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A natural generalization of the classical deflection function, the functional dependence of the deflection
angle on the angular momentum (or the impact parameter), is the joint probability density function of
these two quantities, revealing the correlation between them. It provides, at a glance, detailed
information about the reaction mechanisms and how changes in the impact parameter affect the
product angular distribution. It is also useful to predict the presence of quantum phenomena such as
interference. However, the classical angular momentum-—scattering angle correlation function has
a limited use whenever quantum effects become important. Rigorously speaking, there is not a quantum
equivalent of the classical joint distribution, as the differential cross section depends on the coherences
between the different values of J caused by the cross terms in the expansion of partial waves. In this
article, we present a simple method to calculate a quantum analog of this correlation, a generalized

deflection function that can shed light onto the reaction mechanism using just quantum mechanical

Received 28th December 2017 ) .
Accepted 25th April 2018 results. Our results show that there is a very good agreement between the quantum and classical
correlation functions as long as quantum effects are not all relevant. When this is not the case, it will also

DOI: 10.1038/c75c05489k be shown that the quantum correlation function is most useful to observe the extent of quantum effects

rsc.li/chemical-science

1 Introduction

The main goal of reaction dynamics is to obtain various
microscopical properties such as excitation functions or rota-
tional distributions and from them, macroscopical properties
such as thermal rate coefficients. Overall, the process is equiv-
alent to determining how microscopical properties govern the
macroscopic outcome. Accordingly, it is not enough to repro-
duce and to predict experimental measurements, but it is also
important to unveil detailed reaction mechanisms.

The impact parameter b (or the orbital angular momentum
) and scattering angle # are the two main variables that are
studied to discern reaction mechanisms. The former is related
to the asymptote of reactants and is one of the key factors in
determining the outcome of a collision,"” as it determines the
regions of the potential energy surface (PES) that will be
explored during the collision (head-on vs. glancing collisions).
The scattering angle, in turn, is defined at the product asymp-
tote and provides information about nuclei scrambling during
the collision; besides, it is amenable to experimental measure-
ment using cross molecular beams with mass spectrometric
universal detection or, more recently, velocity-mapped ion
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such as interference among different reaction mechanisms.

imaging®*® or single beam coexpansion such as photoloc’
among other techniques. Moreover, from the theoretical point
of view, it is relatively straightforward to extract the reaction
probability as a function of J (opacity function or P(J)), and the
differential cross section (DCS or o,(f)) as a function of the
scattering angle 6. Hence, it is not surprising that P,(J) and DCS
are two of the most important quantities used to determine the
collision mechanism. However, the knowledge of these two
distributions may not be sufficient to characterize the mecha-
nisms. To this purpose, it would be necessary to relate how the
initial and final conditions are correlated; specifically, which
impact parameters give rise to scattering at certain angles.

To relate the angular momentum and scattering angle, the
deflection function (DF), that is, the functional of the deflection
angle (® whose absolute value is 6) in terms of the angular
momentum, in its classical, semiclassical and quantal versions,
has been widely used to explain elastic and inelastic scattering,
in particular to understand those features related to glory and
rainbow scattering.»®® More recently, Connor and coworkers
have devised a quantum deflection function (QDF) in the
context of the glory analysis of forward scattering that can also
be applied to reactive scattering.'®*> The QDF, defined as the
derivative of the argument of the scattering matrix element with
respect to J, has proved to be a valuable tool to predict the
presence of rainbows. Besides, it could be used to predict
interference between nearside and farside scattering. However,
the QDF does not consider that a single J can correlate with
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different ¢ which limits its use to predict the presence of
different mechanisms.

Within a classical mechanics framework, there is no limi-
tation in the amount of information that may relate the initial
and final conditions in a collision. Thus, it is perfectly feasible
to go beyond the DF and to determine the joint dependence of
the reaction probability as a function of the scattering angle and
the impact parameter, the j-6 correlation function. This sort of
generalization of the DF not only contains all the information
provided by the P,(J) and the DCS but also, primarily, provides
how J and @ correlate throughout the collision. For reactive
scattering, a strong correlation between J and 6 is expected for
reactions following a direct mechanism, whereas no or very
weak correlation between these variables can be anticipated if
the reaction takes place through a long-lived collision complex.
Furthermore, discontinuities and different trends in the j-6
correlation can be associated with different reaction mecha-
nisms, and permit its characterization even for apparently
simple reactions.™**

The classical joint probability distribution has also been
used to predict interference causing oscillations in the DCS.*>*¢
Given the wave nature of quantum mechanics (QM), it is ex-
pected that when one particle may follow two different pathways
with the same outcome, they will interfere. In Young's double-
slit experiment,” interference arises when electrons going
through two different slits hit the detector. In reaction
dynamics we do not need slits and the system itself acts as an
interferometer whenever two different J could scatter at the
same angles and final quantum state.*>'®'® This analogy also
explains why a correlation function between ¢ and J cannot be
calculated using pure quantum mechanical grounds, as it is
done in classical calculations. In QM, the angular distribution
depends on the coherences between different partial waves, and
therefore something apparently as simple as obtaining
a rigorous joint probability distribution as a function of J and ¢
cannot be computed. This would be similar to disentangling
which part of the signal comes from electrons going through
one or the other slit in Young's double-slit experiment.

Throughout this article, we will try to circumvent this limi-
tation and propose a new quantum analog to the classical
correlation function, Q.(6,]), that will appear as a generalized
deflection function (GDF) for the interpretation of quantum
scattering results. This new function is a joint quasi-probability
distribution of J and 6 that includes all coherences between
different partial waves, and whose summation over all partial
waves recovers the exact differential cross section. As will be
shown Q.(6,/) emerges as a valuable tool to assist in the eluci-
dation of reaction mechanisms, especially when quantum
phenomena are important, or when several reaction mecha-
nisms coexist.

The article is organized as follows: in Section 2 we will review
the classical GDF as the joint distribution of # and J, followed by
the definition of an intuitively simple QM quasi-probability
joint distribution or QM GDF, Q.(6,), starting from the defini-
tion of the scattering amplitude. In Section 3 we will demon-
strate the usefulness of the proposed Q.(f,J) function to
disentangle reaction mechanisms and to unveil quantum
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effects such as interference for three different systems and
situations: inelastic collisions of Cl + H,; reactive D' + H,
collisions; and H + D, reactive scattering at a collision energy
where quantum interference governs the shape of the DCSs for
certain combinations of final and initial states. For all these
systems, QM calculations have been carried out using the close-
coupling hyperspherical method of Skouteris et al,"” while
quasiclassical trajectory (QCT) calculations have been per-
formed using the procedure described in ref. 20. The reader not
interested in the theoretical details can skip Section 2 and move
directly to Section 3 where the potential of the GDFs is exem-
plified and discussed.

2 Theory

In this section the quasi-classical and quantum GDFs (or j-§
correlations) are presented. The detailed expressions to calcu-
late them from the results obtained with QCT or from the QM
scattering S matrix, respectively, are also given. As will be shown
in the Results section, GDFs are a powerful tool to disentangle
and describe reaction mechanisms, as they appear as distinct
features in a j-f representation. Moreover, no extra computa-
tional effort beyond that for the determination of the collision
probability or differential cross section is required. The proce-
dure to calculate GDFs is general and can be applied to all sorts
of chemical reactions as long as the S matrix is obtained.

2.1 Classical generalized deflection function

The basis of the QCT method consists in calculating an
ensemble of trajectories following a judicious sampling of the
initial conditions to cover as much as possible the phase space
relevant for the process to be studied, and complying with the
state quantization of the reactants. The initial and final atom
positions and linear momenta are then used to determine those
initial and final properties (such as the angular momenta,
scattering angle, final rovibrational states, etc.) necessary to
characterize each individual trajectory. Finally, all is needed is
to determine the average value of any conceivable property over
the ensemble of trajectories. For example, the total reaction
probability for a given value of the total angular momentum
quantum number, J, discretely sampled can be obtained as:

_ M)
r(-]) - le(l]) (1)

where N(J) and N(J) are the number of reactive (or inelastic if
that were the case) and total trajectories, respectively, for a given
J- Recall that the total angular momentum J = £ + j, where j is
the rotational angular momentum and £ is the (relative) orbital
angular momentum. We can define the corresponding
quantum numbers, J, ¢ and j, such that |J| = [J(7 + 1)]"*4 and
similarly for |£| and |j|. These quantum numbers can be
sampled continuously (real values) or discretely (integer
values).

Eqn (1) is valid if the sampling in J is performed discretely
and uniformly and, similarly, for the orbital angular
momentum in the |J — j| = ¢ <]+ interval (for details see ref.
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21). In addition, not all reactive trajectories need to have the
same weight. Sometimes it is necessary to attribute different
weights to each trajectory as is done in the Gaussian binning
procedure*~>* to make the assignment of the final rovibrational
states ‘more quantal’. In those cases, N,(J) in eqn (1) is replaced
by S, the sum of the weights of reactive (or inelastic) trajecto-
ries into a given final manifold of states. If one wishes to
calculate a property that depends on more than one variable, for
example J and /, the scheme is the same except that now a joint
probability has to be considered (say, the number of reactive
trajectories with values of J and ¢, N(J,¢)).** The aforementioned
procedure is suitable for discrete variables, while for contin-
uous variables it is a common practice to use histograms or,
more elegantly, to fit the distributions to a series of orthogonal
polynomials.?®*"** Obviously, integration (or summation) over
one of the variables of a given joint probability distribution
leads to the probability distribution of the other variable.
Moreover, if we split the original ensemble of trajectories into
a series of sub-ensembles and calculate the respective joint
probability distribution, it turns out that the global probability
distribution can be easily recovered from the joint probability
distributions for all the sub-ensembles; that is to say, the
probability distributions are always additive. As we will see, this
is not the case in QM scattering due to the coherences.

To illustrate the calculation of the classical correlation
function, let us assume that the orbital angular momentum is
sampled continuously in £ € [0,4,,,¢] with a weight of 2¢ + 1, that
is, the orbital angular momentum for the i-th trajectory is
sampled as ¢,(¢; + 1) = &[lmax(fmax + 1)], where £ is a random
number in [0,1] (this is the same as sampling the impact
parameter as b = £%2h,.,).

We can conveniently define a J-partial cross section, a,(J):

2 min(J,j) + 1

(/) = 211

2 (2J +1) P.(J), 2
where k* = 2u(E.,)/” is the initial relative wavenumber vector,
with u being the atom-diatom reduced mass and E., the colli-
sion energy. As defined, ,(J) is nothing but a probability density
function normalized such that its integral (or sum) over J is the
integral cross section, oy, either total or into a given final state.**
For discrete values of J, o,(/) is usually denoted in the literature
as a;/.

The Monte Carlo normalized probability density function

can be written as
o,
J)= S, ;Wﬂs(] —Ji), 3)

where w; and J; are the weight and the J value of the i-th
trajectory. Sy is the sum of the weights of all the relevant reac-
tive trajectories, Sy, = > w;. In the simplest case, w; would be
a Boolean function whose value is one only for the specific
reactive trajectories and zero otherwise, such that S,, = Ny, the
number of the considered reactive trajectories. As a convenient
approximation, the Dirac delta functions can be replaced with
a normalized Gaussian function
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1 J =)
GJ—J)= —— e 4
U—d)= exp{ ), @
where the width, s = dpwuwm/In 2, is conveniently chosen

depending on the average spacing of the successive values of J;
and the statistical uncertainty.

If the sampling in J (and in ¢) is made continuous, the
J-partial cross section can be expressed as an expansion in
Legendre polynomials, P,(x):

227 +1)
(J) = o, b Pn 5
7 ( ) 7 Jmax max + Z ( )
where x is a reduced variable, x € [—1,1], given by
x = M _ 17 [6)

Jmax(Jmax + 1)

where Jnax is the maximum value of the total angular
momentum used in the calculation to ensure the convergence.
The coefficients, b, are given in terms of Legendre moments
as

21
by = ”* ’IZWP ), )

where x; is the value of x, given by eqn (6), of the i-th trajectory,
and P,(x) is the n-th order Legendre polynomial.

Similarly, the DCS can be expressed as an expansion in
Legendre polynomials:

where o, is the integral cross section, and a, represents the
expansion coefficients whose values are given by:

p _ 2m+1
m2

<Pm(COS 0)> 2m + 1 _1 Z w; P,, COS 0 [9)

where (P,,(cos 6)) is the weighted average value of P,,(cos 6) over
the ensemble of the relevant trajectories.

The joint probability distribution of J and 6, already used
in ref. 15 and 26, normalized to the integral cross section, can
now be expressed as a double expansion in Legendre
polynomials

o 227 +1

(0 J) 27'5 W 0; nzo:amn m COS 0 P [ (J)]
(10)
where the coefficients ,,, are given by:
2 H2n+1
= % (P (c0s )P, x()])
~ @2m+1)2n+1),
- f Z w; Py, (cos 6;)P,[x:(J;)]  (11)

The Monte Carlo expression of the deflection function can be
expressed as a sum of Gaussian functions given by

Chem. Sci., 2018, 9, 4837-4850 | 4839
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G'r

*12‘“31 J)6(60 — 6;)

Ur

= W Zw, (J —J)G(6—6)) (12)
where J; and 6; represent the values of J and 6 for the i-th
trajectory. G(J — J;) and G(6 — 6,) denote normalized Gaussian
functions with width parameters s; and s,, centred in J; and 6;,
respectively.

Integration of eqn (10) or (12) over # and the azimuthal angle
provides the J-partial cross section of eqn (5) and (3). Alterna-
tively, integration over J in these equations gives o.(6)sin 6.
Hereinafter we will indifferently denote ¢.(6,) as the QCT
generalized deflection function (QCT GDF) or the QCT j-6
correlation function.

2.2 QM generalised deflection function: QM J-0 correlation
function

Due to their classical nature, there is no restriction in QCT
calculations to obtain any correlation between two or more
properties. After all, each trajectory is characterized by specific
values of every initial or final property. However, this is not the
case for QM scattering calculations, which makes the analysis
based on pure QM calculations not so trivial. From the QM
scattering calculations we only obtain as an outcome the scat-
tering matrix (S-matrix) that relates the initial states of the reac-
tants and the final states of the products. This means that to
obtain a dynamical observable from a QM calculation, we need
a recipe to extract its value from the elements of the S-matrix. For
the particular case of closed shell diatomic molecules in the
helicity representation (body-fixed frame), and a given value of J,
they are characterized by three quantum numbers for each
arrangement: v and j (V' and j') that define the vibrational and
rotational states respectively, and the helicity Q (€2'), the projec-
tion of j (') (or ) in the approach (or recoil) direction.

Some observables can be readily extracted from the S-matrix.
This is the case of P,(J) that, for a given initial state and total
energy, can be calculated as follows:

Pr(J) =

2 mln ’Q’ vjiQ (13)

where the sum runs over the desired product states (or, if
referred to state-to-state, without summing over v and j).
Hereinafter, subscripts for v, j, v/, and j, and the chemical
arrangement will be omitted for clarity. The integral cross
section can be written in terms of the reaction probabilities as

J; . . T
max 2m1n J7 +1 max

=1 Z > @r+1 .(7{)11(@ =Y @7+ o’
v J=0 J+ =

(14)

where Jiax is the maximum value of ] necessary for convergence.
o/ is the j-partial cross section already mentioned in the
previous subsection.

The derivation of vector properties such as the DCS from the
S-matrix is not so straightforward, firstly, because we need to
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include the angular dependence, and secondly, because they
involve coherences between different elements of the S-matrix.
It is convenient to express the DCS in terms of the scattering
amplitudes, which are defined as:

Jmax

Sora(0) = 2k Z (27 + 1)dg(0)Sgrg (15)

where dyJ/(6) is the Wigner d-matrix. The DCS can now be
written using the scattering amplitudes as:

do.(0) 1 *
=271 %fg’g(g)fg’g(g)

o(0)= dw

(16)

From eqn (15) and (16) it is clear that the DCSs for state-to-
state processes are additive, even when they are resolved in Q'
and Q. However, the squaring of the sum over J in eqn (15)
makes the DCS no longer additive in J, i.e., there are coherences
(cross terms) between different J partial waves. This property is
a reflection of the wave nature of quantum mechanics, so that
two or more “paths” (impact parameters or J) leading to scat-
tering at the same angle will interfere. Hence, in principle, it is
not possible to separate the contribution of two partial waves to
the converged DCS. It is worth noticing that usually coherences
are only important between nearby values of > so, for certain
cases, it is possible to extract the contributions from one or
many mechanisms from the DCS.

To calculate a QM J-f correlation function we would need to
extract the contribution of each J to the total DCS. Furthermore,
for a QM correlation function to be reliable it should be additive
so that the sum over J leads to the converged (summed over all
J-partial waves) DCS. In principle, one could compute it by
neglecting all coherences between different js. This would be
equivalent to using the random phase approximation that lies
in the core of the statistical model,”®* giving rise to forward-
backward symmetric DCSs. For non-statistical (direct) reac-
tions, a symmetric DCS is in clear disagreement with the
experimental and QM results, and hence neglecting coherences
can be considered as a very inappropriate approximation to
obtain a QM correlation function. Instead, to devise a QM GDF,
we will start by defining a J-partial dependent scattering
amplitude as:

1

S3o(0) = 5 (20 + Ddyo(0)Shg (17)

where |Q], |2'| =J. The (total) scattering amplitude can now be
written as

Imax

=2 /200

Jao(0 (18)

The DCS can be expressed as a function of the j-partial
scattering amplitudes:

Jmax  Jmax

or(6 yuzzzf (©),

Q0 J1=0 J=

(19)

This journal is © The Royal Society of Chemistry 2018
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which is the same as eqn (16). Without any approximation,
eqn (19) can be rearranged to
1 Jmax  Jmax  Jmax 5 5 .
0:(6) = > s o 015000,

m 2 Qe ool

20 J=0 J;=0 J,=0

(20)

Eqn (19) and (20) only differ in the presence of an additional
sum over J in eqn (20) that is compensated with the term (4;, ; +
07,7)/2, which guarantees that both equations include the same
number of cross products and hence that they are equivalent.
The advantage of eqn (20) is the presence of a separate
summation over J that allows us to define a function that
depends on a single J and 6; that is, a quantum analog to the
classical joint probability distribution, and we will denote that

as Q:(6),

DD B) SIS RO N NNER

Q'Q J1=0 J,=0

where sin ¢ has been added so the sum over J and integration
over 0 recovers o;. To help the interpretation of the quantum
correlation function defined in this work, eqn (21) can be recast
as

o o
0.0.1)= 575 S Vduf +3 2 [rotors S0)+ee] ),
N#=J

(22)

where c.c. stands for the respective conjugate complex. Eqn (22)
contains the square of the J-dependent scattering amplitude,|

Flro(8)]?, plus a halved summation of J,,., terms over all the
total angular momenta J; # J, which are the coherent terms.
The factor 1/2 can be readily explained. A half of the summation
corresponds to a given J. The other half will appear in the Q.(6,]')
expression of a previous or subsequent value, J/ # J, such that
summation over J will provide the DCS. Otherwise we would be
counting twice the cross terms.

In the absence of coherences, that is, in the random phase
approximation limit, the only surviving term would be that
depending on J only. The remaining terms account for the
possible interference that most of the time can be expected to be
only important between partial waves in a restricted range of / in
[J — AJ,J + AJ].*>* However, as will be shown below, interference
can also take place between partial waves that cover the full
range of angular momentum leading to scattering.

The QM J-6 correlation function (or QM GDF) shares some
important properties in common with its classical counterpart,
a.(6,)). As in the classical case, summing eqn (21) over J leads to
the DCS given by eqn (20) multiplied by sin 6, ¢,(6)sin 6. Simi-
larly, integration over the scattering angle and the azimuthal
angle

dHQr(H J) = (23)

T 2J+1
2T o [Shal = (),
Q0
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gives the J-partial cross section, eqn (14), as in the classical
treatment.

In spite of the similarities between the classical o.(6,]) (eqn
(10) or (12)) and the quantum Q.(f)) (eqn (21)), there are
important differences between them. The latter is not a true
joint probability distribution (and, hence, a GDF in the classical
sense) since it includes coherences between different values of J.
Moreover, it can take negative values whenever there is
destructive interference between pairs of j values, although
when summed over J up to Jiax the GDF is always positive.
Notwithstanding the differences, as will be shown in Section 3,
when the interference is not significant, classical and quantum
correlation functions bear a close resemblance.

It is sometimes useful to calculate the angular distributions
for a subset of partial waves. These angular distributions,
labeled as DCS([J;,Jx]), can be calculated by restricting the sum
over J in eqn (20) to a given range of J, J € [JiJi],

Jie Jk

SEDIPIPWACY

QQ hi=Ji Jr=

(05 [Ji, Ji]) = (24)

The partially summed QM DCS, DCS([J:Jix]), includes all
coherences between partial waves within the [J;,J;] range but
none outside this range. In addition, like the DCS itself,
DCSs([J:Jx]) are not additive, especially if there is interference
between different groups of Js. This is again in contrast to the
corresponding classical partial cross section summed over the
[JiJx] interval.

It is also possible to define a deflection function by
restricting the sum over a given [J;,/;] range of J, Q.(6;[J:Jx]), as

Jk

ZQrw

0:(6; 141, Ji]) with J; < J; (25)

In spite of the similarities between the partial DCS([/;,/x]) and
Q:(6;[J:Jx]) (and the fact that in the limit of the complete
convergence interval, J; = 0 and J; = Jimax, both functions are
identical), there are two main differences between them: (i) the
latter also includes coherences between partial waves
outside the [J;,J;] range so it may take negative values (if
destructive interference prevails for some scattering angles); (ii)
the Q(6;[J:Jx]) values for different intervals defined in eqn (25)
are additive as in the classical case. Hence, from the compar-
ison between the partially summed DCSs and partial QM
correlation function, it is straightforward to ascertain if inter-
ference phenomena arise and the partial waves that contribute
to them. It must be noted that in the classical case both func-
tions are the same.

2.3 Quantum deflection functions (QDFs)

The idea of a semiclassical deflection function was first devel-
oped by Ford and Wheeler in the context of elastic scattering
using the stationary phase approximation,® and later consoli-
dated by Bernstein.® The semiclassical approximation tech-
niques proved to be very useful to gain insight into the physical
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nature of scattering, making it possible to extract qualitative
inferences and easing the interpretation of the quantum
results.**3

The semiclassical deflection function, @(¢), is related to the

phase shift, n,, by
dn,
Oly) =2(—
() ( de )zﬁ

where ® = +6 for repulsive and attractive potentials, respec-
tively, and the derivative of 7, is evaluated at ¢y, the ¢-value of the
stationary phase. The phase shift can be written in terms of the
S matrix as

(26)

S, =& (27)

Hence,

o) = L jarg 5

d (28)

Eqn (26) also holds if the exact-QM phase shifts are defined,
leading to a quantum mechanical DF that can be applied for
elastic scattering processes even for soft edge potentials.*

In a series of articles, Connor and co-workers extended the
semiclassical treatment and developed a quantal version of the
deflection function applicable to the most general case of
inelastic and reactive scattering.'®' It is thus pertinent to
compare our proposed GDF with the QDF devised by Connor
and coworkers. In what follows, we will briefly summarize the
main equations of that method for our present purposes.*

For given initial and final rovibrational states the QDF,
denoted as Oy o, is defined as

OolJ) = d [arg SQ,Q(J)], (29)

dJ
where Sgo(f) represents the modified scattering matrix
elements that can be calculated directly from the scattering
matrix:

SQ/.Q(J) = eXP(mJ)Sf)'.Q (30)

It should be highlighted that arg Soo(f) does not denote the
principal value, but it is defined as a continuous function as
follows:

Im [S 9/9}

Re[Swe] T

arg S.Q’Q(J) = arctan

(31)

where 7 is a positive or negative integer number, whose value is
arbitrarily set to 0 for / = 0, and for J > 0 is selected such that
arg Soro(f) — arg Sgo(J — 1) < T is a continuous function.

The differences between the QDF and Q, need to be
emphasised. Whilst the latter is a sort of probability density
function in terms of both # and J, which appears as a 3D plot of
the scattering intensity as a function of both J and 6 containing
information about the scattering intensity and the presence of
constructive or destructive interference, the QDF represents
a one-dimensional relationship between the deflection angle (or
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the scattering angle) and the angular momentum J. Moreover,
as shown in the previous subsection, if Q,(6,/) is summed over J,
one gets the DCS, in contrast to the QDF. Another difference is
that whilst the QDF is defined for each pair of Q and Q' values,
the GDF defined in this work can include the average over the
reactant's and the summation over product's helicities as
shown in eqn (21), although it can also be calculated for specific
values of Q and ', as will be shown below. Apart from these
differences, one would expect a confluence with regard to the
relationship between the scattering angle and angular
momentum, at least if each partial wave can be mostly associ-
ated with one range of scattering angles.

3 Results and discussion

In this section we will examine three case studies to illustrate
the usefulness of the QM generalized deflection function. First
of all, we will study the inelastic collisions of Cl + H,, where the
QCT deflection function succeeded in explaining the quantum
results. Next, we will study the reactive D' + H, system,
a prototype of barrierless reactions, where we expect no corre-
lation between J and 6. Finally, we will apply the QM GDF to
reactive scattering between H and D, at high collision energies
where quantum interference governs the angular distributions
for certain combinations of final and initial states. In all cases,
the main goal will be to exploit the capabilities of the QM GDF
to reveal the existence of competing mechanisms and interfer-
ence between them.

3.1 Inelastic collisions between Cl and H,

The first example in which we will use the GDF proposed in this
work is the inelastic collisions between Cl and H,(v = 0, j = 0).
This system has been extensively studied both computationally
and experimentally.*¢-*°

Regarding inelastic collisions, some interesting features
emerged from previous studies.*** QM and QCT calculations
using the BW2 PES** showed that at relatively high collision
energies (E.on > 0.6 eV) and for small Aj values (Aj =" — j), the
inelastic probabilities, P,(J), exhibit two maxima separated by
a minimum in the QCT and QM results. This minimum was
identified as that corresponding to the glory impact parameter.
The analysis of the results showed that there are two mecha-
nisms responsible for the inelastic scattering, possibly associ-
ated with different regions of the PES and resulting in very
different stereodynamical behaviours.*>** Both dynamical
regimes depend primarily on the value of the total (here also
orbital) angular momentum: (i) for Js below the glory impact
parameter, collisions seem to take place following a sort of “tug-
of-war” mechanism,* which indicates the stretching of the H-H
bond;** and (ii) for J > 40 collisions can be assigned to rainbow
scattering in which the attractive part of the PES is sampled.**
For transitions involving higher Aj, which require more head-on
collisions, the contribution of high impact parameters wanes
rapidly, and the second maximum in the P,(J) leading to small
scattering angles disappears. The semi-quantitative agreement
between the classical and quantum P,(j) and DCSs seems to
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indicate that quantum effects associated with interference
between the two groups of partial waves are not expected to be
important.** Therefore, the Cl + H,(v = 0, j = 0) inelastic scat-
tering seems to be a good example of a collision system in which
the QCT and QCT GDFs would be similar.

Fig. 1 displays the QCT and the QM deflection functions for
thej=0 — j =2andj=0 — j =4 transitions (top and bottom
panels, respectively) at E.,;; = 0.73 eV. The left panels show the
QCT a(6yJ). The two different dynamical regimes can be easily
distinguished. For Aj = 2, the high-J mechanism is preeminent
and gives rise to scattering into § < 50°. The low-J mechanism
appears in the deflection function as a narrow band that
extends from § = 40° to § = 180° and comprises J values from
0 to 40. The negative slope, common to both regimes (although
with different values), is characteristic of direct collisions, and
follows the simple correlation of low (high) impact parameters
leading to high (small) scattering angles. For Aj = 4, the pre-
vailing mechanism is that corresponding to J < 40 values, and
the high-J mechanism appears as a small island in the -6 map,
centered at / = 50 and § = 30°.

The equivalent QM Q,(6,])'s, shown in the right panels of
Fig. 1, bear close similarities to their classical counterparts,
although with some noticeable differences. For Aj = 2, the high-
J mechanism, responsible for most of the scattering, extends to
larger values of J, it is broader, and it is flanked by a series of
stripes, some of negative value (green colour) associated with
destructive interference. The negative slope of the low-/
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Fig. 1 Comparison of the QCT deflection functions (left panels) and
the QM J-46 correlation or GDF (right panels) for the Cl + Ho(v =10, j =
0) = Cl+ Hy(V' =0, = 2, 4) inelastic collisions at E.o = 0.73 eV. Top
panels, Aj = 2; bottom panels, Aj = 4. The contour of the QCT J-6
correlation function has been added to the QM Q, to ease the
comparison. The green colour corresponds to negative values and
hence destructive interference (Q,(6,J) < 0). For comparison purposes,
the QDF is shown on top of the QM GDF for Aj = 2 using black dots.
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mechanism is also observed, although in this case both mech-
anisms merge at J ~ 45. There are also a series of negative
stripes parallel to the main band which cause a small decrease
of the DCS. It should be noticed that, for the sake of clarity in
the figure, the QM GDF has been smoothed given the discrete
character of J. The same procedure will be followed for all
remaining 3D plots of this article. For Aj = 4, the QM-DF also
extends to larger J values and the high-J mechanism covers
a broader j-0 region than in the QCT case. As in the classical
case, for this transition, the low-f mechanism bears away most
of the scattering.

The results of the QDF for Aj = 2 are also shown as a dotted
lines along with the present Q,(#,]). The points corresponding to
Q' = 0,1 and 2 are all included. As can be seen, the QDF follows
almost exactly the middle line (reproducing the two different
slopes) of the present QM GDF and is also in good agreement
with the corresponding QCT function. More detailed informa-
tion is shown in Fig. 2, where the Q,(6,/,2’) is plotted separately
for each of the three possible Q' values along with the corre-
sponding QDF. As can be seen, the agreement is excellent and
the QDF matches almost exactly the most probable dependence
of # with J found with the present Q,(6,/). It should be pointed
out, however, that the latter also carries information on the
intensity of scattering for each J- region, and about the pres-
ence of constructive and destructive interference. Indeed, the
information conveyed by the present Q,(,/,2") goes well beyond
that obtained by the QDF. As can be seen, most of the intensity
of the high-J mechanism corresponds to ' = 2, indicating that
the product’sj rotational angular momentum lies preferentially
along the recoil velocity, whilst that corresponding to low-/ is
more isotropic with some preference for Q' = 1.*

The partial DCS, eqn (24), and the QM Q.(6,A]) summed over
the indicated range of J, eqn (25), are shown in the left and right
panels of Fig. 3, respectively, for Aj = 2 and 4. The two J intervals
have been chosen to comprise partial waves corresponding to
low-J (J = 41 for Aj = 2 and J = 45 for Aj = 4) and high-J (J > 41
for Aj = 2 and J > 45 for Aj = 4). Therefore, the two magnitudes
are broken down in their contributions from the two intervals
for comparison purposes. It should be recalled that if the whole
range of J is included, both magnitudes become identical, cor-
responding to the converged (including all partial waves) DCS.
However, whilst the partial DCS only encompasses those
coherences within the chosen interval, the partially summed
QM GDF comprises all possible coherences internal and
external to that interval.

The first consideration to be held is the similarity of the
respective decompositions of the partial DCSs and the summed
QM GDFs Q,(6;4)), of the left and right panels. As a second
consideration, for Aj = 2, the incoherent sum of ¢(f;/ < 42) and
a(0y] > 42) reproduces fairly well the converged DCS (recall that
the partial DCSs are not additive), evincing that interference
between the two mechanisms is practically negligible. A similar
analysis was performed in ref. 42 leading to the same conclu-
sion. This is further confirmed by inspection of Q,(¢;A]), shown
in the right-top panel, which is almost identical to the partial
DCSs, except for a few differences in the forward region. For the
case of Aj = 4 the situation is much the same as that for Aj = 2.
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Fig.2 QM J-6 correlation function at E., = 0.73 eV forthe Cl+ Ho(v=0,j=0) - Cl+ H,(V' =0,/ =2, |Q'| = 0, 1, 2) inelastic collisions resolved

in Q' helicity states. The corresponding QDFs devised by Connor and c

The only main difference between partial DCSs and Q,(6;A/) can
be observed at forward scattering angles § = 10-30°. As can be
seen, there is a peak centred at # = 12° in the Q,(6y/ < 46) which
is absent in the respective o.(6,] < 46). This implies that there are
some, relatively unimportant, interference between the two
groups of partial waves. Returning to Fig. 1, it is possible to
associate this effect with the feature that appears with a ‘hook’
at the top corner of the right-bottom panel of that figure.

It must be pointed out that the above discussion does not
imply that for Aj = 2 there is no interference within one of those
groups of partial waves. By the inspection of the right-bottom
panel of Fig. 1, it is obvious that in the forward region and at
high J > 40 there is high constructive and destructive

oworkers are also shown using solid red lines.

interference that is the origin of the oscillations observed at ¢ <
30° in Fig. 3.

3.2 Reactions that go through a long-lived complex, D" + H,

A contrasting system is the D" + H, — HD + H' reaction on its
first 1'A’ adiabatic PES. As is well known, the PES is barrierless
and rather featureless, overwhelmingly dominated by a very
deep well of 4 eV from the asymptotes.*>*® Given its importance
in astrochemistry, it has been extensively studied both theo-
retically and experimentally (see, for example, ref. 47-57 and
references therein).

We will focus on the results at a sufficiently low energy, E.o;
=150 meV and HD(v' = 0, = 1) formation, where the statistical
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Fig.3 Comparison of the DCS partially summed over the indicated J interval, DCS([J;Ji]) (defined in egn (24)) (left panels) and the QM deflection
functions summed over the same J interval Q,(6;1J;J,]) (defined in egn (25)) (right panels) for the inelastic collisions between Cland H,(v =0, j = 0)

at Eco = 0.73 eV and Aj = 2 (top panels) and Aj = 4 (bottom panels).
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(ergodic) assumption seems to hold.”>”* Indeed, at this energy,
the D' + H, reaction proceeds through the formation of a long-
lived complex, and the shape of P(j) and the product state
distributions follow the trend predicted by statistical
methods.> Hence, this seems to be a good example to test the
reliability of the Q,(6,/) in statistical reactions. In Fig. 4 three
GDFs are shown: the classical function, the QM Q,(6,/) and the
quantum one under the assumption of the random phase
approximation. The latter implies that there are no correlations
between different Js, so that it only includes the |f4yo(6)|* terms
in eqn (22). In all three cases, as expected for a statistical
reaction, there is no clear correlation between J and 6: all Js
seem to contribute to every scattering angle. The only remark-
able feature in the classical -6 correlation function is the
largest probabilities found at high J, due to the fact that the P(J)
is flat until it decreases abruptly when reaching Ji,.x. The Q(6,/),
shown in the middle panel of Fig. 4, indicates the presence of
high destructive (green) and constructive (red/yellow) interfer-
ence that will give rise to multiple oscillations in the DCS over
the whole range of scattering angles. However, coherences even
if they occurred between partial waves with separated J values
are so numerous that their effect is smoothed out to some
extent. This is the basic assumption in the random phase
approximation,®*® which allows one to calculate coarse-grained
product's state distribution DCSs and other vector correlations®
by neglecting the coherences between different total angular
momenta. The right panel of Fig. 4 shows the random phase
approximated DF, where all the coherences have been neglected
by only keeping the diagonal terms. Apart from the discrete
character of J, the similarity with the QCT GDF is remarkable.
For this reaction, the QDF results in a highly oscillating func-
tion due to the superposition of nearside and farside
scattering.®

The partial and total DCSs, as well as the Q,(6,[/:,/Jx]) summed
over limited ranges of J, are shown in the top and middle
panels, respectively, of Fig. 5. The J dividing value between low-J
and high-J values has been chosen somewhat arbitrarily as
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Jmax/2, since no hint of change of mechanism seems to be
appreciable in either the QCT or the QM GDF. As expected from
the QM GDF, the DCSs with the full QM calculation exhibit
many oscillations in the whole range of scattering angles,
reflecting the high interference that is apparent in Fig. 4. The
partial DCSs and their respective Q,(6,A/) summed in [0,18] and
[19,35] are fairly similar with some interesting differences.
Specifically, the inspection of the partially summed Q.(6,A])
makes it possible to identify the dip in the converged DCS at
100-110° as a result of destructive interference between the
partial waves with AJ = 18 (negative value) and AJ > 18, infor-
mation that cannot be extracted from the partially summed
DCS, that only includes interference within each interval. This
destructive interference can be also seen in the QM GDF shown
in the middle panel of Fig. 4 as the green stripes (negative value)
at those angles.

The partial DCSs, which under the random phase approxi-
mation coincide with the Q,(6,4]), are shown in the bottom
panel of Fig. 5. There are still some oscillations that are basi-
cally the result of the summation of reduced rotation matrix
terms, [d’ho(0)]* (eqn (17)). The resulting random phase DCSs
are strictly symmetric, peaking at forward and backward angles
(recall that the represented DCSs have been multiplied by sin 6).
Although at first glance there seems to be a poor approximation
to the actual DCSs, it must be borne in mind that the observed
oscillations change rapidly with the collision energy and initial
states, and hence they would be barely discernible under
experimental conditions.

3.3 Direct reactions: H + D,

The third system we will be concerned with is the H + D, reac-
tion, possibly the most extensively studied reaction, and indeed
the benchmark system in reaction dynamics. Although from
many points of view it can be considered as the simplest reac-
tion, its dynamics is far richer than it could be expected;"****
indeed, when investigated in detail it still provides unexpected
results.”>*>** Very recently, the angular distributions of

D* +H,
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Fig. 4 Comparison of the QCT GDF and its QM analogue for the D* + H, reaction at E., = 0.15 eV. The rightmost panel depicts the QM GDF
corresponding to the random phase approximation. The results are for HD(V = 0,/ = 1).
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Fig.5 Comparison of the Q,(J,0) and the DCS for the D* + H, — HD(V
=0,/ =1) + H reaction at E.,; = 0.15 eV.

state resolved HD formed in collisions between H and D, at
E.o1 = 1.97 eV were measured using the photoloc technique.”
For HD(V' = 1, low j') states the angular distributions in the
backward hemisphere were dominated by a series of peaks and
dips whose origin was traced to interference between the two
mechanisms described in ref. 14 and 15. For both, higher v/
and/or j rovibrational states, one of the mechanisms disap-
pears and so does the interference pattern in the DCS. In
previous studies it was shown that the QCT GDF was crucial for
the right interpretation and assignment of the observed inter-
ference pattern.’®'® It can thus be expected that the QM Q.(6,)
will convey at least the same and presumably even more infor-
mation about the reaction mechanism. Therefore, the state
resolved H + D, reaction would be an excellent system to assess
the quantum analogue to the classical GDF as we can test its
performance under three different scenarios: (i) HD(Y' = 1,; =
0) formation, where the interference pattern is conspicuous and
dominates the shape of the DCS in the backward hemisphere;
(ii) higher j/, for instance HD(V' = 1, j = 5), where oscillations
start to disappear; (iii) higher v/, i.e., HD(V' = 3, = 0), where no
clear oscillations were observed in backward scattering. In what
follows, we will show the QM GDF, partial DCS and the Q(6,A))
summed over the appropriate ranges of j for these three
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different scenarios. All calculations were carried out on the
BKMP2 PES.**

Let us first turn our attention to those collisions leading to
HD(V' = 3, = 0) whose QCT and QM GDFs are depicted in
Fig. 6. The QCT 0.(6,]) shows the typical profile of a direct
reaction mechanism, similar to that observed for the inelastic
collisions between Cl and H,, that is, a band running diagonally
across the #-J map with low J giving rise to backward scattering
and high J correlating with forward scattering. In this case, the
mechanism covers the whole range of scattering angles with
one maximum in the forward and another in the backward
region. Moreover, there seems to be no other mechanism to
compete with it. Not surprisingly, QCT and QM GDFs are very
similar, showing the same structure moving from backwards to
forwards. However, although the QM results were somewhat
smoothed out for the sake of clarity, we can still observe a series
of constructive and destructive interference manifested as
stripes, especially in the forward scattering region. In addition,
the main band is flanked by two small green stripes (destructive
interference) that will give rise to oscillations in the DCS.

Fig. 7 depicts the partial DCS and the Q.(6,A]) for three
subsets of partial waves that, according to the j- correlation of
Fig. 6, can be associated with backward (J € [0,10]), sideways (J €
[11,21]) and forward (J > 22) scattering. There is a remarkable
similarity between the partial DCSs and the corresponding
Q(8,[J12]) for each of the three intervals, implying that there is
essentially no interference between the partial waves belonging
to the different subsets. Only at forward scattering angles there
is some appreciable interference between partial waves associ-
ated with J values pertaining to the [11,21] and J > 22 intervals.
There is one more aspect that deserves a comment. The maxima
and minima that can be observed in the DCS can be easily
inferred from the positive and negative values of the QM GDF.
In particular, the minima at 70°, 115° and 150° correspond to
the negative (green colour) contributions in the QM GDF. These
minima (and the precedent or subsequent maxima) cannot be
deduced from the classical GDF.

Let us now move to the collisions leading to HD(v' = 1, =
0). The QCT and QM GDFs are shown in the top panels of Fig. 8.
As discussed in previous work,” and can be seen by the
inspection of the QCT GDF, there are two main, distinct
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Fig.6 QCT and QM generalized DFs for the H + D, — HD(V = 3,/ = 0)
+ D reaction at £ = 1.97 eV. The contour of the classical generalized DF
has been added to the plot representing the QM Q,(6,J) to highlight the
similarities and differences. The open squares represent the QDF.
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Fig. 7 Comparison of the partial DCS (upper panel) and the QM
Q(0,Ad) summed over the same J contributions (bottom panel) for the
H+ D, —» HD(V =3,/ = 0) + D reaction at E. = 1.97 eV.

mechanisms that are likely to interact with each other giving
rise to the interference pattern observed experimentally. One of
them corresponds to the main band with a negative slope,
similar to that we have found for v/ = 3; the other mechanism,
confined in a small region of the /- map, between 110 and 160°
and low J values, accounts for most of the reactivity. Between
them, as a sort of bridge, there is still a third mechanism with
a positive slope that comprises low values of J and 6 > 160°.
Using the QCT GDF it could be predicted that interference will
take place,* since different paths with different Js are leading to
the same scattering angles. However, the QCT GDF cannot
resolve the interference pattern: the number of oscillations and
what would be their positions. In previous examples, we have
shown that the QM GDFs were akin to their QCT counterparts.
In this example, however, we will see that the quantum Q.(6,/)
provides additional and most valuable information.

The first observation is that the QM GDF shown in the top-
right panel of Fig. 8 is rather different to its classical counter-
part. Only with the help of the superimposed contour of the
classical o,(6,J) and leaving aside the destructive coherences, we
could see that they share the main gross features. Even then, the
QM GDF is broader, and the region corresponding to the
diagonal band almost merges with the mechanism confined
between 110 and 160° and J < 10. But the main source of
discrepancy lies in the presence of negative, destructive (green
colour) and positive, constructive (red colour) interference that
does not flank the main band - as in the case of HD(V = 3, =
0) scattering - but it is transversal to it, cutting the diagonal
band into several slices. Since Q,(6,)) is additive, it is easy to
realize that each of the slices corresponds to the various peaks
in the DCS, whilst the vertical green stripes correspond to
minima in the DCS. Therefore, just by looking at the QM GDF
we could discern (i) that there will be three peaks in the back-
ward hemisphere, (ii) which will be their positions, as well as

This journal is © The Royal Society of Chemistry 2018

View Article Online

Chemical Science

Total Angular Momentum (J)

Total Angular Momentum (J)

v'=1,j’=5
0 30 60 80 120 150
Scattering Angle (deg)

0

0
180 "0 30 60 90 120 150

Scattering Angle (deg)

Fig. 8 QCT (left) and QM (right) GDFs for the H + D, - HD(V =1,/ =
0, 5) + D reaction at E.o = 1.97 eV. The results forj/ = 0 and j/ = 5 are
shown in the top and bottom panels, respectively. The contours of the
classical GDFs are added to the plots representing the QM Q,(4,J) to
highlight the similarities and differences. For the HD(V' = 1, j/ = 0)
formation, the QDF is also represented as open squares.

those of the respective minima, and (iii) the partial waves that
contribute to each of the peaks.

Not surprisingly, the partial DCS and the QM GDFs summed
over a range of J values, Q,(6,4/), calculated for subsets of partial
waves and shown in Fig. 9 do not look alike. The DCS(J =< 8) can
be associated with the confined mechanism and, although it
carries most of the reactivity, it shows a broad, blunt shape with
no hint of the three finger-like peaks present in the total DCS in
the 100-180° range. In stark contrast, the Q,(6,0 = J = 8), that
accounts for all the coherences for which the J € [0,8] range
participates, looks similar to the overall DCS. The partial DCSs
calculated for J > 8 (J € [9,14] and J € [15,21]) are very small
throughout the whole range of scattering angles, whereas their
respective Q.(6,A]) is not that small. On top of that, at some
angles they are negative, a consequence of the negative contours
shown in Fig. 8.

The third scenario corresponds to collisions leading to HD(v'
=1, j = 5) whose QCT and QM GDFs are portrayed in the
bottom panels of Fig. 8. As can be seen, the structure that
appeared at low Js for HD(V' = 1, j' = 0) has almost merged into
the diagonal band and is considerably less confined. In addi-
tion, QCT and QM GDFs look now more alike. Yet, the main
band is cut by the signature of destructive interference (the
green slice at # ~ 115°) that can be expected to give rise to
a minimum in the backward DCS.

The comparison of the partial DCS and the Q,(6,A]) confirms
these findings and clarifies the role of interference. The choice
of J = 16 for the decomposition seems to be a sensible choice in
light of the deflection functions shown in Fig. 8. In contrast to
the results for HD(V' = 1, j/ = 0), the DCS(J = 16) is similar to

Chem. Sci., 2018, 9, 4837-4850 | 4847
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Fig.9 Comparison of the partial DCS (left panels) and Q,(6,AJ) (right panels) for the H + D, reaction at E.; = 1.97 eV. Top panels is for scattering
giving rise to HD(v' = 1, j/ = 0), whilst the bottom panel corresponds to v/ = 1, // = 5. Only the backward hemisphere is shown for clarity.

Q:(fJ = 16), although the latter is somewhat more structured.
However, the Q.0 = 17) displays some oscillations and
a negative contribution at § = 115° (as expected from the green
slice commented on above) which reveals coherences with the
low subset of partial waves. The effect of these partial waves is to
sharpen the shape of the DCS, defining more clearly the two
maxima and the intermediate minimum.

Finally, it is worthwhile to compare the results obtained
using the formalism devised in this work with the QDF. In Fig. 6
and 8, superimposed to the Q,(6,/), the respective QDFs for v =
3,/ =0andv' =1,j = 0 are represented as open squares. For v/
= 3 the agreement is fairly good, covering the regions occupied
by the present QM GDF. In particular, the oscillations observed
in extreme forward, which could be predicted by the Q,(6,/), can
be also foreseen using the QDF (different Js leading to the same
). In fact, using the QDF it can be concluded that they are
caused by interference between nearside and farside reactive
flux.®* For the v = 1 case, however, the sole analysis of the QDF
barely accounts for the confined, predominant mechanism. It
must be pointed out that even if we could observe the various
mechanisms in the QDF, it would not have been possible to
predict either the number of peaks and dips or their position
since, because of its construction, it only provides one single
value of the deflection angle per partial wave.

4 Conclusions

The analysis of concurrent reaction mechanisms that govern
a chemical reaction can be very challenging, especially in the
case of quantum scattering calculations where observables such
as the angular momentum and scattering angle are intrinsically
entangled. Furthermore, the knowledge of the DCS and the
reaction probability as a function of the angular momentum is
usually insufficient. One step towards a more thorough under-
standing of how reactive (or inelastic) collisions take place is to

4848 | Chem. Sci, 2018, 9, 4837-4850

calculate the classical j-§ joint probability distribution (or the
classical generalized deflection function, GDF) since different
reaction mechanisms often appear as discontinuities and/or
different trends that can be easily visualized in a j-f represen-
tation. Indeed, from its inspection one can disentangle reaction
mechanisms and predict the presence of interference. However,
we cannot always rely on classical mechanics, which limits the
use of the classical GDF. Therefore, a quantum equivalent of the
classical GDF is desirable. While in a classical scheme there is
no obstacle in calculating the J-0 joint probability distribution,
devising the same correlation in the QM framework appears
unsurmountable due to coherences between different values of
J; that is, in QM calculations the contribution of several angular
momenta to a given ¢ cannot be easily disentangled.

Throughout this article, we propose a conceptually simple
quantum GDF, analogous to the classical j-0 correlation func-
tion, which does account for the coherences between J partial
waves and whose interpretation is rather intuitive. Moreover,
the QM GDF presented here not only relates scattering angles to
angular momenta but also accounts for the scattering intensity.
As such, summing over the whole set of angular momenta for
convergence yields the DCS, and integrating over scattering
gives the reactive (or inelastic) partial cross section. The calcu-
lation of the QM GDF does not require any additional compu-
tational effort for the calculation of the DCS or J reaction
probability.

In this article we have exemplified the proposed QM GDF
with several case studies comprising inelastic collisions of Cl +
H,, the barrierless (and presumably statistical) D" + H, reaction,
and the direct H + D, reaction for different final states. Our
results show that classical and QM GDFs are essentially coin-
cident whenever quantum interference is not preeminent,
although the latter is capable of adding valuable details. When
quantum phenomena are present, the QM GDF arises as
a powerful tool and makes it possible to observe the

This journal is © The Royal Society of Chemistry 2018
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interference pattern at first sight and to disentangle the J partial
waves that contribute to constructive and destructive interfer-
ence. It also provides information on the number and position
of the peaks in the DCS, which something that cannot be
extracted from the classical GDF.

The methodology devised here is completely general and can
be used to obtain GDF functions for any reaction including
those involving more than three atoms. Moreover, due to its
quantum mechanical nature, it can be used to analyse reaction
mechanisms that do not have a classical analog or under
conditions where the classical deflection cannot be calculated,
such as at energies below the barrier or whenever either reso-
nances or diffraction phenomena are observed. In summary, we
deem the QM GDF as a valuable tool for the analysis of the
results obtained using quantum dynamics that can be easily
implemented by any researcher in reaction dynamics.
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