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Although Marcus theory is widely used to describe charge transfer in molecular systems, in its usual form it is
restricted to transfer from one molecule to another. If a charge is delocalised across multiple donor
molecules, this approach requires us to treat the entire donor aggregate as a unified supermolecule,
leading to potentially expensive quantum-chemical calculations and making it more difficult to
understand how the aggregate components contribute to the overall transfer. Here, we show that it is
possible to describe charge transfer between groups of molecules in terms of the properties of the
constituent molecules and couplings between them, obviating the need for expensive supermolecular
calculations. We use the resulting theory to show that charge delocalisation between molecules in either
the donor or acceptor aggregates can enhance the rate of charge transfer through a process we call

supertransfer (or suppress it through subtransfer). The rate can also be enhanced above what is possible
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Accepted 11th February 2018 with a single donor and a single acceptor by judiciously tuning energy levels and reorganisation energies.
We also describe bridge-mediated charge transfer between delocalised molecular aggregates. The

DOI: 10.1039/c85c00053k equations of generalised Marcus theory are in closed form, providing qualitative insight into the impact
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1 Introduction

Theories of charge-transfer rates underpin our understanding
of a wide variety of chemical reactions and charge-transport
processes, not only in chemistry, but also in biology and
materials science.”™ In most of the well-studied cases, the
charge is being transferred from one molecule to another.
However, in many systems—including organic semi-
conductors,>® the reaction centres of photosynthetic organ-
isms,”® inorganic coordination complexes,” and conductive
metal-organic frameworks (MOFs)*—the charge to be trans-
ferred is delocalised across multiple donor molecules (or is to
be received by states delocalised over multiple acceptor mole-
cules). The usual theoretical approaches can be applied to these
cases if the donor or acceptor aggregates are treated as single
supermolecules, but doing so is often computationally prohib-
itive, requires a complete re-calculation if any part is changed,
and, most importantly, offers limited qualitative insight into
how the component molecules and the interactions between
them affect the inter-aggregate charge transfer.

Although delocalisation in charge transfer has been studied
extensively, most studies have focused on cases of delocalisa-
tion between the donor and acceptor, as opposed to
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of delocalisation on charge dynamics in molecular systems.

delocalisation within donor or acceptor aggregates. In partic-
ular, donor-acceptor delocalisation is critical to understanding
adiabatic electron transfer, as first emphasised by Hush,"*> and
extended by numerous authors since."*** For example, inter-
valence transitions in mixed-valence compounds are a clear
manifestation of delocalisation between two molecules.*®

Here, we study the problem of charge transfer from one
delocalised molecular aggregate to another. In order to be able
to speak of two distinct aggregates, we assume that the coupling
between the aggregates (i.e., between any donor molecule and
any acceptor molecule) is small compared to the strength of
their coupling to the environment. Furthermore, to ensure that
charges within either aggregate (or both) are delocalised among
the constituent molecules, we assume that the couplings
between the molecules are stronger than their coupling to the
environment.

Because the overall donor-acceptor coupling is weak, the
charge transfer will be incoherent, ie., with no coherence
between the donor and acceptor states. Apart from the deloc-
alisation within the aggregates, this situation is described by
non-adiabatic electron transfer, which we take as our starting
point. Although we will follow convention in calling it Marcus
theory'” (MT), the standard expression for non-adiabatic charge
transfer between one donor D and one acceptor A was derived
by Levich and Dogonadze:*®
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where, at temperature T, three parameters control the transfer
rate: the donor-acceptor electronic coupling, Vp,, determined
by the overlap of their electronic wavefunctions; the reorgan-
isation energy, Apa, which is the energy required to reorganise
the environment from equilibrium about the reactant to equi-
librium about the product without changing the electronic
state; and the energy difference between the final and initial
states, AEp,.

Here, we show that it is possible to generalise non-adiabatic
MT to describe charge transfer between molecular aggregates in
terms of the properties of individual molecules and couplings
between them. Our theory is both computationally cheap -
avoiding the need for supramolecular quantum-chemical
simulations - and offers intuitive insight into how the charge
transfer rates are affected by changes to molecules in either
aggregate.

Our approach is inspired by developments in Forster reso-
nance energy transfer (FRET), which describes the exciton
transfer rate between two chromophores and is, like MT,
derived from second-order perturbation theory in the donor-
acceptor coupling. Sumi developed generalised FRET (gFRET)
to describe the transfer of excitons between delocalised aggre-
gates in photosynthetic antenna complexes,”** and his
approach has since been used to study exciton transfer in a wide
range of molecular aggregates.”** Following Sumi, we name
our theory ‘generalised Marcus theory’ (gMT).

MT also allows a description of bridge-mediated charge
transfer, where the donor and acceptor are not directly coupled,
but a coupling between them is mediated by intervening
‘bridge’ molecules, whose states are sufficiently high in energy
to prevent actual charge transfer from the donor to the bridge.'
A bridge enables charge transfer to occur over longer distances,
although the rate typically decreases exponentially with the
number of bridge elements. After deriving gMT in Section 2.1,
we show that it is also easily extended to describe bridge-
assisted charge transfer between delocalised aggregates in
Section 2.2.

2 Results

2.1 Generalised Marcus theory

We generalise Marcus theory by considering an aggregate of Np,
donor molecules and an aggregate of N, acceptor molecules,
with each molecule coupled to an independent environment of
thermalised harmonic oscillators. Three approximations make
it possible to define two distinct aggregates (Fig. 1): first, the
coupling between molecules in each aggregate is much stronger
than their coupling to the environment, ensuring that the
delocalised eigenstates of each aggregate are the appropriate
basis for perturbation theory; second, the system-environment
coupling is much stronger than the inter-aggregate coupling,
implying that inter-aggregate charge transfer is incoherent
(hopping); and third, because we assume each site is coupled to
its own environment, no environmental mode connects a donor
and an acceptor molecule. Where applicable, we follow the
derivation of multi-chromophoric FRET (MC-FRET),>* which
reduces to generalised FRET in the appropriate limit. While

This journal is © The Royal Society of Chemistry 2018
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Donor Aggregate

Acceptor Aggregate

Fig. 1 The model system for generalised Marcus theory. The model
describes charge transfer between two delocalised aggregates if the
couplings v between molecules constituting the donor (or acceptor)
are strong compared to the coupling to the environment Q, while the
couplings V between molecules in the donor with those in the
acceptor are relatively weak.

¢FRET can also be derived using Fermi's golden rule,* we used
a time-dependent derivation because some of our intermediate
results may be useful in more general contexts.

The full Hamiltonian is H = HY + Ha + Hg + Hpg + Hap + Hg,
and we introduce each term here as well as in Fig. 1. The donor-

aggregate and  acceptor-aggregate = Hamiltonians are,
respectively,
H%—ZEID,>D|+Z )
i*
HS = ZEk\Ak (Al + ) vl A (A ], (3)
k#k'

where |D;) and |A;) are the states where the charge is localised
on molecules D; and Ay respectively. Throughout this work we
index donor sites with j and acceptor sites with £: Z should be
J
read as a sum over only the donor sites, and Z only over
3
acceptors. The donor and acceptor molecules have site energies
E; and Ey, and intra-aggregate couplings are vy (in the donor)
and v (in the acceptor).
We refer to the eigenstates of Hp, and Hj as the aggregate

D) = Y cylD)
J

|Ag) = ZCﬁk|Ak>, with energies E, and Eg. Similar to site
k

basis, being, respectively, and

indicesjand k, index « is consistently used to denote only donor
eigenstates, and ( acceptor eigenstates.
Inter-aggregate coupling is described by the Hamiltonian

Np

Hc—zz i (1D;) (Acl + |Ak) (D)), (4)
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where V is the coupling between the jth donor and kth acceptor
molecules.

The environment is described by a set of harmonic
oscillators:

Hg =Y hos (blb: +1/2), (5)

where o is the frequency of the £th environment mode, with
creation operator b;:. We can also write Hg = Hg + Hg,, with the
environment modes partitioned between those that couple to
donor and acceptor molecules.

The donor-environment and acceptor-environment interac-
tion Hamiltonians are, respectively,

Hpe =) 0,|D;)(D)]. (6)
=
Na

HAE - Z leAk><Ak|7 (7)
k=1

with Q; =

Z hw:gjb

coupling of the £th environment mode to the charged jth donor
molecule, relative to the uncharged state. Qy is defined analo-
gously. The assumption of a local environment means that, for
a fixed &, only one of gj: can be non-zero.

The charge-transfer rate is the rate of change of the charge
population on the acceptor,

g), where gz is the dimensionless

Ko-alt) = Tre S (AID(01AL), ©
where p(¢) is the density matrix of the system, and Trg is the
trace over the environmental modes. As detailed in the
Appendix, kp_. o can be calculated using second-order pertur-
bation theory in H¢ and, because we assumed separable envi-
ronments, generates a time-dependent transfer rate

=22

g kK

<D,~' ‘eﬂ'(prC)z/h p(0)etH—He)/n ’Dj>) .

kD—»A ]/( /k ZRGJ dTTrE(<Ak‘eﬂ(H He)(1— T)/h‘A >

©)

To proceed, we consider the rate in the aggregate basis. The
requirement that Vj; be weaker than all other couplings means
that the donor aggregate will relax to a thermal state faster than
the charge transfer. In other words, we assume that the initial
density operator of the system p(0) will, before charge transfer
takes place, relax to a state py, in which both the donor and
acceptor aggregates are in equilibrium with their own envi-
ronments (see Appendix for details). This gives a time-
independent transfer rate,

|Vas|®
ko-a = Z 2

(10)

| qopto) Az,

where

2944 | Chem. Sci,, 2018, 9, 2942-2951

View Article Online

Edge Article

aﬁ - Z Cozjcﬂk Jjks (11)

Do]z)zx(w) — J dr eﬂ'wt TrED (eﬂ'IIEDt/h <Da‘eiHDt/h pD|Da>)7 (12)

L) = | are Tee, (¢ (Ale MNP AR, (13)
and where py, is split into donor and acceptor components, pg,
= pp ® pa. Because the donor-environment coupling is weak,
the thermal state of the donor will approximately factorise to

Pp = ( Z p,m|Da><Da|) ® pg,, where the electronic population
o

distribution is p,, = exp(—Ea/kBT)/( Zexp(—Ea/kBT)> and

the thermal environment is p, = exp(—Hg, /ksT)/T15, (exp(—Hg, [k T)).
The thermal state of the acceptor is py = pp, = exp(—Hg,/kgT)/
Trg, (exp(—Hy,/ksT)). Finally, we have also written Hy, = HY + Hpg
+ Hg,, and similarly for H,.

Eqn (10)-(13) are analogous to the MC-FRET treatment of
delocalised exciton transfer.> In particular, the rate of MC-
FRET depends on the (weighted) overlap of the donor emis-
sion spectrum with the acceptor absorption spectrum, which
resembles the form of eqn (10). However, in gMT, eqn (12)
describes the spectrum of charge disassociation from the donor
and eqn (13) the charge association spectrum for the acceptor.
Furthermore, the inter-aggregate coupling in eqn (10) is deter-
mined by the overlap of electronic wavefunctions, while in MC-
FRET the couplings are from the interactions of transition
dipole moments.

Evaluating eqn (12) and (13) for independent harmonic
environments gives (see Appendix for details)

Dy (@) = Paa r dt e it @ifat/h+Ga()=Ga(0) (14)
AﬁAﬁ(w) _ J” ds e e‘iEB!/h#»Gﬁ(t)—GB(O)’ (15)

with the lineshape function
ng (cos(wst)(1 + 2n(w;)) — isin(wz1)), (16)

and Gg(t) analogously defined. For a thermally populated envi-
ronment, the occupation of environmental modes is given by
the Bose-Einstein distribution n(v) = (exp(hv/ksT) — 1)~"

The preceding equations are appropriate at a wide range of
temperatures and environmental spectral densities. Although
we could stop here, to obtain a clear comparison with MT, we
now make two additional approximations that are also made in
deriving ordinary Marcus theory. To do so, we assume that the

Zga;

beyond a cut-off frequency w.. Then, we first assume the high-
temperature limit kg7 > hw,, so that n(v) = kgT/hv > 1, giving

spectral density J(w w — wz) goes rapidly to zero

2kpT .
Z cos(wet) —15111(&)51)).

(17)
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Second, MT also assumes the slow-nuclear-mode limit, in which
the charge-transfer occurs faster than the characteristic time-
scales of the environment: ¢t < 1/w. < 1/w;. With w:t < 1, we
expand the trigonometric functions in eqn (17) to leading order:

2
Gult) = S (Sl - TS ).

(18)

We now define the reorganisation energy for the donor sites

as A = Z hwggjgz, and similarly for the acceptor sites, Az. The
£
. 2 . . .
change of basis g = Z ]caj‘ gz gives the reorganisation
J
energy of aggregate eigenstates

= Zh‘*’iga:’ Z how; (Z |La,‘ g/,) Z: |Ca//}2g]5

| (19)

Since each site has an independent environment, no mode £
couples to two different sites (gi:gy: = gj-*0;7), giving

4 2
o= ho: > ey g,
g 7

and similarly for As.
Substituting eqn (18) and (20) into eqn (14) and (15) we find

~(Ey — hw — 1)
eXp( 4k Ty TN

—(Es — hw + Ag)°
exp< TenTTs . (22)

(20)

21th

DC((Y —
b (@) = Pue e

2mh

\/ 4'TCkB TAB

Consequently, the overlap integral in eqn (10) becomes

Aﬁﬁ( )
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p=A 4k T Ao

_ 22?7'5 p:a|Va5\2 exp(

g TCkB TAa,B
where AE, s = Eg — E, and A, = A, + Ag, demonstrating that gMT
takes the same form as MT, with all parameters defined anal-
ogously to—and expressible in terms of—their site-basis coun-
terparts. These results are also summarised in Table 1, and in
the limit of a single-molecule donor and single-molecule
acceptor, eqn (23) reduces to the ordinary MT rate, eqn (1).
The ability to recast gFRET in a form analogous to eqn (23) (ref.
26) further illustrates the deep similarities between charge and
exciton transfer.

~(AEq 5+ m)z> 23)

2.2 Generalised bridge-mediated charge transfer

Like MT, gMT can be expanded to include the case where the
coupling between the donor and the acceptor aggregates is not
direct, but is instead mediated by a bridge consisting of higher-
lying states of intervening molecules. We consider a bridge of N
molecules, each modelled as a single site, where the donor
molecules only couple to the first bridge state, By, the acceptor
molecules only couple to the last bridge state, By, and each
bridge molecule only couples to its two nearest neighbours in
the chain, as shown in Fig. 2. Usually, the bridge site energies
Eg, are considered energetically distinct from the donor and
acceptor aggregates, i.e.,

(Es, — Eg), |VBp,, | < EB, — Ewgs (24)
where Vgg  are the intra-bridge couplings and E,; is the
characteristic energy of donor and acceptor eigenstates (for
concreteness, it could be taken as the highest eigenvalue of
either H) or H}).

We define the donor-bridge-acceptor Hamiltonian Hpgs =
Hg + H) + Hpy + Hy + Hp using Hp and H} as above and adding

Table 1 The equations of generalised Marcus theory (QMT) and bridge-mediated gMT have the same form as ordinary Marcus theory, provided
that relevant parameters are replaced as provided in this table. E, and Eg are the eigenstates of the donor and acceptor aggregate Hamiltonians,
H3 and HS respectively. Bridge-mediated gMT contains a bridge of N sites, with site B; coupling to the donor aggregate and By, to the acceptor.
The couplings Vg and Vg, are the coupling of the jth donor site to By, and the coupling of the kth acceptor site to By, respectively. Green's

function Gg, given by eqn (37), describes transport through the bridge

Marcus

theory Generalised Marcus theory Bridge-mediated generalised Marcus theory
Donor & acceptor indices Sites |D;), Eigenstates |p,) = Z ¢|Dj). Eigenstates |p,) = Z cof|Dy),

|Ax) J J

Ag) = carlAr) lAg) = Z cpic|Ac)
k
Electronic coupling Vi Vg = Z coéf";k Vi Z iCs N Vin, G Vigy
Jik Jk
Reorganisation energy A+ A Ao = 14 4
8 = 4 + |C‘gk| A C A + ‘Cﬁ” Ak

(separable environments) : zj: el % XA: ) Xj: a/} Z
Energy difference (AE) Ep, — B, Eg — E, Eg —E,= Es + Z Cﬁ/(cﬁk’ Vis, VBNA»’GQ'N
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Fig. 2 Generalised bridge-assisted charge transfer, shown with two
donor molecules, D; and D5, two acceptor molecules, A; and Ay, and N
bridge molecules, By, ..., By. (@) The eigenstates of each aggregate are
calculated. (b) The energies of these eigenstates are then perturbed by
the coupling to the bridge (perturbation of the bridge levels is
neglected, see text). (c) Charge transfer occurs directly between donor
and acceptor aggregate eigenstates, assisted by virtual bridge states.

the bridge Hamiltonian Hy and the coupling of the bridge to the
donor, Hpg, and acceptor, Hg,

N N-1
HB = ZEBI|BI><B[‘ —+ Z VB/B/+1|B/><B1+1‘ —+ h.C., (25)
=1 =1
Hpg = Z Vis,|D;)(Bi| + h.c., (26)
J
Hap =Y _ Vi, |Ax)(By| + hec., (27)
k

where |B)) is the state of a charge being located on bridge site B;.
Instead of thinking of B; and By as coupling to donor and

acceptor sites, we can also consider them as coupling to the

aggregate eigenstates. In the aggregate basis, Hpga becomes

Hppa = Hy + Y _(Ea|Do)(De + Vi, |Du)(Bi| + h.c.)

S EAN Al + Vi [A) (Bl +he), 2O
6
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where Vg, = anjVjBl and Vgg, = ZcﬁkaBN'
7 3

We calculate the rate of charge transfer from each donor
eigenstate |D,) to each acceptor eigenstate |Ag) independently,
using the mathematics already established for single-site
bridge-mediated transfer.”” In other words, instead of consid-
ering the entire donor-bridge-acceptor system, we consider
separately the subspace of each donor and acceptor eigenstate
with the bridge,

HDBA(“;ﬁ) = HB + EalDtx> <Da| + VaB]|Da> <B1| + h.C.

+ EglAg)(Agl + Vgr |Ag) (Bal + hec. (29)

We denote the lowest-eigenvalue eigenvector of Hpga(,8) as

dpga = (do, ds,, ..., ds, dg), with eigenvalue Eppa.
Since (HDBA(a!ﬁ) — IEDBA)dDBA = 0, we ﬁnd that
(Ey — Eppa)dy + Vg dp, = 0, (30)
(Eg — Eppa)ds + Vg dp, = 0. (31)

The values of dg, and dg can be found by considering the bridge
subspace, (Hg — IEppa)dg = —(Vg,0dw 0, ..., 0, Vg gdg) where dg
consists of the bridge elements of dpg, in the same order. The
solution of this equation is dg = GB(VB1 ey 0, ..., 0, VBNﬁdﬁ),
using Green's function Gg = (IEpgs — Hs)

By substituting this solution for dy and dj_ into eqn (30) and
(31), we find

(E, — Eppa)d, + Vaﬁdﬂ =0, (32)

(Eg - EDBA)d[)’ + I}ﬁada = 0, (33)
where E are the perturbed energies of aggregate eigenstates due
to coupling with the bridge,

Ea = Eoz + VaBlG%Sl VBlw (34)

Eﬁ = Eg + VﬁBNGgN VB (35)
and V is the effective coupling between the donor and acceptor
eigenstates, mediated by the bridge,
Vg = Vaup,GE Vi, g- (36)
To find the Green's function, we expand Gg in terms of
a Dyson series. Because |V, | is small (see eqn (24)), we keep
only the lowest-order term,*”

Gy = (Eppa — EB,)ilVB,BZ(EDBA - EBZ)ilVBZBB X...

X (Eppa — EBN,I)ilVB‘\V,,B‘\(EDBA - EB,\)fl- (37)

While Epg, is an eigenvalue of the entire donor-bridge-acceptor
system, we are only interested in the donor/acceptor
subspace. Because Ep, — E,j is large relative to inter-site
couplings and energy differences (eqn (24)), we can approxi-
mate Epps — Ep, = Eop — Eg, for average bridge energy Eg.
This allows us to simplify eqn (36) using the geometric mean of
the bridge couplings Vg,

This journal is © The Royal Society of Chemistry 2018
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Ea/,B - EB '

As in ordinary bridge-assisted charge transfer, the effective
coupling decays exponentially with bridge length because
Ve < En.p — Eg (eqn (24)). Substituting eqn (34)-(37) into
eqn (23), we have the rate of bridge-assisted gMT:

A 2 ~ P
27 paa| Va5| —(AEaﬁ =+ /1055)

kpoa = — ——eXp| ——— |- 39

oA Zﬂ I famksTag T\ 4knTig (59)

I} _ VaBl VBNB( (38)

@ Eyp— Eg

3 Discussion

The summary of results in Table 1 shows that gMT—whether
bridged or not—follows the same functional form as ordinary
Marcus theory. This allows intuition gained from studying MT to
continue to be useful when studying aggregates instead of single
molecules (provided that the parameters are redefined as shown in
Table 1). Further, gMT allows known values of relevant parameters
(couplings, energy differences, and reorganisation energies) of
individual molecules to be used to calculate the effective param-
eters for aggregates, saving computational time by avoiding
expensive supramolecular quantum-chemical simulations.
However, the presence of delocalisation in aggregates leads
to significant differences between MT and gMT. We can analyse
the influence of delocalisation on charge transfer by separating
its impact on the electronic and nuclear components of the MT

rate. 2

The gMT electronic coupling factor |Vs|* = ‘EcajC;kVﬂc
&

includes a coherent sum involving electronic aI{iplitudes in
each of the donor and acceptor aggregates, allowing both
constructive and destructive interference to affect the transfer
rate. If the interferences is constructive, leading to enhanced
transfer rates, we call the effect supertransfer, and if it is
destructive, subtransfer, borrowing terminology from the
similar problem of MC-FRET.*

For illustration, we consider an aggregate of two identical
coupled donors, D; and D,, with a charge delocalised between
them in the |D,) = (|D;) + |D,))/v/2 state. The donors are
coupled to a single acceptor A with strengths Vp o and Vp A
respectively. If we were to apply Marcus theory between each
donor and the acceptor independently, we would expect
a transfer rate proportional to the square of each coupling,

1 1 . T
Jepr o E|VD‘A|2 + E\VDZA\Z, with the factors of 1/2 indicating the

population on each donor. However, this naive approach fails to
include coherent effects of the superposition. These are treated
correctly by gMT, which predicts a transfer rate of

kgMTOC|(VD1A + Vp,a)/ \/§|2 The presence of rate-enhancement
due to supertransfer is apparent if V, o = Vp,a, which implies
kemr = 2kypr. In contrast, if the two transfer pathways interfere
destructively, Vp o = —Vpa, gMT predicts subtransfer with
kemr = 0. We refer to states that enhance the charge-transfer
rate through supertransfer as bright, while those that retard it
as dark, in analogy to the terms used in the literature on

This journal is © The Royal Society of Chemistry 2018
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superradiance.”® The relative populations of the bright and dark
states will strongly influence the rate of charge transfer in
delocalised systems.

Supertransfer is also sensitive to the system's geometry.
Changing the distance and orientations between donors and
acceptors will affect the electronic wavefunction overlaps due to
the exponential decay of electronic wavefunctions with
distance, consequently modifying the electronic couplings. To
explore the consequences of this geometric sensitivity, we
consider a model consisting of two donor molecules

a)

(=2
~

2.0

0.5

Rate Enhancement

0.00

NS

Fig.3 Example of generalised Marcus theory (gMT) and supertransfer,
showing only the impact of electronic component IVWI2 on the charge
transfer rate. (a) Geometric arrangement of two donors and one
acceptor, changing from collinear (¢ = 0) to an isosceles triangle (6 =
7/2). (b) Rates of charge transfer from the donors to the acceptor are
displayed as ratios of the rate that would be found if only donor Dy
were present and the charge initially localised on it. Black and orange
lines indicate, respectively, geometries with Ry = 3Rp or Ry = Rp (at
a constant Ra = 5 A). In both cases, the rates are computed for three
initial donor states: the bright state (|D;) + |D,))/v/2 (solid), the dark
state (|D;) — |D,))/v/2 (dot-dashed), and the fully mixed state of |D;)
and |D,) (dashed). These three states are obtained as ground states of
the donor Hamiltonian by assuming Vp p, = —100 meV (bright), Vp p, =
100 meV (dark), or Vpp, = 0 meV (mixed). The transfer rates are
independent of Ry and Rp when 6 reaches 7t/2, where both donors are
equidistant from the acceptor. At that point, constructive interference
ensures that the transfer from the bright state is twice as fast as it
would be from either site alone, while transfer from the dark state is
completely suppressed by destructive interference caused by the
opposite signs of the wavefunction at D; and D,. The difference
between the two geometries is apparent at smaller . When Ry is large
compared to Ry (orange), the rate is half the single-site rate for all initial
states, indicating that the acceptor is interacting primarily with D; until
f becomes considerable. By contrast, when both donors are close
enough to the acceptor to interact with it strongly (black), super-
transfer and subtransfer can occur at all values of 6, resulting in rate
enhancements different from 0.5 at all angles. Other calculation
parameters: Vpa(r) = 50 meV exp(l — r/2 A).
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transferring a unit of charge to an acceptor molecule, shown in
Fig. 3. These calculations demonstrate that rate enhancement/
retardation is weakest when the acceptor is co-linear with the
donors. This is because the farther donor is so far away that the
acceptor is only affected by the nearer donor. The impact is
most significant when the acceptor is equidistant from the two
donors, where supertransfer from the bright state amplifies the
transfer rate by a factor of two, while the dark state provides no
transfer.

We can compare these results with gFRET, the analogous
theory of excitation-energy transfer between molecular aggre-
gates.* Bright and dark states also exist in gFRET, but exciton
transfer is not as sensitive to small changes in the separation
between molecules. While the transfer rate in gMT is deter-
mined by the overlap of electronic wavefunctions, which decay
exponentially with distance, the MC-FRET rate depends on the
coupling of transition dipole moments, which decays with the
cube of the distance. In addition, both gMT and gFRET are
strongly affected by the relative orientations of the molecules.
The orientational dependence of gFRET is easier to predict,
especially in the large-separation limit where it can be repre-
sented by the interaction of two dipoles. By contrast, the
orientational dependence of electronic couplings depends on
the shape of the orbitals, which varies from molecule to mole-
cule. Given that the geometric dependence of gFRET can lead to
substantially ~ different outcomes in light-harvesting
complexes,®®** the stronger dependence of gMT on geometry
provides an opportunity to engineer molecular systems that
perform charge transfer better than single sites.

The nuclear factor in gMT (also referred to as the
Franck-Condon weighted density), (47kgTA.5) > exp(—(AEz +
Aag)’/4kgT,5), has several features in common with ordinary
MT. For example, for a fixed 2,4, the nuclear factor is maximised
when —AE,; = A.5, and the inverted regime is possible when
—AE,z > A.s. However, the nuclear term also possesses features
not predicted by ordinary MT, allowing for both enhancement
or retardation of the transfer rate.

The nuclear factor depends on two energies, AE,g and A,g,
which are affected by delocalisation in different ways. On the
one hand, AE,; is the difference between eigenvalues of H? and
H3. If the extent of delocalisation in, say, the donor is increased,
E,, will not change dramatically, remaining close (up to several
times the intermolecular coupling) to a value of typical site
energies. On the other hand, 4,4 is reduced by delocalisation.

Since A, = E ‘caj]4/\j, for a state purely localised on j, 4, = ;.
J

However, in a fully delocalised state (c,; = 1/4/Np) of Ny, iden-

tical donors (A; = 1), the reorganisation energy is decreased Np-

fold:

Np

h=>

J=1

4
A
A= — 4
= (40)

1

VNp

In general, the reduction is by a factor equal to the inverse

-1
participation ratio IPR = (Z }c,,g-|4> . A reduction in A leads
J
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to an exponential narrowing of both Dp*(w) and
ARf(w). Therefore, because the charge-transfer rate depends on
the overlap of the two spectra (eqn (10)), the reduction in A will
reduce the transfer rate between most pairs of eigenstates, the
exception being ones where AE.z = —A,4.

The presence of different processes affecting the nuclear
factor means that delocalisation can have a complicated effect

20O i @

P> <t >

0.0
-800 -600 -400 -200 0 200

ED1 _ED2 (meV)

400 600

Rate (10" s

-

400 600 800

/\D1 —ADZ (meV)

1000 1200

Fig.4 Tuning energy offsets and reorganisation energies can enhance
charge-transfer rates beyond what is possible with either donor site
alone. (a) Two donors and one acceptor in a collinear geometry, with
different colours (orange/red) indicating inequivalent donors. (b)
Energetic detuning: the charge transfer rate from the aggregate to the
acceptor (solid line) is compared to the rate if only D; (dashed red) or
D, (dashed orange) were present, as a function of the energy differ-
ence between D; and D,. Even with the effects of supertransfer
removed (the aggregate rate is shown divided by the electronic
supertransfer enhancement of 1.42), energetic tuning can make the
aggregate transfer faster than would be possible with either donor
alone. In particular, the presence of D,, which itself is weakly coupled
to A, can enhance the transfer rate above the rate from D, alone. (c)
Reorganisation energies: plot as in (b), but the rates are shown as
a function of the difference in reorganisation energies between D; and
D,. Here as well, adding D, with a favourable reorganisation energy
can enhance the rate above what is possible with either donor alone.
Calculation parameters: Vpp, = =37 meV, Vpa = 18 meV, Vpa =25
meV, Ax =200 meV, Ap, = 150 meV, Ep, =700 meV, Ex = 0 meV, kgT =
25 meV. In addition, (b) uses Ap, = 150 meV and (c) has Ep, = 600 meV.
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on the charge-transfer rate, even apart from supertransfer.
Critical to the rate is the relative size of AE,z and A,s, because of
the rate's exponential sensitivity to (AE,g + A.5)°. The different
effects are illustrated with another example, shown in Fig. 4a,
where acceptor A is strongly coupled to donor D4, whose site
energy and reorganisation energy are such that the transfer
from D, to A is very slow (—AEp  >> Ap 4). Another donor D, is
then introduced, but is weakly coupled to A due to its distance.
A naive application of classical MT might suggest that, because
D, hardly interacts with A, it would serve to only steal charge
density from D;, reducing the already slow transfer rate.
Generalised MT, however, shows that it is possible to choose the
energy and reorganisation energy of D,, as well as its coupling to
D,, so that a coherent superposition between D; and D, will
enhance the total transfer rate above what is possible with
either D; or D, alone. This is true even if supertransfer is
neglected, as shown in Fig. 4b and c. Indeed, for two donors,
supertransfer can enhance the rate by at most a factor of two,
while there is no limit to how much the nuclear factor can be
enhanced by judiciously tuning AE,s and A, to minimise (AE,z
+ Jag)>. This result shows that even if an unfavourable donor
must be used in a donor-acceptor system (for whatever reason),
another donor can be added to tune the nuclear term's contri-
bution to the charge transfer rate.

Our results also extend gMT to treat bridge-mediated charge
transfer, showing that the usual equations still apply when
considering delocalised aggregates. Indeed, including the
effects of bridge-mediated charge transfer on gMT does not
qualitatively change the effects of supertransfer and energetic
tuning, except that the coherent effects depend on the geometry
of the donor aggregate with respect to the first bridge molecule,
and the acceptor aggregate with respect to the last. In particular,
the results shown in Fig. 3 and 4 would remain unchanged if the
couplings were mediated by a bridge.

4 Conclusion

The theory presented in this work is the first description of
charge transfer between delocalised molecular aggregates.
Therefore, we anticipate that it will have broad applications in
fields where charge transfer and electronic coherence intersect,
including organic photovoltaics, photosynthesis, and inorganic
complexes.

The major prediction of gMT is that delocalisation within an
aggregate can significantly affect charge transfer rates through
two mechanisms: supertransfer and nuclear tuning. The first is
a consequence of the constructive interferences of charge-
transfer pathways, while the latter is the ability of a charge-
transfer rate to be modified by adjusting effective energy
levels and reorganisation energies by delocalising electronic
states over different molecules.

Both of these predictions are suited to being tested experi-
mentally. The simplest approach would be to construct cova-
lently linked donors and acceptors in geometries that
approximate those in Fig. 3 and 4. Tuning the couplings and
energy levels through chemical modification would permit the
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adjustment of the parameters relevant for gMT, allowing the
theory to be tested.

In this work, we restricted ourselves to deriving the delo-
calised generalisation of the simplest Marcus-theory formula.
We are confident that many of the subsequent advances that
have occurred in charge-transfer theory can also be incorpo-
rated as extensions to gMT. Indeed, our derivation is more
general than the final result, and some of the approximations
needed to derive an MT-like equation (e.g., high temperature,
slow environmental modes) can be omitted and more general
intermediate results used directly (e.g., eqn (10)—-(13)). Although
it is not clear whether a simple, closed-form expression could be
derived, a number of improvements to gMT can be envisaged,
including adiabatic charge transfer, quantum-mechanical
vibrational corrections,** coherent multistep charge transfer,*
shared intra-aggregate environmental modes,** and off-
diagonal system-environment couplings. Inspiration could
also be taken from advances in MC-FRET to obtain generalisa-
tions able to treat system-environment entanglement or other
parameter regimes outside the approximations used here.?>3%3*

5 Appendix

Here we give the full derivation of eqn (14) and (15) from eqn (8),
indexing the sum with k” for future convenience:

kpoa(t) = S Tre S (Awlo(0) Aw).

41
T (1)

Since the inter-aggregate coupling Hc is weak compared
to all other terms in H, we take it as a perturbation. Taking
H, = H — Hc, and using tildes to denote the interaction picture,
we write Hc(f) = e™"Hce " and express p(t) to second
order in perturbation theory:

. 1 [ N N

)= = 5 | o[ [ 0] @)
where [-,-] is the commutator, and Trg is the trace over the
environment degrees of freedom. Substituting into eqn (41),

k—a(f) = f% Z<Ak~‘ J’ deTrg [ﬁc(:), [ﬁc(f), p(O)H ]Ak,,>

T 0

(43)
kp_a(f) = f% Z(Am E deTrg(He (1) He(7)p(0)
+p(0)Hc(v)He(t) — He(t)p(0)He (1)

— He(1)p(0)He ()| Agr).- (44)

Since the charge is initially on the donor aggregate, p(0)|Ay) =
(Arr|p(0) = 0, the first two terms vanish, giving

kDHA(Z) = % Z 2Re<Akw| Jt dTTrE(ﬁc(T)p(O)ﬁc(l‘))‘Aku>

I 0
(45)
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Vi
koaa() =37 > ”‘ i 2ReJ dr
Ji kK kT
Trg (<Ak” |eiHor/h|Ak,><Dj, ‘e4Hor/h p(0)eiHat/n }D_/><Ak|e4H0t/h|Ak”>>~

(46)

Using the cyclic property of the trace gives
]J

TrE(<Ak|e*’*°<’*’>/”lAk1><D,-fIe*”“/’* p(0)™ (D). (47)

JkV/k

kDHA -2Re J dr

Defining v = t — 1, we can write
t
VieVie /
bo-n() = 3 3L an
i

Trg <<Ak ‘eﬂ'Hm’/h |Ak'><D/" |eiHn(I’—t)/h p(o)eﬂ'HO(I/,z)/h eiHm//h }Dl>) .

(48)

To simplify further, we consider the term e™("~9"(0)
e (=9 which describes the time-evolution of the donor
aggregate (because H, induces no donor-acceptor transitions).
Because the aggregate-environment coupling is much stronger
than the inter-aggregate coupling, the donor aggregate will
thermalise with the environment on timescales much shorter
than the charge-transfer timescale. Therefore, for times ¢ much
longer than the donor thermalisation time (but much shorter
than the charge-transfer time), we can consider the long-time
limit,
lim 0 =0/1 p(0)e =01 —

t—

(49)

where for a large, weakly coupled environment, the state
pth = Pp ® pa, of donor and acceptor aggregates independently
thermalised with their own environments, is independent of
p(0). In this limit, we may also extend the limits of integration in
eqn (48) to infinity to give a time-independent rate:

kDHA*ZZ ]kV;,k ‘ dr
i

TI'E (<Ak|e—iH01’/h

WD) (50)

Writil’lg Hp = H(])) + Hpg + HED and Hy = Hg + Hpg + HEA and
using Plancherel's theorem, we can rewrite eqn (50) as

toon = 3 3
i

Vi V]’A

2 wnfeal@), 6y

!

D (w) = ‘[7 dt e Trg, <e’iHED’/h<Djr‘eiHD’/” pD|Dj>), (52)

Aﬁk,(w) _ J dr eio)l TrEA (eiHEAI/h <Ak ‘eﬂlHAt/h }A/(’>pA)7 (53)
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where we have renamed 7’ to ¢. Changing to the aggregate basis,
eqn (51) becomes

VsV, * )
on =33 S | aorg@aro. e
D‘)‘D‘)‘,(w) = J dr e ! Trg, (eﬂ'HED‘/h (Da,\eiHD’/h pD|Da)), (55)
A @)= [ dre T (A A ), G0

Eqn (54) reduces to eqn (10) if D& and A5 can be assumed
to be diagonal in the aggregate basis. In general, this is not the
case, because Hpg and H,z do not commute with HS and
H3 respectively. However, it is an appropriate approximation in
the limit, assumed here, of weak system-environment coupling,
where the environment does not significantly perturb the
thermal equilibrium of the system. The same approximation
was considered and discussed in detail in the context of MC-
FRET,**** where it can be used to reduce the excitonic analogue
of eqn (54) to a diagonal version. Of course, eqn (54) can be used
directly, at the cost of intuitive parallels with MT being
obscured.

Eqn (12) and (13) can be evaluated in the particular case of
a thermalised environment of independent harmonic oscilla-
tors to yield eqn (14) and (15). Assuming that D and A5%" are
diagonal is equivalent to assuming that the electronic Hamil-
tonians commute with the environmental ones, meaning that
exp(iHpt/h) = exp(iHpt/h)exp(i(Hpe + Hg,)t/h), so that eqn (12)
becomes

D‘é”‘(w) — [ dr e—io}l eil‘:ul/h Poc

Trg, (e*'”ED'/ 1D, |el(HoetHep )1/ Dy pED) Y

The Hamiltonian Hpg + Hg, can be diagonalised using the
polaron transformation, which describes the displacement of
the environment oscillators by the presence of a charge:

<Da|ei(HDE+HED)1/h|Da> _ ST eiHEDt/h S

where S, = exp ( Z J (bg

gives

(58)

)) Using this fact in eqn (57)

Di(w) = J de e el o Try (e 0!/ ST eHeot/" 5,0 ).

(59)

In eqn (59), the contributions of different aggregate
eigenstates are explicitly uncoupled, meaning that the
equation takes, for a particular «, the same form that occurs
in the derivation of ordinary, single-site MT. Therefore, the
trace can be evaluated for a harmonic environment using
standard techniques (e.g., Section 6.8.1 of ref. 3), giving
eqn (14).
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