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us theory for multi-molecular
delocalised charge transfer
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AlthoughMarcus theory is widely used to describe charge transfer inmolecular systems, in its usual form it is

restricted to transfer from one molecule to another. If a charge is delocalised across multiple donor

molecules, this approach requires us to treat the entire donor aggregate as a unified supermolecule,

leading to potentially expensive quantum-chemical calculations and making it more difficult to

understand how the aggregate components contribute to the overall transfer. Here, we show that it is

possible to describe charge transfer between groups of molecules in terms of the properties of the

constituent molecules and couplings between them, obviating the need for expensive supermolecular

calculations. We use the resulting theory to show that charge delocalisation between molecules in either

the donor or acceptor aggregates can enhance the rate of charge transfer through a process we call

supertransfer (or suppress it through subtransfer). The rate can also be enhanced above what is possible

with a single donor and a single acceptor by judiciously tuning energy levels and reorganisation energies.

We also describe bridge-mediated charge transfer between delocalised molecular aggregates. The

equations of generalised Marcus theory are in closed form, providing qualitative insight into the impact

of delocalisation on charge dynamics in molecular systems.
1 Introduction

Theories of charge-transfer rates underpin our understanding
of a wide variety of chemical reactions and charge-transport
processes, not only in chemistry, but also in biology and
materials science.1–4 In most of the well-studied cases, the
charge is being transferred from one molecule to another.
However, in many systems—including organic semi-
conductors,5,6 the reaction centres of photosynthetic organ-
isms,7,8 inorganic coordination complexes,9 and conductive
metal–organic frameworks (MOFs)10—the charge to be trans-
ferred is delocalised across multiple donor molecules (or is to
be received by states delocalised over multiple acceptor mole-
cules). The usual theoretical approaches can be applied to these
cases if the donor or acceptor aggregates are treated as single
supermolecules, but doing so is oen computationally prohib-
itive, requires a complete re-calculation if any part is changed,
and, most importantly, offers limited qualitative insight into
how the component molecules and the interactions between
them affect the inter-aggregate charge transfer.

Although delocalisation in charge transfer has been studied
extensively, most studies have focused on cases of delocalisa-
tion between the donor and acceptor, as opposed to
d School of Mathematics and Physics, The

, Australia

d School of Chemistry, The University of

kassal@sydney.edu.au
delocalisation within donor or acceptor aggregates. In partic-
ular, donor–acceptor delocalisation is critical to understanding
adiabatic electron transfer, as rst emphasised by Hush,11,12 and
extended by numerous authors since.13–15 For example, inter-
valence transitions in mixed-valence compounds are a clear
manifestation of delocalisation between two molecules.16

Here, we study the problem of charge transfer from one
delocalised molecular aggregate to another. In order to be able
to speak of two distinct aggregates, we assume that the coupling
between the aggregates (i.e., between any donor molecule and
any acceptor molecule) is small compared to the strength of
their coupling to the environment. Furthermore, to ensure that
charges within either aggregate (or both) are delocalised among
the constituent molecules, we assume that the couplings
between the molecules are stronger than their coupling to the
environment.

Because the overall donor–acceptor coupling is weak, the
charge transfer will be incoherent, i.e., with no coherence
between the donor and acceptor states. Apart from the deloc-
alisation within the aggregates, this situation is described by
non-adiabatic electron transfer, which we take as our starting
point. Although we will follow convention in calling it Marcus
theory17 (MT), the standard expression for non-adiabatic charge
transfer between one donor D and one acceptor A was derived
by Levich and Dogonadze:18

kD/A ¼ 2p

ħ
jVDAj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pkBTlDA

p exp

 
�ðDEDA þ lDAÞ2

4kBTlDA

!
; (1)
This journal is © The Royal Society of Chemistry 2018
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Fig. 1 The model system for generalised Marcus theory. The model
describes charge transfer between two delocalised aggregates if the
couplings v between molecules constituting the donor (or acceptor)
are strong compared to the coupling to the environment Q, while the
couplings V between molecules in the donor with those in the
acceptor are relatively weak.
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where, at temperature T, three parameters control the transfer
rate: the donor–acceptor electronic coupling, VDA, determined
by the overlap of their electronic wavefunctions; the reorgan-
isation energy, lDA, which is the energy required to reorganise
the environment from equilibrium about the reactant to equi-
librium about the product without changing the electronic
state; and the energy difference between the nal and initial
states, DEDA.

Here, we show that it is possible to generalise non-adiabatic
MT to describe charge transfer between molecular aggregates in
terms of the properties of individual molecules and couplings
between them. Our theory is both computationally cheap –

avoiding the need for supramolecular quantum-chemical
simulations – and offers intuitive insight into how the charge
transfer rates are affected by changes to molecules in either
aggregate.

Our approach is inspired by developments in Förster reso-
nance energy transfer (FRET), which describes the exciton
transfer rate between two chromophores and is, like MT,
derived from second-order perturbation theory in the donor–
acceptor coupling. Sumi developed generalised FRET (gFRET)
to describe the transfer of excitons between delocalised aggre-
gates in photosynthetic antenna complexes,19,20 and his
approach has since been used to study exciton transfer in a wide
range of molecular aggregates.21–23 Following Sumi, we name
our theory ‘generalised Marcus theory’ (gMT).

MT also allows a description of bridge-mediated charge
transfer, where the donor and acceptor are not directly coupled,
but a coupling between them is mediated by intervening
‘bridge’ molecules, whose states are sufficiently high in energy
to prevent actual charge transfer from the donor to the bridge.1–3

A bridge enables charge transfer to occur over longer distances,
although the rate typically decreases exponentially with the
number of bridge elements. Aer deriving gMT in Section 2.1,
we show that it is also easily extended to describe bridge-
assisted charge transfer between delocalised aggregates in
Section 2.2.

2 Results
2.1 Generalised Marcus theory

We generalise Marcus theory by considering an aggregate of ND

donor molecules and an aggregate of NA acceptor molecules,
with each molecule coupled to an independent environment of
thermalised harmonic oscillators. Three approximations make
it possible to dene two distinct aggregates (Fig. 1): rst, the
coupling betweenmolecules in each aggregate is much stronger
than their coupling to the environment, ensuring that the
delocalised eigenstates of each aggregate are the appropriate
basis for perturbation theory; second, the system-environment
coupling is much stronger than the inter-aggregate coupling,
implying that inter-aggregate charge transfer is incoherent
(hopping); and third, because we assume each site is coupled to
its own environment, no environmental mode connects a donor
and an acceptor molecule. Where applicable, we follow the
derivation of multi-chromophoric FRET (MC-FRET),24 which
reduces to generalised FRET in the appropriate limit. While
This journal is © The Royal Society of Chemistry 2018
gFRET can also be derived using Fermi's golden rule,25 we used
a time-dependent derivation because some of our intermediate
results may be useful in more general contexts.

The full Hamiltonian is H ¼ H0
D + H0

A + HC + HDE + HAE + HE,
and we introduce each term here as well as in Fig. 1. The donor-
aggregate and acceptor-aggregate Hamiltonians are,
respectively,

H0
D ¼

XND

j¼1

Ej

��Dj

��
Dj

��þX
jsj

0
vjj0
��Dj

��
Dj

0

���; (2)

H0
A ¼

XNA

k¼1

EkjAkihAkj þ
X
ksk

0
vkk0 jAki

�
Ak

0
��; (3)

where |Dji and |Aki are the states where the charge is localised
on molecules Dj and Ak respectively. Throughout this work we

index donor sites with j and acceptor sites with k:
X
j

should be

read as a sum over only the donor sites, and
X
k

only over

acceptors. The donor and acceptor molecules have site energies
Ej and Ek, and intra-aggregate couplings are vjj0 (in the donor)
and vkk0 (in the acceptor).

We refer to the eigenstates of H0
D and H0

A as the aggregate

basis, being, respectively, jDai ¼
X
j

caj
��Dji and

jAbi ¼
X
k

cbkjAki, with energies Ea and Eb. Similar to site

indices j and k, index a is consistently used to denote only donor
eigenstates, and b acceptor eigenstates.

Inter-aggregate coupling is described by the Hamiltonian

HC ¼
XND

j¼1

XNA

k¼1

Vjk

���Dj

�hAkj þ jAki
�
Dj

���; (4)
Chem. Sci., 2018, 9, 2942–2951 | 2943
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where Vjk is the coupling between the jth donor and kth acceptor
molecules.

The environment is described by a set of harmonic
oscillators:

HE ¼
X
x

ħux

�
b
†
xbx þ 1=2

�
; (5)

where ux is the frequency of the xth environment mode, with
creation operator b†x. We can also write HE ¼ HED

+ HEA
, with the

environment modes partitioned between those that couple to
donor and acceptor molecules.

The donor-environment and acceptor-environment interac-
tion Hamiltonians are, respectively,

HDE ¼
XND

j¼1

Qj

��Dj

��
Dj

��; (6)

HAE ¼
XNA

k¼1

QkjAkihAkj; (7)

with Qj ¼
X
x

h-uxgjxðbx þ b†xÞ, where gjx is the dimensionless

coupling of the xth environment mode to the charged jth donor
molecule, relative to the uncharged state. Qk is dened analo-
gously. The assumption of a local environment means that, for
a xed x, only one of gjx can be non-zero.

The charge-transfer rate is the rate of change of the charge
population on the acceptor,

kD/AðtÞ ¼ d

dt
TrE

X
k

hAkjrðtÞjAki; (8)

where r(t) is the density matrix of the system, and TrE is the
trace over the environmental modes. As detailed in the
Appendix, kD/A can be calculated using second-order pertur-
bation theory in HC and, because we assumed separable envi-
ronments, generates a time-dependent transfer rate

kD/AðtÞ ¼
X
j;j

0

X
k;k

0

VjkVj
0
k
0

ħ2
$2Re

ðt
0

dsTrE
�hAkje�iðH�HCÞðt�sÞ=ħ��Ak

0
�

D
Dj

0
��e�iðH�HCÞs=ħ rð0ÞeiðH�HCÞt=ħ

��Dj

��
:

(9)

To proceed, we consider the rate in the aggregate basis. The
requirement that Vjk be weaker than all other couplings means
that the donor aggregate will relax to a thermal state faster than
the charge transfer. In other words, we assume that the initial
density operator of the system r(0) will, before charge transfer
takes place, relax to a state rth in which both the donor and
acceptor aggregates are in equilibrium with their own envi-
ronments (see Appendix for details). This gives a time-
independent transfer rate,

kD/A ¼
X
a;b

jVabj2
2pħ2

ðN
�N

duDaa
D ðuÞAbb

A ðuÞ; (10)

where
2944 | Chem. Sci., 2018, 9, 2942–2951
Vab ¼
X
j;k

c*ajcbkVjk; (11)

Daa
D ðuÞ ¼

ðN
�N

dt e�iut TrED

�
e�iHED

t=ħhDajeiHDt=ħ rDjDai
�
; (12)

Abb

A ðuÞ ¼
ðN
�N

dt eiut TrEA

�
eiHEA

t=ħhAbje�iHAt=ħjAbirA
�
; (13)

and where rth is split into donor and acceptor components, rth
¼ rD 5 rA. Because the donor-environment coupling is weak,
the thermal state of the donor will approximately factorise to

rD ¼
	X

a

raajDaihDaj


5rED

, where the electronic population

distribution is raa ¼ expð�Ea=kBTÞ
.	 X

a

expð�Ea=kBTÞ



and

the thermal environment is rED¼ exp(�HED
/kBT)/TrED(exp(�HED/kBT)).

The thermal state of the acceptor is rA ¼ rEA
¼ exp(�HEA

/kBT)/
TrEA

(exp(�HEA
/kBT)). Finally, we have also writtenHD¼H0

D +HDE

+ HED
, and similarly for HA.

Eqn (10)–(13) are analogous to the MC-FRET treatment of
delocalised exciton transfer.24 In particular, the rate of MC-
FRET depends on the (weighted) overlap of the donor emis-
sion spectrum with the acceptor absorption spectrum, which
resembles the form of eqn (10). However, in gMT, eqn (12)
describes the spectrum of charge disassociation from the donor
and eqn (13) the charge association spectrum for the acceptor.
Furthermore, the inter-aggregate coupling in eqn (10) is deter-
mined by the overlap of electronic wavefunctions, while in MC-
FRET the couplings are from the interactions of transition
dipole moments.

Evaluating eqn (12) and (13) for independent harmonic
environments gives (see Appendix for details)

Daa
D ðuÞ ¼ raa

ðN
�N

dt e�iut eiEat=ħþGaðtÞ�Gað0Þ; (14)

Abb

A ðuÞ ¼
ðN
�N

dt eiut e�iEbt=ħþGbðtÞ�Gbð0Þ; (15)

with the lineshape function

GaðtÞ ¼
X
x

gax
2ðcosðuxtÞð1þ 2nðuxÞÞ � isinðuxtÞÞ; (16)

and Gb(t) analogously dened. For a thermally populated envi-
ronment, the occupation of environmental modes is given by
the Bose–Einstein distribution n(n) ¼ (exp(ħn/kBT) � 1)�1.

The preceding equations are appropriate at a wide range of
temperatures and environmental spectral densities. Although
we could stop here, to obtain a clear comparison with MT, we
now make two additional approximations that are also made in
deriving ordinary Marcus theory. To do so, we assume that the

spectral density JðuÞ ¼
X
x

gax2dðu� uxÞ goes rapidly to zero

beyond a cut-off frequency uc. Then, we rst assume the high-
temperature limit kBT[ ħuc, so that n(n)z kBT/ħn[ 1, giving

GaðtÞ ¼
X
x

gax
2

	
2kBT

ħux

cosðuxtÞ � isinðuxtÞ


: (17)
This journal is © The Royal Society of Chemistry 2018
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Second, MT also assumes the slow-nuclear-mode limit, in which
the charge-transfer occurs faster than the characteristic time-
scales of the environment: t � 1/uc ( 1/ux. With uxt � 1, we
expand the trigonometric functions in eqn (17) to leading order:

GaðtÞ ¼
X
x

gax
2

	
2kBT

ħux

� t2kBTux

ħ
� iuxt



: (18)

We now dene the reorganisation energy for the donor sites

as lj ¼
X
x

h-uxgjx2, and similarly for the acceptor sites, lk. The

change of basis gax ¼
X
j

��caj��2gjx gives the reorganisation

energy of aggregate eigenstates

la ¼
X
x

ħuxgax
2 ¼

X
x

ħux

 X
j

��caj��2gjx
!0@X

j
0

��caj0��2gj0x
1
A:

(19)

Since each site has an independent environment, no mode x

couples to two different sites (gjxgj0x ¼ gjx
2djj0), giving

la ¼
X
x

ħux

X
j

��caj��4gjx2; (20)

and similarly for lb.
Substituting eqn (18) and (20) into eqn (14) and (15) we nd

Daa
D ðuÞ ¼ raa

2pħffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pkBTla

p exp

 
�ðEa � ħu� laÞ2

4kBTla

!
; (21)

Abb

A ðuÞ ¼ 2pħffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pkBTlb

p exp

 
�ðEb � ħuþ lbÞ2

4kBTlb

!
: (22)

Consequently, the overlap integral in eqn (10) becomes
Table 1 The equations of generalised Marcus theory (gMT) and bridge-m
that relevant parameters are replaced as provided in this table. Ea and Eb
H0
D and H0

A respectively. Bridge-mediated gMT contains a bridge of N site
The couplings VjB1

and VkBN
are the coupling of the jth donor site to B1,

function GB, given by eqn (37), describes transport through the bridge

Marcus
theory Generalised Ma

Donor & acceptor indices Sites |Dji,
|Aki

Eigenstates jDa

jAb

Electronic coupling Vjk Vab ¼
X
j;k

cajc
*
bk

Reorganisation energy
(separable environments)

lj + lk lab ¼
X
j

��caj��4l
Energy difference (DE) EAk

� EAj
Eb � Ea

This journal is © The Royal Society of Chemistry 2018
kD/A ¼
X
a;b

2p

ħ
raajVabj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pkBTlab

p exp

 
�ðDEab þ labÞ2

4kBTlab

!
; (23)

where DEab¼ Eb� Ea and lab¼ la + lb, demonstrating that gMT
takes the same form as MT, with all parameters dened anal-
ogously to—and expressible in terms of—their site-basis coun-
terparts. These results are also summarised in Table 1, and in
the limit of a single-molecule donor and single-molecule
acceptor, eqn (23) reduces to the ordinary MT rate, eqn (1).
The ability to recast gFRET in a form analogous to eqn (23) (ref.
26) further illustrates the deep similarities between charge and
exciton transfer.
2.2 Generalised bridge-mediated charge transfer

Like MT, gMT can be expanded to include the case where the
coupling between the donor and the acceptor aggregates is not
direct, but is instead mediated by a bridge consisting of higher-
lying states of intervening molecules. We consider a bridge of N
molecules, each modelled as a single site, where the donor
molecules only couple to the rst bridge state, B1, the acceptor
molecules only couple to the last bridge state, BN, and each
bridge molecule only couples to its two nearest neighbours in
the chain, as shown in Fig. 2. Usually, the bridge site energies
EBl

are considered energetically distinct from the donor and
acceptor aggregates, i.e.,

(EBk
� EBl

), |VBlBl+1
| � EBl

� Ea/b, (24)

where VBlBl+1
are the intra-bridge couplings and Ea/b is the

characteristic energy of donor and acceptor eigenstates (for
concreteness, it could be taken as the highest eigenvalue of
either H0

D or H0
A).

We dene the donor–bridge–acceptor Hamiltonian HDBA ¼
HB + H0

D + HDB + H0
A + HAB using H0

D and H0
A as above and adding
ediated gMT have the same form as ordinary Marcus theory, provided
are the eigenstates of the donor and acceptor aggregate Hamiltonians,
s, with site B1 coupling to the donor aggregate and BN to the acceptor.
and the coupling of the kth acceptor site to BN, respectively. Green's

rcus theory Bridge-mediated generalised Marcus theory

i ¼
X
j

caj
��Dji;

i ¼
X
k

cbkjAki

Eigenstates jDai ¼
X
j

caj
��Dji;

jAbi ¼
X
k

cbkjAki

Vjk V̂ab ¼
X
j;k

caj c
*
bkVjB1

G1N
B VkBN

j þ
X
k

jcbkj4lk lab ¼
X
j

��caj��4lj þX
k

jcbkj4lk

Êb � Êa ¼ Eb þ
X
k;k

0
cbkc

*
bk0VkBN

VBNk
0GNN

B

� Ea �
X
j;j

0
cajc

*
aj0VjB1

VB1j
0G11

B

Chem. Sci., 2018, 9, 2942–2951 | 2945
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Fig. 2 Generalised bridge-assisted charge transfer, shown with two
donormolecules, D1 and D2, two acceptor molecules, A1 and A2, andN
bridge molecules, B1, ., BN. (a) The eigenstates of each aggregate are
calculated. (b) The energies of these eigenstates are then perturbed by
the coupling to the bridge (perturbation of the bridge levels is
neglected, see text). (c) Charge transfer occurs directly between donor
and acceptor aggregate eigenstates, assisted by virtual bridge states.
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the bridge HamiltonianHB and the coupling of the bridge to the
donor, HDB, and acceptor, HAB,

HB ¼
XN
l¼1

EBl
jBlihBl j þ

XN�1

l¼1

VBlBlþ1
jBlihBlþ1j þ h:c:; (25)

HDB ¼
X
j

VjB1

��Dj

�hB1j þ h:c:; (26)

HAB ¼
X
k

VkBN
jAkihBN j þ h:c:; (27)

where |Bli is the state of a charge being located on bridge site Bl.
Instead of thinking of B1 and BN as coupling to donor and

acceptor sites, we can also consider them as coupling to the
aggregate eigenstates. In the aggregate basis, HDBA becomes

HDBA ¼ HB þ
X
a

ðEajDaihDaj þ VaB1
jDaihB1j þ h:c:Þ

þ
X
b

ðEbjAbihAbj þ VbBN
jAbihBN j þ h:c:Þ; (28)
2946 | Chem. Sci., 2018, 9, 2942–2951
where VaB1 ¼
X
j

cajVjB1 and VbBN ¼
X
k

cbkVkBN .

We calculate the rate of charge transfer from each donor
eigenstate |Dai to each acceptor eigenstate |Abi independently,
using the mathematics already established for single-site
bridge-mediated transfer.27 In other words, instead of consid-
ering the entire donor–bridge–acceptor system, we consider
separately the subspace of each donor and acceptor eigenstate
with the bridge,

HDBA(a,b) ¼ HB + Ea|DaihDa| + VaB1
|DaihB1| + h.c.

+ Eb|AbihAb| + VbBN
|AbihBN| + h.c. (29)

We denote the lowest-eigenvalue eigenvector of HDBA(a,b) as
dDBA ¼ (da, dB1

, ., dBN
, db), with eigenvalue EDBA.

Since (HDBA(a,b) � IEDBA)dDBA ¼ 0, we nd that

(Ea � EDBA)da + VaB1
dB1

¼ 0, (30)

(Eb � EDBA)db + VbBN
dBN

¼ 0. (31)

The values of dB1
and dBN

can be found by considering the bridge
subspace, (HB � IEDBA)dB ¼ �(VB1a

da, 0, ., 0, VBNb
db) where dB

consists of the bridge elements of dDBA in the same order. The
solution of this equation is dB ¼ GB(VB1 a

da, 0, ., 0, VBNb
db),

using Green's function GB ¼ (IEDBA � HB)
�1.

By substituting this solution for dB1
and dBN

into eqn (30) and
(31), we nd

(Êa � EDBA)da + V̂abdb ¼ 0, (32)

(Êb � EDBA)db + V̂bada ¼ 0, (33)

where Ê are the perturbed energies of aggregate eigenstates due
to coupling with the bridge,

Êa ¼ Ea + VaB1
G11
B VB1a

, (34)

Êb ¼ Eb + VbBN
GNN
B VBNb

, (35)

and V̂ is the effective coupling between the donor and acceptor
eigenstates, mediated by the bridge,

V̂ab ¼ VaB1
G1N
B VBNb

. (36)

To nd the Green's function, we expand GB in terms of
a Dyson series. Because |VBlBl+1

| is small (see eqn (24)), we keep
only the lowest-order term,27

G1N
B ¼ (EDBA � EB1

)�1VB1B2
(EDBA � EB2

)�1VB2B3
�...

� (EDBA � EBN�1
)�1VBN�1BN

(EDBA � EBN
)�1. (37)

While EDBA is an eigenvalue of the entire donor–bridge–acceptor
system, we are only interested in the donor/acceptor
subspace. Because EBl

� Ea/b is large relative to inter-site
couplings and energy differences (eqn (24)), we can approxi-
mate EDBA � EBl

z Ea/b � EB, for average bridge energy EB.
This allows us to simplify eqn (36) using the geometric mean of
the bridge couplings VBB,
This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sc00053k


Fig. 3 Example of generalised Marcus theory (gMT) and supertransfer,
showing only the impact of electronic component |Vab|

2 on the charge
transfer rate. (a) Geometric arrangement of two donors and one
acceptor, changing from collinear (q ¼ 0) to an isosceles triangle (q ¼
p/2). (b) Rates of charge transfer from the donors to the acceptor are
displayed as ratios of the rate that would be found if only donor D1

were present and the charge initially localised on it. Black and orange
lines indicate, respectively, geometries with RA ¼ 3RD or RA ¼ RD (at
a constant RA ¼ 5 Å). In both cases, the rates are computed for three
initial donor states: the bright state ðjD1i þ jD2iÞ=

ffiffiffi
2

p
(solid), the dark

state ðjD1i � jD2iÞ=
ffiffiffi
2

p
(dot-dashed), and the fully mixed state of |D1i

and |D2i (dashed). These three states are obtained as ground states of
the donor Hamiltonian by assuming VD1D2

¼�100meV (bright), VD1D2
¼

100 meV (dark), or VD1D2
¼ 0 meV (mixed). The transfer rates are

independent of RA and RD when q reaches p/2, where both donors are
equidistant from the acceptor. At that point, constructive interference
ensures that the transfer from the bright state is twice as fast as it
would be from either site alone, while transfer from the dark state is
completely suppressed by destructive interference caused by the
opposite signs of the wavefunction at D1 and D2. The difference
between the two geometries is apparent at smaller q. When RD is large
compared to RA (orange), the rate is half the single-site rate for all initial
states, indicating that the acceptor is interacting primarily with D1 until
q becomes considerable. By contrast, when both donors are close
enough to the acceptor to interact with it strongly (black), super-
transfer and subtransfer can occur at all values of q, resulting in rate
enhancements different from 0.5 at all angles. Other calculation
parameters: VDA(r) ¼ 50 meV exp(1 � r/2 Å).
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V̂ab ¼ VaB1
VBNb

Ea=b � EB

	
VBB

Ea=b � EB


N�1

: (38)

As in ordinary bridge-assisted charge transfer, the effective
coupling decays exponentially with bridge length because
VBB < Ea/b � EB (eqn (24)). Substituting eqn (34)–(37) into
eqn (23), we have the rate of bridge-assisted gMT:

kD/A ¼
X
a;b

2p

ħ
raa
��V̂ab

��2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pkBTlab

p exp

 
�ðDÊab þ labÞ2

4kBTlab

!
: (39)

3 Discussion

The summary of results in Table 1 shows that gMT—whether
bridged or not—follows the same functional form as ordinary
Marcus theory. This allows intuition gained from studying MT to
continue to be useful when studying aggregates instead of single
molecules (provided that the parameters are redened as shown in
Table 1). Further, gMT allows known values of relevant parameters
(couplings, energy differences, and reorganisation energies) of
individual molecules to be used to calculate the effective param-
eters for aggregates, saving computational time by avoiding
expensive supramolecular quantum-chemical simulations.

However, the presence of delocalisation in aggregates leads
to signicant differences between MT and gMT. We can analyse
the inuence of delocalisation on charge transfer by separating
its impact on the electronic and nuclear components of the MT
rate.

The gMT electronic coupling factor jVabj2 ¼
�����
X
j;k

cajc*bkVjk

�����
2

includes a coherent sum involving electronic amplitudes in
each of the donor and acceptor aggregates, allowing both
constructive and destructive interference to affect the transfer
rate. If the interferences is constructive, leading to enhanced
transfer rates, we call the effect supertransfer, and if it is
destructive, subtransfer, borrowing terminology from the
similar problem of MC-FRET.28

For illustration, we consider an aggregate of two identical
coupled donors, D1 and D2, with a charge delocalised between
them in the jDai ¼ ðjD1i þ jD2iÞ=

ffiffiffi
2

p
state. The donors are

coupled to a single acceptor A with strengths VD1A and VD2A

respectively. If we were to apply Marcus theory between each
donor and the acceptor independently, we would expect
a transfer rate proportional to the square of each coupling,

kMTf
1
2
jVD1Aj2 þ

1
2
jVD2Aj2, with the factors of 1/2 indicating the

population on each donor. However, this naive approach fails to
include coherent effects of the superposition. These are treated
correctly by gMT, which predicts a transfer rate of

kgMTf
���VD1A þ VD2AÞ=

ffiffiffi
2

p ��2. The presence of rate-enhancement
due to supertransfer is apparent if VD1A ¼ VD2A, which implies
kgMT ¼ 2kMT. In contrast, if the two transfer pathways interfere
destructively, VD1A ¼ �VD2A, gMT predicts subtransfer with
kgMT ¼ 0. We refer to states that enhance the charge-transfer
rate through supertransfer as bright, while those that retard it
as dark, in analogy to the terms used in the literature on
This journal is © The Royal Society of Chemistry 2018
superradiance.29 The relative populations of the bright and dark
states will strongly inuence the rate of charge transfer in
delocalised systems.

Supertransfer is also sensitive to the system's geometry.
Changing the distance and orientations between donors and
acceptors will affect the electronic wavefunction overlaps due to
the exponential decay of electronic wavefunctions with
distance, consequently modifying the electronic couplings. To
explore the consequences of this geometric sensitivity, we
consider a model consisting of two donor molecules
Chem. Sci., 2018, 9, 2942–2951 | 2947
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Fig. 4 Tuning energy offsets and reorganisation energies can enhance
charge-transfer rates beyond what is possible with either donor site
alone. (a) Two donors and one acceptor in a collinear geometry, with
different colours (orange/red) indicating inequivalent donors. (b)
Energetic detuning: the charge transfer rate from the aggregate to the
acceptor (solid line) is compared to the rate if only D1 (dashed red) or
D2 (dashed orange) were present, as a function of the energy differ-
ence between D1 and D2. Even with the effects of supertransfer
removed (the aggregate rate is shown divided by the electronic
supertransfer enhancement of 1.42), energetic tuning can make the
aggregate transfer faster than would be possible with either donor
alone. In particular, the presence of D2, which itself is weakly coupled
to A, can enhance the transfer rate above the rate from D1 alone. (c)
Reorganisation energies: plot as in (b), but the rates are shown as
a function of the difference in reorganisation energies between D1 and
D2. Here as well, adding D2 with a favourable reorganisation energy
can enhance the rate above what is possible with either donor alone.
Calculation parameters: VD1D2

¼ �37 meV, VD1A ¼ 18 meV, VD2A ¼ 2.5
meV, lA ¼ 200meV, lD1

¼ 150meV, ED1
¼ 700meV, EA ¼ 0meV, kBT¼
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transferring a unit of charge to an acceptor molecule, shown in
Fig. 3. These calculations demonstrate that rate enhancement/
retardation is weakest when the acceptor is co-linear with the
donors. This is because the farther donor is so far away that the
acceptor is only affected by the nearer donor. The impact is
most signicant when the acceptor is equidistant from the two
donors, where supertransfer from the bright state amplies the
transfer rate by a factor of two, while the dark state provides no
transfer.

We can compare these results with gFRET, the analogous
theory of excitation-energy transfer between molecular aggre-
gates.24 Bright and dark states also exist in gFRET, but exciton
transfer is not as sensitive to small changes in the separation
between molecules. While the transfer rate in gMT is deter-
mined by the overlap of electronic wavefunctions, which decay
exponentially with distance, the MC-FRET rate depends on the
coupling of transition dipole moments, which decays with the
cube of the distance. In addition, both gMT and gFRET are
strongly affected by the relative orientations of the molecules.
The orientational dependence of gFRET is easier to predict,
especially in the large-separation limit where it can be repre-
sented by the interaction of two dipoles. By contrast, the
orientational dependence of electronic couplings depends on
the shape of the orbitals, which varies from molecule to mole-
cule. Given that the geometric dependence of gFRET can lead to
substantially different outcomes in light-harvesting
complexes,22,23 the stronger dependence of gMT on geometry
provides an opportunity to engineer molecular systems that
perform charge transfer better than single sites.

The nuclear factor in gMT (also referred to as the
Franck–Condon weighted density), (4pkBTlab)

�1/2 exp(�(DEab +
lab)

2/4kBTlab), has several features in common with ordinary
MT. For example, for a xed lab, the nuclear factor is maximised
when �DEab ¼ lab, and the inverted regime is possible when
�DEab > lab. However, the nuclear term also possesses features
not predicted by ordinary MT, allowing for both enhancement
or retardation of the transfer rate.

The nuclear factor depends on two energies, DEab and lab,
which are affected by delocalisation in different ways. On the
one hand, DEab is the difference between eigenvalues of H0

D and
H0
A. If the extent of delocalisation in, say, the donor is increased,

Ea will not change dramatically, remaining close (up to several
times the intermolecular coupling) to a value of typical site
energies. On the other hand, lab is reduced by delocalisation.

Since la ¼
X
j

��caj��4lj, for a state purely localised on j, la ¼ lj.

However, in a fully delocalised state ðcaj ¼ 1=
ffiffiffiffiffiffi
ND

p Þ of ND iden-
tical donors (lj ¼ l), the reorganisation energy is decreased ND-
fold:

la ¼
XND

j¼1

���� 1ffiffiffiffiffiffiffi
ND

p
����
4

lj ¼ l

ND

: (40)

In general, the reduction is by a factor equal to the inverse

participation ratio IPR ¼
 X

j

��caj��4
!�1

. A reduction in l leads
2948 | Chem. Sci., 2018, 9, 2942–2951
to an exponential narrowing of both Daa
D (u) and

Abb
A (u). Therefore, because the charge-transfer rate depends on

the overlap of the two spectra (eqn (10)), the reduction in l will
reduce the transfer rate between most pairs of eigenstates, the
exception being ones where DEab ¼ �lab.

The presence of different processes affecting the nuclear
factor means that delocalisation can have a complicated effect
25 meV. In addition, (b) uses lD2
¼ 150 meV and (c) has ED2

¼ 600meV.

This journal is © The Royal Society of Chemistry 2018
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on the charge-transfer rate, even apart from supertransfer.
Critical to the rate is the relative size of DEab and lab, because of
the rate's exponential sensitivity to (DEab + lab)

2. The different
effects are illustrated with another example, shown in Fig. 4a,
where acceptor A is strongly coupled to donor D1, whose site
energy and reorganisation energy are such that the transfer
from D1 to A is very slow (�DED1A [ lD1A). Another donor D2 is
then introduced, but is weakly coupled to A due to its distance.
A naive application of classical MT might suggest that, because
D2 hardly interacts with A, it would serve to only steal charge
density from D1, reducing the already slow transfer rate.
GeneralisedMT, however, shows that it is possible to choose the
energy and reorganisation energy of D2, as well as its coupling to
D1, so that a coherent superposition between D1 and D2 will
enhance the total transfer rate above what is possible with
either D1 or D2 alone. This is true even if supertransfer is
neglected, as shown in Fig. 4b and c. Indeed, for two donors,
supertransfer can enhance the rate by at most a factor of two,
while there is no limit to how much the nuclear factor can be
enhanced by judiciously tuning DEab and lab to minimise (DEab
+ lab)

2. This result shows that even if an unfavourable donor
must be used in a donor–acceptor system (for whatever reason),
another donor can be added to tune the nuclear term's contri-
bution to the charge transfer rate.

Our results also extend gMT to treat bridge-mediated charge
transfer, showing that the usual equations still apply when
considering delocalised aggregates. Indeed, including the
effects of bridge-mediated charge transfer on gMT does not
qualitatively change the effects of supertransfer and energetic
tuning, except that the coherent effects depend on the geometry
of the donor aggregate with respect to the rst bridge molecule,
and the acceptor aggregate with respect to the last. In particular,
the results shown in Fig. 3 and 4 would remain unchanged if the
couplings were mediated by a bridge.
4 Conclusion

The theory presented in this work is the rst description of
charge transfer between delocalised molecular aggregates.
Therefore, we anticipate that it will have broad applications in
elds where charge transfer and electronic coherence intersect,
including organic photovoltaics, photosynthesis, and inorganic
complexes.

The major prediction of gMT is that delocalisation within an
aggregate can signicantly affect charge transfer rates through
two mechanisms: supertransfer and nuclear tuning. The rst is
a consequence of the constructive interferences of charge-
transfer pathways, while the latter is the ability of a charge-
transfer rate to be modied by adjusting effective energy
levels and reorganisation energies by delocalising electronic
states over different molecules.

Both of these predictions are suited to being tested experi-
mentally. The simplest approach would be to construct cova-
lently linked donors and acceptors in geometries that
approximate those in Fig. 3 and 4. Tuning the couplings and
energy levels through chemical modication would permit the
This journal is © The Royal Society of Chemistry 2018
adjustment of the parameters relevant for gMT, allowing the
theory to be tested.

In this work, we restricted ourselves to deriving the delo-
calised generalisation of the simplest Marcus-theory formula.
We are condent that many of the subsequent advances that
have occurred in charge-transfer theory can also be incorpo-
rated as extensions to gMT. Indeed, our derivation is more
general than the nal result, and some of the approximations
needed to derive an MT-like equation (e.g., high temperature,
slow environmental modes) can be omitted and more general
intermediate results used directly (e.g., eqn (10)–(13)). Although
it is not clear whether a simple, closed-form expression could be
derived, a number of improvements to gMT can be envisaged,
including adiabatic charge transfer, quantum-mechanical
vibrational corrections,30 coherent multistep charge transfer,31

shared intra-aggregate environmental modes,32 and off-
diagonal system-environment couplings. Inspiration could
also be taken from advances in MC-FRET to obtain generalisa-
tions able to treat system-environment entanglement or other
parameter regimes outside the approximations used here.25,33,34
5 Appendix

Here we give the full derivation of eqn (14) and (15) from eqn (8),
indexing the sum with k00 for future convenience:

kD/AðtÞ ¼ d

dt
TrE

X
k00

hAk00 jrðtÞjAk00 i: (41)

Since the inter-aggregate coupling HC is weak compared
to all other terms in H, we take it as a perturbation. Taking
H0 ¼ H � HC, and using tildes to denote the interaction picture,
we write ~HC(t) ¼ eiH0t/ħHCe

�iH0t/ħ and express _~rðtÞ to second
order in perturbation theory:

_~rðtÞz � 1

ħ2

ðt
0

dsTrE
h
~HCðtÞ;

h
~HCðsÞ; rð0Þ

ii
; (42)

where [$,$] is the commutator, and TrE is the trace over the
environment degrees of freedom. Substituting into eqn (41),

kD/AðtÞ ¼ � 1

ħ2
X
k00

D
Ak00

��� ðt
0

dsTrE
h
~HCðtÞ;

h
~HCðsÞ; rð0Þ

ii���Ak00
E
(43)

kD/AðtÞ ¼ � 1

ħ2
X
k00

hAk00 j
ðt
0

dsTrEð ~HCðtÞ ~HCðsÞrð0Þ

þ rð0Þ ~HCðsÞ ~HCðtÞ � ~HCðsÞrð0Þ ~HCðtÞ
� ~HCðtÞrð0Þ ~HCðsÞÞjAk00 i: (44)

Since the charge is initially on the donor aggregate, r(0)|Ak00i ¼
hAk00|r(0) ¼ 0, the rst two terms vanish, giving

kD/AðtÞ ¼ 1

ħ2
X
k00

2RehAk00 j
ðt
0

dsTrEð ~HCðsÞrð0Þ ~HCðtÞÞjAk00 i

(45)
Chem. Sci., 2018, 9, 2942–2951 | 2949
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kD/AðtÞ ¼
X
j;j

0

X
k;k

0
;k00

VjkVj
0
k
0

ħ2
$2Re

ðt
0

ds

TrE

��
Ak00 jeiH0s=ħ

��Ak
0
��
Dj

0
��e�iH0s=ħ rð0ÞeiH0t=ħ

��Dj

�hAkje�iH0t=ħjAk00 i
�
:

(46)

Using the cyclic property of the trace gives

kD/AðtÞ ¼
X
j;j

0

X
k;k

0

VjkVj
0
k
0

ħ2
$2Re

ðt
0

ds

TrE

�
hAkje�iH0ðt�sÞ=ħ��Ak

0
��
Dj

0
��e�iH0s=ħ rð0ÞeiH0t=ħ

��Dj

��
: (47)

Dening s0 ¼ t � s, we can write

kD/AðtÞ ¼
X
j;j

0

X
k;k

0

VjkVj
0
k
0

ħ2
$

ðt
�t
ds

0

TrE

	
hAkje�iH0s

0=ħ
��Ak

0
��
Dj

0
��eiH0ðs0�tÞ=ħ rð0Þe�iH0ðs0�tÞ=ħ eiH0s

0=ħ
��Dj

�

:

(48)

To simplify further, we consider the term eiH0(s0�t)/ħr(0)
e�iH0(s0�t)/ħ, which describes the time-evolution of the donor
aggregate (because H0 induces no donor–acceptor transitions).
Because the aggregate-environment coupling is much stronger
than the inter-aggregate coupling, the donor aggregate will
thermalise with the environment on timescales much shorter
than the charge-transfer timescale. Therefore, for times t much
longer than the donor thermalisation time (but much shorter
than the charge-transfer time), we can consider the long-time
limit,

lim
t/N

eiH0ðs0�tÞ=ħ rð0Þe�iH0ðs0�tÞ=ħ ¼ rth; (49)

where for a large, weakly coupled environment, the state
rth ¼ rD 5 rA, of donor and acceptor aggregates independently
thermalised with their own environments, is independent of
r(0). In this limit, wemay also extend the limits of integration in
eqn (48) to innity to give a time-independent rate:

kD/A ¼
X
j;j

0

X
k;k

0

VjkVj
0
k
0

ħ2
$

ðN
�N

ds
0

TrE

�
hAkje�iH0s

0=ħ
��Ak

0
��
Dj

0
��rth eiH0s

0=ħ
��Dj

�
:
�

(50)

Writing HD ¼ H0
D + HDE + HED

and HA ¼ H0
A + HAE + HEA

and
using Plancherel's theorem, we can rewrite eqn (50) as

kD/A ¼
X
j;j

0

X
k;k

0

VjkVj
0
k
0

2pħ2

ðN
�N

duDjj0
DðuÞAkk0

A ðuÞ; (51)

Djj0
DðuÞ ¼

ðN
�N

dt e�iut TrED

�
e�iHED

t=ħ�Dj
0
��eiHDt=ħ rD

��Dj

��
; (52)

Akk0
A ðuÞ ¼

ðN
�N

dt eiut TrEA

�
eiHEA

t=ħ�Ak

��e�iHAt=ħ
��Ak

0
�
rA
�
; (53)
2950 | Chem. Sci., 2018, 9, 2942–2951
where we have renamed s0 to t. Changing to the aggregate basis,
eqn (51) becomes

kD/A ¼
X
a;b

X
a
0
;b

0

VabVa
0
b
0

2pħ2

ðN
�N

duDaa0
D ðuÞAbb0

A ðuÞ; (54)

Daa0
D ðuÞ ¼

ðN
�N

dt e�iut TrED

�
e�iHED

t=ħhDa
0 jeiHDt=ħ rDjDai

�
; (55)

Abb0
A ðuÞ ¼

ðN
�N

dt eiut TrEA

�
eiHEA

t=ħhAbje�iHAt=ħ
��Ab

0
�
rA
�
; (56)

Eqn (54) reduces to eqn (10) if Daa 0
D andAbb 0

A can be assumed
to be diagonal in the aggregate basis. In general, this is not the
case, because HDE and HAE do not commute with H0

D and
H0
A respectively. However, it is an appropriate approximation in

the limit, assumed here, of weak system-environment coupling,
where the environment does not signicantly perturb the
thermal equilibrium of the system. The same approximation
was considered and discussed in detail in the context of MC-
FRET,24,25 where it can be used to reduce the excitonic analogue
of eqn (54) to a diagonal version. Of course, eqn (54) can be used
directly, at the cost of intuitive parallels with MT being
obscured.

Eqn (12) and (13) can be evaluated in the particular case of
a thermalised environment of independent harmonic oscilla-
tors to yield eqn (14) and (15). Assuming that Daa 0

D and Abb 0
A are

diagonal is equivalent to assuming that the electronic Hamil-
tonians commute with the environmental ones, meaning that
exp(iHDt/ħ) ¼ exp(iH0

Dt/ħ)exp(i(HDE + HED
)t/ħ), so that eqn (12)

becomes

Daa
D ðuÞ ¼

ðN
�N

dt e�iut eiEat=ħ raa

TrED

�
e�iHED

t=ħhDajeiðHDEþHEDÞt=ħjDairED

�
: (57)

The Hamiltonian HDE + HED
can be diagonalised using the

polaron transformation, which describes the displacement of
the environment oscillators by the presence of a charge:

hDajeiðHDEþHEDÞt=ħjDai ¼ S†
a eiHED

t=ħ Sa; (58)

where Sa ¼ exp
�X

x

gax
�
bx � b†x

��
. Using this fact in eqn (57)

gives

Daa
D ðuÞ ¼

ðN
�N

dt e�iut eiEat=ħ raaTrED

�
e�iHED

t=ħ S†
a eiHED

t=ħ SarED

�
:

(59)

In eqn (59), the contributions of different aggregate
eigenstates are explicitly uncoupled, meaning that the
equation takes, for a particular a, the same form that occurs
in the derivation of ordinary, single-site MT. Therefore, the
trace can be evaluated for a harmonic environment using
standard techniques (e.g., Section 6.8.1 of ref. 3), giving
eqn (14).
This journal is © The Royal Society of Chemistry 2018
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