(\text{SIPr})]_2(\text{I}_2) (2)
\]

To a Schlenk flask containing SIPr (1) (1.76 g, 4.50 mmol), 1,4-diodobenzene (0.70 g, 2.21 mmol), and Ni(cod)2 (87 mg, 0.32 mmol) was added 40 mL o-xylene. The resulting reaction mixture was heated under reflux for 4 h and then brought to room temperature. Filtration through a G4 porosity frit afforded an off-white solid, which was washed with (2 × 10 mL) tolune and dried under vacuum. Compound 2 was obtained as a white solid in 81% (1.90 g) yield. Mp: 348–350 °C (dec.). Elemental analysis (%) calcd for 2, C60H80I2N4: C 72.51; H 7.75; N 5.12; found: C 71.75; H 7.47, N 4.88. 1H NMR (500 MHz, DMSO-d6, 25 °C): δ = 0.68 [d, J = 6.7 Hz, 24H, CH(CH3)2], 1.23 [d, J = 6.5 Hz, 24H, CH(CH3)2], 2.87 [sept, J = 6.8 Hz, 8H, CH(CH3)2], 4.55 [s, 8H, NCH2], 6.83 [s, 4H, C6H4], 7.22 [d, J = 7.8 Hz, 8H, m-C6H4], 7.42 [t, J = 7.8 Hz, 4H, p-C6H4] ppm. 13C NMR (125 MHz, DMSO-d6, 25 °C): δ = 22.5, 26.0, 28.2, 53.6, 124.8, 125.3, 125.5, 125.7, 128.7, 129.1, 129.4, 131.4, 136.0, 145.1, 146.1, 164.2 ppm. MS (ESI pos.): m/z: 428.67 [2 + 2Br]+.

\[
[(\text{SIPr})C_6H_4(\text{SIPr})]_2{\text{Br}}_2 (3)
\]

Compound 3 was prepared by adopting a similar method as described for 2 using SIPr (1) (1.50 g, 3.84 mmol), 4,4’-dibromobiphenyl (0.59 g, 1.89 mmol), and Ni(cod)2 (75 mg, 0.25 mmol). Yield: 1.47 g, 71%. Mp: 358–360 °C. Elemental analysis (%) calcd for 3, C60H80Br2N4: C 72.51; H 7.75; N 5.12; found: C 71.75, H 7.47, N 4.88. 1H NMR (500 MHz, DMSO-d6, 25 °C): δ = 0.96 [d, J = 6.7 Hz, 24H, CH(CH3)2], 1.31 [d, J = 6.5 Hz, 24H, CH(CH3)2], 3.06 [sept, J = 6.6 Hz, 8H, CH(CH3)2], 4.56 [s, 8H, NCH2], 6.97 [d, J = 8.6 Hz, 4H, C6H4], 7.34 [d, J = 7.7 Hz, 8H, m-C6H4], 7.46 [t, J = 7.7 Hz, 4H, p-C6H4], 7.72 [d, J = 8.5 Hz, 4H, m-C6H4] ppm. 13C NMR (125 MHz, DMSO-d6, 25 °C): δ = 22.8, 25.7, 28.40, 53.5, 125.6, 127.3, 129.6, 130.5, 131.2, 145.3, 165.3 ppm. MS (ESI pos.): m/z: 466.4 [3 – 2Br]+.

\[
[(\text{SIPr})C_6H_4(\text{SIPr})]_2 (4)
\]

To a Schlenk flask containing 2 (250 mg, 0.25 mmol) and KC8 (74 mg, 0.55 mmol) was added 15 mL pre-cooled (–78 °C) THF, which immediately led to the formation of a green suspension. The reaction mixture was brought to room temperature and further stirred for 2 h. Filtration through a plug of Celite afforded a green solution. The volatiles were removed under vacuum and the remaining green residue was extracted with n-hexane and stored at −24 °C to obtain 4 as a crystalline solid.
Yield: 204 mg, 95%; mp 181 °C (dec.). Elemental analysis (%) calculated for 4, C\textsubscript{66}H\textsubscript{80}N\textsubscript{4} (857): C 84.06; H 9.41; N 6.54; found: C 83.36, H 9.13, N 6.32. UV-vis THF, \(\lambda \) (nm) (\(\epsilon \) (M-1 cm-1)): 399 (15 906), 431 (17 389), 578 (20 200), 619 (2791), 908 (486). MS (ESI pos.): \(m/z = 428.3 \) [4 + 2H]+. \(^1\text{H} \) NMR (500 MHz, C\textsubscript{6}D\textsubscript{6}, 25 °C): \(\delta = 1.21 \) (d, \(J = 6.8 \) Hz, 2H, HC\textsubscript{2}(CH\textsubscript{3})) 1.24 (d, \(J = 6.8 \) Hz, 2H, HC(CH\textsubscript{3})), 3.37 (s, 8H, NCH\textsubscript{2}), 3.49 (sept, \(J = 7.5 \) Hz, 8H, CH\textsubscript{2}(CH\textsubscript{3})), 7.10 (t, \(J = 7.4 \) Hz, 4H, p-C\textsubscript{6}H\textsubscript{4}) ppm. \(^13\text{C} \) NMR (125 MHz, C\textsubscript{6}D\textsubscript{6}, 25 °C): \(\delta = 23.7, 25.2 \) (HC\textsubscript{2}(CH\textsubscript{3})), 28.5 (HC\textsubscript{2}(CH\textsubscript{3})), 53.0 (CH\textsubscript{2}N), 117.6 (C\textsubscript{6}H\textsubscript{4}), 124.3 (p-C\textsubscript{6}H\textsubscript{4}), 127.4 (m-C\textsubscript{6}H\textsubscript{4}), 128.1, 128.4, 134.9, 141.5, 147.1 (o-/p-C\textsubscript{6}H\textsubscript{4}, p-C\textsubscript{6}H\textsubscript{4}) ppm.

\[
\left[\text{SIPr}\left(C\text{H}_3\text{H}_2\text{SIPr}\right)\right] (5)
\]

Compound 5 was prepared by employing a similar method as described above for 4 using 3 (800 mg, 0.73 mmol) and KC\textsubscript{8} (198 mg, 1.46 mmol) in THF (20 mL) as a deep blue solid. Yield: 670 mg, 98%; mp 201 °C (decomp.). Elemental analysis (%) calculated for 5, C\textsubscript{68}H\textsubscript{82}N\textsubscript{4} (933): C 84.93; H 9.07; N 6.00; found: C 84.55, H 8.77, N 5.68. UV-vis THF, \(\lambda \) (nm) (\(\epsilon \) (M-1 cm-1)): 580 (14 860), 618 (20 940), 911 (520). MS (ESI pos.): \(m/z = 466.3 \) [5 + 2H]+.

X-ray crystallography

Solid-state molecular structures of 2 (Fig. S6†), 3 (Fig. S7†), and crystallographic details of 2-5 (Tables T1 and T2) are given in the ESL†. CCDC 1826567 (2), 1826568 (3), 1826569 (4), and 1826570 (5) contain the supplementary crystallographic data for this paper.†

Computational calculations

Geometry optimizations were performed using Gaussian 09 (ref. 26) together with TurboMole V6.5.37 All geometry optimizations were computed using the functional B3LYP28 and BH&HLYP29 in combination with the def2-SVP basis set.30 The stationary points were located with the Berny algorithm31 using redundant internal coordinates. Analytical Hessians were computed to determine the nature of stationary points. The improvements in the electronic energies were carried out by computing single points on the B3LYP/def2-SVP geometries at the B3LYP/def2-TZVPP, BH&HLYP/def2-TZVPP, PBE0/def2-TZVPP32 and M06-2X/def2-TZVPP33 levels of theory. Further calculation details on optimized molecular structures, relative free energies, frontier molecular orbital analyses, and UV-visible spectra are provided in the ESL†.

Conclusions

In conclusion, we have presented the synthesis and characterization of the first Kekulé diradicaloid compounds 4 and 5 derived from a classical NHC 1. Compounds 4 and 5 may be considered as NHC analogues of Thiele’s and Chichibabin’s hydrocarbons. Remarkably, the precursor compounds 2 and 3 are readily accessible by the double carbonylation of para-dihaloarenes with a commercially available NHC 1 using Ni-catalysis. Experimental and computational studies fully corroborate the closed-ring singlet ground state of 4 and 5. The results demonstrate that by using appropriate linkers, synthetic access to non-Kekulé diradicals and poly-radicals derived from NHCs seems feasible and therefore is worth pursuing.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We gratefully acknowledge the support from the Deutsche Forschungsgemeinschaft and thank Professor Norbert W. Mitzel for his generous support and encouragement. We also thank Dr Maurice van Gastel for analysing compounds 4 and 5 by EPR spectroscopy.

References

11. (a) Z. Zeng, X. Shi, C. Chi, J. T. Lopez Navarrete, J. Casado and J. Wu, Chem. Soc. Rev., 2015, 44, 6578–6596; (b) G. Li,

Chemical Science

Edge Article