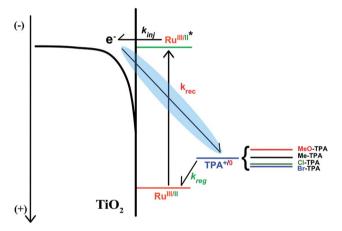
Chemical Science

CORRECTION

View Article Online
View Journal | View Issue

Cite this: Chem. Sci., 2018, 9, 1700

Correction: Dye-sensitized electron transfer from TiO₂ to oxidized triphenylamines that follows first-order kinetics


Brian N. DiMarco, Ludovic Troian-Gautier, Renato N. Sampaio and Gerald J. Meyer*

DOI: 10.1039/c7sc90080e

www.rsc.org/chemicalscience

Correction for 'Dye-sensitized electron transfer from TiO_2 to oxidized triphenylamines that follows first-order kinetics' by Brian N. DiMarco et al., Chem. Sci., 2018, DOI: 10.1039/c7sc03839a.

The authors regret that Scheme 1 is incorrect in the original manuscript as an arrow was not properly displayed. The correct scheme is shown below.

Scheme 1 Mechanism for the photoinitiation of the desired reaction. Visible light absorption by the ruthenium sensitizer induced rapid excited-state electron injection to the acceptor state of TiO_2 , $k_{\text{inj}} > 10^8 \, \text{s}^{-1}$. The oxidized sensitizer is then regenerated by triphenylamine (TPA) with a rate constant k_{reg} . This sequence provides the reactants for the desired charge recombination reaction of the injected electron with the oxidized triphenylamine redox mediator (k_{rec}) that was quantified over a 0.5 eV change in driving force.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.