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Transition metal-free intramolecular hydride transfer onto arynes is reported for the first time. This unique

transformation is utilized in redox-neutral intermolecular a-functionalization reactions of different tertiary
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Introduction

The direct functionalization of C-H bonds offers a wealth of
potential benefits to synthetic chemists," with significant
progress having been made in recent decades.” Activation of
C(sp®)-H bonds a- to heteroatoms is particularly appealing,® as
evidenced by the burgeoning area of cross-dehydrogenative
coupling (CDC) reactions,* whereby certain substrates, espe-
cially amines, are functionalized using a sacrificial external
oxidant and generally in the presence of a transition metal
catalyst.® o-Functionalization of amines has also received
considerable recent interest through the development of redox-
neutral processes® that exploit the propensity of tertiary amines
to undergo 1,5-hydride transfer onto a tethered acceptor,” most
commonly electron-deficient alkenes (Scheme 1a).*® Here,
Lewis acid-catalyzed intramolecular hydride transfer results in
a zwitterionic intermediate A that cyclizes to generate a new C-C
bond. Maulide and co-workers elegantly extended this strategy
to develop a redox-triggered approach to the C-H functionali-
zation of cyclic amines (Scheme 1b).* 1,5-Hydride transfer onto
an aldehyde acceptor — employed as a sacrificial oxidant —
resulted in aminal B, which underwent nucleophilic attack
upon addition of organometallic reagents.

Given our interest in aryne chemistry," we envisioned
a related approach to a general a-functionalization of amines
that employs arynes as internal hydride acceptors for the first
time (Scheme 1c). This new transformation would reveal the
unique zwitterionic intermediate C, prevented from undergoing
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leads to activation of a range of integrated pronucleophiles and ultimately affords a new approach to
cross-dehydrogenative coupling reactions which utilize aryne intermediates.

intramolecular cyclization due to geometrical constraints.
Significantly, zwitterion C contains a highly basic aryl anion
that should be capable of activating a pronucleophile (Nu-H)
within the reaction mixture,"” obviating the use of exogenous
organometallic reagents in a second operation and rendering
the overall process redox-neutral. Finally, the aryne tether would

a) Intramolecular hydride transfer - cyclization®8
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+ N-Benzyl protected amines — aryne tether becomes standard N-protecting group

Scheme 1 C(sp®)-H bond activation via intramolecular hydride
transfer.
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also operate as a latent N-benzyl protecting group; easily cleaved
when desired.

Arynes are versatile reactive intermediates that have experi-
enced a recent resurgence in interest due to the development
of precursors that act under mild conditions, such as 2-(trime-
thylsilyl)aryl triflates* and the hexadehydro-Diels-Alder reac-
tion of polyalkynes.* Despite undergoing myriad additions with
an extensive range of nucleophiles,™ the reaction of arynes with
C(sp®)-H bonds via ionic hydride transfer has yet to be real-
ized.''® Herein we report this new transformation, which has
enabled intermolecular a-functionalization of a range of tertiary
amines with different carbon-based pronucleophiles, some of
which are uncommon in CDC processes due to comparatively
high pK, values. Deuterium labeling studies are described
which support initial 1,5-hydride transfer onto the aryne, fol-
lowed by activation of the integrated pronucleophile. Overall
this furnishes new C(sp®)-C(sp*/sp/sp) bonds in a single and
operationally simple procedure via aryne-mediated CDC
reactions.

Results and discussion

1,2,3,4-Tetrahydroisoquinoline (THIQ) was selected as the
donor portion with which to initially evaluate our 1,5-hydride
transfer hypothesis due to its biological activity and general
synthetic utility."*® A suitable aryne acceptor was then tethered
onto the amine donor wusing the 2-trimethylsilyl-3-
trifluoromethanesulfonyl benzaldehyde precursor reported by
Smith III and Kim.”* Acetonitrile was chosen as the initial pro-
nucleophile as it is a common solvent for o-silylaryl triflate
reactions and has been reported to undergo deprotonation by
aryne-derived aryl anions." Selected optimization experiments,
using THIQ scaffold 1 as a test system, are presented in Table 1.
Evaluation of common o-silylaryl triflate activators (entries 1-7)
identified KF/18-crown-6 and tetrabutylammonium triphe-
nyldifluorosilicate (TBAT) as the most promising reagents. The
introduction of toluene as a co-solvent (toluene : acetonitrile,
3 :1 by volume) enabled higher reaction temperatures which
led to an increased yield with TBAT (entry 8). Both increasing
and decreasing the reaction concentration resulted in lower
yields (entries 9 & 10); most significantly at higher concentra-
tion due to competitive intermolecular amine arylation. At this
stage we found that the a-cyanomethylated THIQ 2 could not be
isolated cleanly during the reactions with TBAT, as the aryl
silane by-product was a persistent contaminant, so we turned
our attention to KF/18-crown-6 as the activator. A slight erosion
in yield was observed for KF/18-crown-6 in the toluene-aceto-
nitrile mixture (entry 11), presumably due to poorer solubility of
fluoride. However, we were pleased to find that a solvent switch
to 1,2-dimethoxyethane (DME) and acetonitrile (3 : 1 by volume)
led to the complete consumption of aryne precursor 1 and the
formation of the desired a-cyanomethylated THIQ 2a in 77%
isolated yield (entry 12). The DME : acetonitrile ratio could be
lowered to 19 : 1 by volume with a small drop-off in the yield of 2
(59%, entry 13). Encouragingly, further reduction of the pro-
nucleophile loading to 150:1 (approx. 10 equivalents of
acetonitrile, see entry 14) afforded 2 in a respectable 35% yield,
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Table 1 Selected optimization studies for the preparation of a-cya-
nomethyl-THIQ 2¢

[ I N
conditions N

H SiMe, H
NC
; oTf )

T Yield”
Entry  Activator Additive  Solvent (°C) (W)
1 CsF — CH;CN 70 43
2 CsF 18-c-6 CH;CN 70 60
3 KF 18-c-6 CH;CN 70 70
4 Cs,CO; 18-c-6 CH,CN 70 36
5 TBAF® — CH,CN 70 29
6 TBAF-3H,0 — CH,;CN 70 23
7 TBAT — CH;CN 70 66
8 TBAT — 3 : 1 PhMe/CH;CN 90 75
9 TBAT — 3:1 PhMe/CH3CNd 90 72
10 TBAT — 3:1 PhMe/CH;CN® 90 35
11 KF 18-c-6 3 :1 PhMe/CH;CN 90 64
12 KF 18-c-6 3 : 1 DME/CH;CN 90 89 (77)
13 KF 18-c-6 19 : 1 DME/CH;CN 90 59
14 KF 18-c-6 150 : 1 DME/CH;CN 90 35

¢ Reaction conditions: activator (2.0 equiv.), additive (2.0 equiv.), solvent
[0.01 M], 12 h. ” "H NMR yield vs. dibromomethane internal standard,
isolated yield in parentheses, all reactions proceeded to full
conversion after 12 h. 1.0 M in THF. ¢ 0.005 M.  0.05 M. TBAT =
tetrabutylammonium triphenyldifluorosilicate.

which hinted at the potential to expand this method to more
valuable pronucleophiles in the future. However, as the 3:1
volumetric ratio of DME : acetonitrile afforded the best yields
and represented a good improvement in pronucleophile
loading compared to the majority of CDC processes,* especially
those involving this less common pronucleophile,® these
conditions were selected for the study.

A range of substituted THIQs 1b-i were found to be
amenable to the optimized reaction conditions, affording the
corresponding Cl-cyanomethylated THIQs 2b-i (Scheme 2).
Electron-donating substituents such as methoxy (1b) and
hydroxy (1c) were excellent substrates, giving high yields of 2b
and 2c. It is particularly interesting to note that 6-hydroxy THIQ
precursor 2c¢ was tolerated, as it demonstrated that the unpro-
tected phenol did not cause significant quenching of the anion
in zwitterionic intermediate C (see Scheme 1c). Halogens (Br, 1d
and Cl, 1e) and moderately electron-withdrawing groups
(SO,NEt,, 1f and CO,t-Bu, 1g) were also viable substrates,
affording the corresponding products 2d-g in moderate yields;
consistent with less hydridic C-H bonds and decreased carbo-
cation stabilization in comparison to 1a-c. The incorporation of
a strongly electron-withdrawing nitro group into the THIQ
scaffold (1h) was found to almost completely inhibit hydride
transfer, with only traces of 2h observed. Finally, 1-methyl THIQ
1i proved an effective substrate, generating the quaternary
cyanomethylated THIQ 2i in a good yield. It is noteworthy that
THIQs occupy a privileged position as benchmark substrates in

n

This journal is © The Royal Society of Chemistry 2018
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Scheme 2 Intramolecular hydride transfer onto aryne with THIQ
derivatives. Reaction conditions: amine 1 (1.0 equiv.), KF (2.0 equiv.),
18-crown-6 (2.0 equiv.), DME : CH3zCN (3:1 by volume, 0.01 M),
90 °C, 12 h. Yields of isolated products throughout. “Ratio determined
by *H NMR spectroscopy.

CDC reactions, affording a-functionalized products that typi-
cally contain an N-aryl group.* In comparison, the THIQs 2
produced here possess a synthetically practical N-benzyl pro-
tecting group.”

Having established the feasibility of intramolecular hydride
transfer onto arynes with a range of THIQ derivatives, we
continued our investigations by varying the structure of the
tertiary amine donor. Starting with dihydrophenanthridine
derivative 3a, exposure to the established reaction conditions
smoothly afforded 4a in 72% yield (Scheme 3). oa-Phenyl-
benzylamine precursor 3b and a-methylbenzylamine 3¢ gener-
ated the quaternary products 4b and 4c in 53% and 32% yields
respectively. Interestingly, no benzobarrelene products from
a potentially competitive intramolecular Diels-Alder pathway
were identified.** Instead, the increase in conformational flexi-
bility of the tether is proposed to account for the difference in
reactivity between 3a and 3b/c.

Pleasingly, hydride transfer was not restricted to benzylic
C-H bonds and proved equally effective with precursors 3d-h
that each contained tertiary alkyl C-H bonds. Heterocyclic
derivatives 2-methyl-piperidine 3d and 2,5-dimethyl-pyrrolidine
3e gave the corresponding a-quaternary heterocycles 4d and 4e
in moderate yields. Similarly, the less conformationally-rigid
amines 3f-h also promoted hydride transfer onto arynes,
yielding spirocyclic and acyclic C-H functionalized amines, 4f
and 4g/h, respectively.

Having applied the principle of aryne-mediated hydride
transfer and subsequent co-solvent activation to the a-cyano-
methylation of tertiary amines, we looked at introducing

This journal is © The Royal Society of Chemistry 2018
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Scheme 3 Hydride transfer from linear and cyclic amine derivatives.
Reaction conditions are as shown in Scheme 2. Yields of isolated
products throughout. 2Ratio determined by *H NMR spectroscopy.

alternative pronucleophiles in this process. Pleasingly, when
dimethoxy-THIQ derivative 1b was exposed to the standard
reaction conditions, a range of different carbon-based coupling
partners were found to be viable co-solvents (Scheme 4). For
example, propionitrile, less acidic than acetonitrile (pK, = 32.5
in DMSO ¢f. 31.3 for MeCN),* yielded B-substituted cyanoamine
5b as a 1:1 mixture of diastereoisomers in 66% yield. Nitro-
methane, a more commonly used solvent in CDC reactions*
due to significantly higher acidity (pk, = 17.2 in DMSO),*
produced nitromethylated THIQ 6b in a similarly good 70%
yield. Interestingly, a more ‘inert’ solvent such as chloroform
also operated as a coupling partner, producing tri-
chloromethylated THIQ 7b in 41% yield. It is noteworthy that
better yields were obtained here at a lower 9 : 1 DME : Nu-H
ratio and no products from dichlorocarbene intermediates
were detected. The use of pentafluorobenzene enabled access to
new C(sp*)-C(sp”) bond formation (8b) in good yield, illus-
trating the potential for o-amino C(sp®)-H arylation with
electron-deficient arenes in the absence of a transition metal
catalyst. Lastly, C(sp*)-C(sp) coupling could be achieved with
phenylacetylene, affording 9b in 48% yield; the addition of
copper did not improve the outcome.”® THIQ derivatives 1a and
1i also proved amenable to these aryne-mediated CDC reac-
tions, affording the corresponding a-functionalized THIQs in
moderate to good yields.”

Finally, we sought to probe our mechanistic hypothesis.
Support for an ionic hydride transfer process came from the
retention of the cyclopropane rings in amine 4h (see Scheme 3),
as it was reasoned that formation of a radical adjacent to
nitrogen would result in rapid and irreversible cyclopropane
ring-opening. Furthermore, conducting the cyanomethylation
of 1a in the presence of a radical scavenger, TEMPO (2.0 equiv.),
did not prohibit the reaction. Next we performed a series of
deuterium labeling studies, starting with the reaction of THIQ

Chem. Sci., 2018, 9, 2873-2878 | 2875
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Scheme 4 Alternative pronucleophiles. Reaction conditions are as
shown in Scheme 2. Yields of isolated products throughout. ®Ratio
determined by *H NMR spectroscopy. PDME : Nu-H (9 : 1 by volume,
0.01 M).

precursor 1a in acetonitrile-d; as co-solvent, which resulted in
deuterium incorporation solely at the meta position of the
benzene ring in THIQ 2a-d; (Scheme 5a). Next, exposure of
bisdeuterated precursor 1,1-d,-THIQ 1a-d, to the reaction
conditions afforded the corresponding product of 1,5-deu-
teride transfer, 2a-d,, with deuterium located at the ortho
position of the benzene ring (Scheme 5b).>® Finally, a compe-
tition reaction between an equimolar amount of THIQ
precursor 1a and the bisdeuterated isotopologue la-d, sup-
ported the intramolecular nature of the hydride transfer, as
the monodeuterated crossover products 2a-Hd and 2a-dH were
not observed (Scheme 5c).

Considering the experimental evidence, the following
mechanism is proposed (Scheme 6). Treatment of o-silylaryl
triflate precursor 3 with fluoride reveals an aryne 10
that subsequently undergoes reduction via the intramolecular
1,5-hydride transfer of a C-H bond o- to nitrogen. The reactive
zwitterionic intermediate 11 deprotonates the acetonitrile pro-
nucleophile, which then adds to iminium ion 12 in a Mannich-
type reaction to yield a-cyanomethylated amine 4.

2876 | Chem. Sci,, 2018, 9, 2873-2878
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Scheme 5 Mechanistic experiments. Reaction conditions are as
shown in Scheme 2. ?Products 2a and 2a-d, isolated as an inseparable
mixture of isotopologues (5 : 3.5, as determined by *H NMR spec-
troscopy) in a combined 70% yield.

R2 R2
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| |
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e HQON 76
— | R - R
1,5-hydride H pronucleophile
| transfer activation
10 <> 1 [€) 12

Scheme 6 Proposed mechanism.

Conclusions

In summary, we have described an intramolecular hydride
transfer that uses arynes as acceptor moieties for the first time
and exploited this in the development of aryne-mediated CDC
reactions of heterocyclic and aliphatic tertiary amines. This is
a transition metal-free and redox-neutral process that generates
a new C(sp®)-C(sp®/sp’/sp) bond o- to nitrogen in a single
synthetic operation. The approach is distinct from existing

This journal is © The Royal Society of Chemistry 2018
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transition metal-free methods for C-H functionalization via
hydride transfer as a Lewis acid is not required to activate the
acceptor and intermediate zwitterion cyclization is geometri-
cally inhibited. Furthermore, the highly basic aryl anion directly
activates a number of diverse pronucleophiles - some of which
are not often encountered in CDC processes due to high pK,
values - which enables integration of an intermolecular
coupling partner in the same reaction vessel. The reduced aryne
tether also operates as a practical N-benzyl protecting group for
the corresponding o-functionalized secondary amines. Finally,
reactions conducted during the initial optimization studies
revealed that lower pronucleophile loadings can be employed in
these processes, hinting at the potential to expand to more
valuable coupling partners, although the associated erosion in
reaction yield means that further optimization would be
required. To this end, work is currently underway in our labo-
ratory to establish a full structure-activity profile for hydride
transfer onto arynes.
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