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Reversible disassembly of metallasupramolecular
structures mediated by a metastable-state
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The addition of a metastable-state photoacid to solutions containing metal-ligand assemblies renders the

systems light responsive. Upon irradiation, proton transfer from the photoacid to the ligand is observed,

Received 8th March 2018
Accepted 9th April 2018

resulting in disassembly of the metallasupramolecular structure. In the dark, the process is fully reversed.

Light-induced switching was demonstrated for six different metal-ligand assemblies containing Pd", Pt"
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rsc.li/chemical-science with light.

Introduction

The controlled manipulation of supramolecular structures with
light represents an interesting option to create functional
nanoscale devices." A common strategy to implement light-
responsiveness in metal-ligand assemblies is the utilization
of photochromic ligands. Light allows altering the geometry of
the ligand, which in turn may result in a structural reconfigu-
ration of the metallasupramolecular assembly."* For example,
bipyridyl ligands containing dithienylethene units have been
used for the light-induced conversion of a Pd,4L4g capsule into
small metallamacrocycles,® to create Pd,L, cages with light-
dependent host-guest chemistry,* and for the photo-induced
sol-gel switching of a metallogel.” Ligands containing the azo-
benzene motif were employed to modulate the host-guest
chemistry of a spherical Pd;,L,, complex,® to alter the solubility
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Scheme 1 Reversible disassembly of metallasupramolecular struc-
tures by means of a metastable-state photoacid (PAH). The Mgl;,
coordination cage is used as a representative example of a metal—
ligand assembly.
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or Ru" complexes and bridging polypyridyl ligands. The methodology allows liberating guest molecules

of a coordination cage,”® and to control the catenation of
a palladium metallacycle.”

The construction of light-responsive metal-ligand assem-
blies with photochromic ligands is not straightforward. The
design of suited ligands can be challenging, and the prepara-
tion of the ligands may involve substantial synthetic efforts. In
this study, we describe an alternative and more general
approach to render metal-ligand assemblies light-responsive:
the addition of a metastable-state photoacid. We demonstrate
that the acidification by the photoacid upon irradiation can be
used for the disassembly of metallasupramolecular structures.*
The process is reversible, and the metallasupramolecular
structures form again in the dark at room temperature
(Scheme 1).

Results and discussion

For our investigations, we decided to use the merocyanine
photoacid PAH, the structure of which is depicted in Scheme 2.
Upon exposure to violet light, PAH undergoes a ring-closing
reaction to give the spiropyran PA™, along with liberation of
a proton (Scheme 2)."* The spiropyran form is metastable and
accumulates under irradiation. As a result, a pH drop of more
than 2 units can be achieved. When light irradiation is stopped,
the merocyanine form PAH is regenerated.

The metastable-state photoacid PAH was introduced by Liao
and co-workers in 2011."> Since then, PAH and structurally
related compounds have been used in the context of supramo-
lecular chemistry. Applications include the light-induced
complexation of a pyridinium salt by a macrocyclic receptor,*
the switching of a rotaxane-based molecular shuttle,* the light-
controlled reversible self-assembly of nanorods,' the reversible
chromism of guests in coordination cages,'® the modulation of
a hydrazine switch,"” the reversible photo-induced gel-sol
transition of a dipeptide gel,"® and the controlled aggregation of
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Scheme 2 Irradiation with light converts the merocyanine PAH into

the spiropyran PA™, with concomitant liberation of a proton.

nanoparticles,’® among others."** We wanted to explore if PAH
is also suited for controlling the structures of metal-ligand
assemblies by light.

First, we performed test reactions with the Pd" complex
[(dppp)Pd(py),](OTf), (1). Complex 1 features a strongly bond
1,3-bis(diphenylphosphino)propane (dppp) ligand and two
labile pyridine (py) ligands. We chose 1, because Pd" complexes
with chelating diphosphine ligands are popular building blocks
in metallasupramolecular chemistry.>* As connecting units,
polypyridyl ligands are often employed, and the pyridyl ligands
in 1 are surrogates for more intricate ligands. A solution of
complex 1 (125 uM) and PAH (8 equiv.) was prepared in the dark
using a mixture of CD;CN and D,O (8 : 2) as the solvent. The
solution was then irradiated for 20 minutes with violet light
using a commercial LED panel (A = 425 nm). After irradiation,
the sample was immediately analysed by 'H and *'P NMR
spectroscopy, and further NMR spectra were recorded after 8
hours in the dark.

The '"H NMR spectrum of the mixture before irradiation
shows two doublets in the region between 7.5 and 9 ppm, which
can be assigned to the photoacid PAH (Scheme 3, left side). In
addition, one can observe a doublet at ~8.5 ppm, resulting from
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Scheme 3 Irradiation of a mixture of complex 1 (125 uM) and the
photoacid PAH (8 equiv.) in CDsCN/D,O (8 : 2) by violet light results in
the displacement of the pyridyl ligands as evidenced by the *H NMR
(left side) and P NMR spectra (right side). The triflate anions of 1 are
not shown for clarity. L indicates solvent or OTf".
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the pyridine NCH protons. Irradiation leads to the nearly
complete disappearance of the two PAH signals. The NCH
signal of the bound pyridine ligands is no longer observable.
Instead, three new signals appear. These peaks can be attrib-
uted to the formation of protonated pyridine (1b), as evidenced
by comparison with a reference sample of pyridinium chloride
(Scheme 3, spectrum on the top left side). After 8 hours in the
dark, the NMR spectrum of the sample is indistinguishable
from that of the sample before irradiation. The *'P NMR spec-
trum of the starting mixture shows a broad peak at ~9 ppm,
which is converted to a sharper signal at ~12 ppm after irra-
diation (Scheme 3, right side). A similar signal is observed when
complex [(dppp)Pd](OTf), is dissolved in CD3;CN/D,O. We
attribute this signal to a complex [(dppp)PdL,] (1a), with L being
either solvent and/or triflate. Again, the spectrum converts back
to that of the starting mixture when the sample is kept in the
dark. Taken together, the data are strong evidence for a light-
induced displacement of the pyridine ligands, which is fully
reversed in the dark.

Similar test reactions were performed with the model
complexes [(py)sPd](BF,), (2), [(bipy)sFe](BF4), (3), and
[(bipy);Zn](BF,), (4) (bipy = 2,2"-bipyridyl). These kind of coor-
dination motifs are also found in numerous metal-
lasupramolecular assemblies.”* As it was observed for 1, it was
possible to dissociate the N-donor ligands by irradiation with
light, and re-complexation was observed in the dark (for details
see the ESIT). For the Pd complex 2 and the Zn complex 4, the
photo-induced conversion was very high (>80%), whereas for
the Fe complex 3, only partial disassembly was observed (~46%
of complex 3 remained intact). We have also attempted to break
complex 3 with a Brgnsted acid, namely trifluoroacetic acid
(TFA, 24 equiv. with respect to Fe). As with PAH, only partial
disassembly was observed, indicating that the Fe complex is less
susceptible to an acid-induced ligand displacement.

Encouraged by the results with the model complexes 1-4, we
next examined reactions with larger and structurally more
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Fig. 1 Structures of the pyridyl ligands A—E.
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metallasupramolecular structures were prepared using the
pyridyl ligands depicted in Fig. 1. More specifically, we have
prepared an octahedral MgL,, cage with [Pd(py*),]*" (py* =
substituted pyridine) complexes at the vertices, bridging ligands
A, and a [B(p-CcH,4F),]™ guest molecule (5),>* two ML, cages
with gyrobifastigium-like geometry and [(dppp)Pd(py*)]*" or
[(depm)Pt(py*)]** complexes connecting the tetratopic ligand B
(6 and 7, dcpm = bis(dicyclohexylphosphino)methane),**
a coordination barrel containing [(depm)Pt(py*)]** complexes
and ligand C (8),**“ a trigonal prismatic Ru complex with tris-
pyridyl ligand D (9),*® and an M,L, cage based on ligand E with
[Pd(py*).]*" vertices (10)* (Fig. 2).

First test reactions with complex 5 and TFA (24 equiv.)
showed that the complex can be fully disassembled by acid. We
then set up an experiment similar to what has been described
for the model complexes. Assembly 5 was dissolved together
with an excess of the photoacid PAH in a mixture of CD;CN and
D,O (8:2) in the dark. After irradiation with violet light, we
immediately recorded 'H and '’F NMR spectra, followed by

..........
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Fig. 2 Schematic representation of the metallasupramolecular
structures used in this study. Details about the bridging ligands (yellow)
are given in ESL¥
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additional spectra after a waiting period of 8 hours in the dark.
Preliminary studies revealed that the addition of small amounts
of NaCl facilitated the disassembly process, and all subsequent
experiments with 5 were performed with six equivalents of
NaCl. It is worth noting that chloride ions are known for their
ability to decompose Pd" cages.”” For complex 5, six equivalents
of NaCl were not sufficient to induce detectable decomposition,
even though we were able to disrupt the assembly at higher
NacCl concentrations. The beneficial effect of small amounts of
NacCl for the photoswitching process might be due to stabili-
zation of the Pd" ions after ligand displacement.

The "H NMR spectrum after irradiation indicates the acid-
induced de-complexation of the pyridyl ligands (Scheme 4, left
side). Additional evidence for the disassembly of the octahe-
dron was obtained by analysing the °F NMR spectra (Scheme 4,
right side). The initial spectrum shows two signals, one for the
encapsulated [B(p-CsH,F)4]~ guest molecule, and one for non-
bound [B(p-CcH,F)s] . After irradiation, only ‘free’ [B(p-
Ce¢H,yF)4]™ (5¢) is observed. In the dark, the ML, cage is re-
formed, as corroborated by the "H NMR spectrum, and the
'F NMR signal of the encapsulated borate anion. Overall, it is
evident that light irradiation leads to a destruction of the met-
allasupramolecular structure and liberation of the guest. The
process is reversible: in the dark, the cage with the encapsulated
guest is formed again.

Experiments with the assemblies 6-10 gave similar results:
a reversible, light-induced disassembly of the cage structures
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Scheme 4 Irradiation of a mixture of cage 5 (10 uM), NaCl (60 pM), and

the photoacid PAH (8 equiv. with respect to each bipyridyl ligand) in
CD3CN/D,0O (8 : 2) by violet light results in disassembly of the cage and
liberation of the [B(p-CgH4F)4]™ guest (green ball) as evidenced by the
'H NMR (left) and °F NMR spectra (right). Details about the bridging
ligand (yellow) are given in the ESL.T
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was observed by NMR spectroscopy in all cases (for details see
the ESI). For 6, 7, and 8, the switching efficiency was found to
be very high, with at least 80% of the cages being disassembled
by the photoacid. For 9 and 10, the process was less efficient,
with only 16% (9) and 45% (10) of the cage structures being
disrupted.

The difference in switching efficiency between cage 5 (>80%)
and cage 10 (45%) is intriguing, given that both assemblies are
based on [Pd(py*),]*" complexes. We were able to identify two
factors which contribute to the reduced switching efficiency
observed for 10: first, the photoacid binds weakly to cage 10
(Fig. S311),*® and this interaction is expected to stabilize the
assembly. Such an interaction was not observed for cage 5.
Second, the pyridyl ligand A used for cage 5 is more basic than
the pyridyl ligand E used for cage 10 (Fig. S321). Consequently,
acid-induced disassembly is favoured for cage 5.

The disassembly process was fully reversible in all cases.
Kinetic investigations at 298 K showed that all assemblies are
re-formed with half-lifes between 20 and 70 minutes. For
comparison: the photoacid alone switches back with ¢;,, of 2.4
minutes under these conditions (CH;CN/H,0, 8 : 2), indicating
that the re-formation of the coordination complex is the rate-
limiting step. The re-assembly of the complexes 5 and 8 was
also followed at 50 °C. As expected, the reactions were faster,
and complete re-assembly was observed after 30 minutes (5) or
10 minutes (8), respectively.

The robustness of the photoswitching process was demon-
strated by repeated disassembly-assembly cycles using the
coordination barrel 8 (Fig. 3). A mixture of the barrel and PAH
was irradiated for 20 minutes, and then 'H NMR and *'P NMR
spectra were recorded. After 2.5 hours in the dark, additional
spectra were measured. This procedure was repeated four
times. The "H and *'P NMR spectra show barrel destruction and
re-assembly over all cycles. The relative amount of the proton-
ated ligand 8b, as determined by '"H NMR spectroscopy, was
used as an indication of the switching efficiency. The process
displayed good stability over the five cycles (Fig. 3). Ultimately,
the sensitivity of PAH towards hydrolytic degradation repre-
sents a limit,"** but within the timeframe of our experiment,
hydrolysis was not observed.
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Fig. 3 Repeated photoswitching between the coordination barrel 8
and its disassembled state. The relative amount of the protonated
ligand 8b was used as an indication of the switching efficiency. For the
first cycle, the amount of 8b was normalized to 0 and 100%,
respectively.
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Conclusions

We have demonstrated that the addition of a metastable-state
photoacid to solutions of metallasupramolecular assemblies
renders the systems photo-responsive. Irradiation with violet
light leads to proton transfer from the photoacid to the ligand,
resulting in partial or full disassembly of the metal-ligand
structure. The process is in all cases reversed in the dark. In
principle, similar changes could be induced by addition of acids
and bases. However, the utilization of light is not effecting the
overall composition of the system (e.g. no accumulation of
salts), and light can be used with good spatial and temporal
control. Compared to the utilization of photochromic ligands,
our approach offers the advantage of being more general and
easier to implement. For the present study, we have focused on
metallasupramolecular structures based on polypyridyl ligands,
but it is expected that the methodology can be extended to
assemblies with other ligands, given that the basicity of the
system is within the pH range of the photoacid. We have already
shown that the approach is suited for the light-induced release
of guest molecules, but other applications can be envisioned as
well. For example, it could be possible to control catalytic
reactions with light, since some coordination cages are able to
act as catalytic nanoreactors.”® Furthermore, it should be
possible to use a related approach for photoswitching of met-
allasupramolecular polymers and metallogels.
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