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The development of a rapid and chemoselective selenocystine—selenoester peptide ligation that operates
at nanomolar reactant concentrations has been developed by utilising PNA templation. Kinetic analysis of
the templated peptide ligation revealed that the selenocystine—selenoester reaction was 10 times faster
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Inspired by nature, oligonucleotide-templated reactions are
designed to promote a specific chemical transformation upon
adjacent hybridisation of reactants to a single template.™* A key
feature of templated chemistry is that bimolecular reactions,
that would otherwise be unfavourable at high dilution, are
promoted by enhanced effective molarity in a templated reac-
tion manifold. As such, templated chemistry has become an
enormously useful tool in the fundamental sciences, e.g. in
programmed organic synthesis,>® and in biomedicine and
device development, e.g. in nucleic acid sensing technolo-
gies.”"* Importantly, the use of an oligonucleotide template also
significantly improves the biocompatibility of the trans-
formation by kinetically favouring the designed reaction over
parasitic background reactions with functionalities present in
native biomolecules. Considering the fast hybridisation kinetics
of short oligonucleotide probes (k =~ 10° M~ s7'),"*%3 the
reaction that occurs once the reagents are aligned on the
template is rate limiting and proceeds with pseudo-first order
kinetics. Therefore, it is critical that this reaction proceeds with
fast kinetics to take full advantage of the templation.

Peptide ligation chemistry, in particular native chemical
ligation between peptide thioesters and N-terminal cysteine-
derived peptides, has revolutionised the synthesis of large
polypeptides and proteins. The rate limiting step of native
chemical ligation (and most other ligation techniques) is the
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bimolecular transthioesterification reaction between the side-
chain thiol functionality of the Cys residue and the thioester
fragment, and therefore proceeds at prohibitively slow reaction
rates at high dilution. This factor, coupled with competing
thioester hydrolysis, leads to poor overall reaction yields when
ligations are performed at low reactant concentrations.'*'*> To
overcome this limitation, Seitz and co-workers pioneered
nucleic acid-templated native chemical ligation reactions'®”
that have found utility in nucleic acid sensing and bioactive
compound synthesis.’*?* In a templated format, native chem-
ical ligation has been shown to proceed significantly faster than
the corresponding non-templated transformation (e.g. 70%
completion in 2 h templated vs. >48 h non-templated for
a specific example).’ In this work by Seitz and co-workers,
peptide nucleic acid (PNA) tags were employed to serve as the
oligonucleotide template. Two probes were designed and syn-
thesised, one bearing a thioester at the C-terminus of a short
PNA tag and the second complementary PNA sequence func-
tionalised with an N-terminal Cys residue. PNAs are a particu-
larly attractive oligonucleotide surrogate for use in templated
chemistry. This is due, in major part, to their chemical and
enzymatic stability, but also because the solid-phase chemistry
that is employed for their synthesis is highly reliable.®** PNAs
maintain the sequence specific hybridisation qualities of DNA
but offer enhanced binding affinity due to the replacement of
the anionic ribose-phosphate backbone of DNA with a charge-
free polyamide scaffold, thereby reducing electrostatic repul-
sion upon hybridisation. PNA therefore exhibits remarkable
stability when forming duplexes with complementary DNA/RNA
strands and enables the use of comparatively short PNA
segments as high-affinity tags.

We have an interest in the development of tools for the high-
sensitivity, sequence-specific detection of DNA/RNA targets in

This journal is © The Royal Society of Chemistry 2018
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Scheme 1 Schematic representation of oligonucleotide-templated
selenocystine—selenoester ligation reaction.

biological samples and, as such, we sought to develop a novel
PNA-templated reaction that could be applied in this context
(Scheme 1). To achieve this, we sought chemistry that proceeds
with faster reaction kinetics than native chemical ligation to
enable accelerated read-out of a detection assay, whilst being
operationally simple to perform. Towards this end, we turned to
the recently reported diselenide-selenoester ligation at seleno-
cystine* which we rationalised could be used for rapid PNA-
templated reactions at low concentrations but with faster
kinetics than native chemical ligation. Indeed, this trans-
formation has been shown to be chemoselective in the presence
of unprotected peptide fragments and proceeds remarkably
quickly in aqueous phosphate buffer (1-10 min) without the
addition of any exogenous additives. Based on the increased
rate of the bimolecular reaction, it was hypothesised that a PNA-
templated variant of the selenium-mediated reaction, with
enhanced effective molarity of the selenocystine and sele-
noester peptide fragments, would lead to faster reaction

View Article Online
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To test our hypothesis, we initially designed a model reaction
system comprising of a tetra nucleobase PNA bearing a C-
terminal phenyl selenoester moiety 1 and a complementary
tetra nucleobase PNA sequence attached to a tetrapeptide with
an N-terminal selenocystine [(Sec),] residue 2 (Scheme 2). Upon
hybridisation of the PNA tags, the resulting “hairpin” molecular
architecture would position the reactive functionalities in close
proximity to facilitate the ligation reaction, which we proposed
would occur rapidly irrespective of initial fragment concentra-
tion. To synthesise selenoester fragment 1, the PNA chain was
elongated on 2-chlorotrityl chloride resin using standard itera-
tive solid-phase synthesis procedures® to afford resin-bound
PNA 3 (see ESIt for details). Mild acidolytic cleavage from the
solid support was then effected via treatment with a 30 vol%
HFIP solution in dichloromethane to ensure that the side-chain
protecting groups remained intact. Selenoesterification of the
C-terminus was then performed in solution via treatment with
diphenyldiselenide (DPDS) and tributylphosphine. Following
global acidic cleavage and purification by reverse-phase HPLC,
PNA selenoester 1 was obtained. The complementary PNA
sequence was prepared on Rink amide resin using the same
PNA oligomerisation methodology and was extended with
a short 1-Ala-1-Ser--Ala tripeptide to afford resin-bound PNA 4.
The selenocystine [(Sec),] residue was finally incorporated at the
N-terminus, under standard peptide coupling conditions.
Following cleavage from the solid support and purification by
reverse-phase HPLC, PNA fragment 2 was afforded.

With complementary PNA reactants 1 and 2 in hand, we
could now investigate the templated ligation reaction. Stock
solutions (10 mM and 1 mM) of the functionalised PNAs were
prepared in anhydrous DMF (to avoid selenoester hydrolysis)
and stored at —80 °C.J Ligation experiments were performed by
simply adding equal volumes of the selenocystine and
complementary selenoester fragment stock solutions (1:1
stoichiometry with respect to the monomeric form of diselenide
2) to aqueous phosphate buffer at pH 7.0 to achieve the desired
concentration for the reaction. Initially, reactions were carried
out at 0.5 mM concentration of both fragments 1 and 2
(Scheme 3A). Gratifyingly, immediate LCMS analysis of the
reaction mixture showed complete conversion to the desired
“hairpin” ligation product. It should be noted that due to the
redox potential of selenocysteine it exists predominantly as the

kinetics than currently available templated ligation diselenide dimer, i.e. selenocystine, in solution. As such, the
technologies. major product of the ligation reaction is also the diselenide
o
solid-phase 1. 30 vol.% HFIP in DCM El =
synthesis 2. DPDS, Bu;P, DMF </N 1 J\T
3. 95:2.5:2.5 TFA/TIPS/H,O o
o-Q —O— wn{eleeleh, N o w{efeieh, L o NN
3 "o 1 9 N o
HzN/\/N\/U\OH
solid-phase = NH,
synthesis [e] OHH [e] 2+Se H o OHH 9 El O:(N‘j
HOAL, DIC, DMF -
w0 I LA e HoA. 0 Oy wh A Ty e v/
: o = 2 e o * o ° NH, 0})
4 2 o
OH
BocHN
8 HzN/\/N\AOH

Scheme 2 Synthesis of PNA-selenoester 1 and PNA-diselenide dimer 2.
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Scheme 3 Model PNA-templated selenocystine—selenoester ligation
reactions. (A) Ligation of complementary fragments 1 and 2. (B)
Unsuccessful reaction between peptide selenoester 6 and PNA dis-
elenide dimer 2 at 100 uM concentration. (C) Competitive ligation
between complementary selenoester 1, non-complementary sele-
noester 7 and diselenide dimer 2.

dimer. We were also able to show that selenocystine can be
chemoselectively converted to a native alanine residue via an in
situ deselenization protocol following the templated ligation.*
This was achieved via the addition of TCEP (50 equiv.) and DTT
(5 equiv.) to the crude reaction mixture once the ligation reac-
tion had reached completion to provide product 5 (Scheme 3A).

The model templated ligation reaction to generate the
hairpin shown in Scheme 3A was subsequently performed with
incremental increases in dilution. At 20 pM, the ligation
product could be detected immediately by LC-MS analysis with
complete consumption of 1 and 2, although at this concentra-
tion the signal was relatively weak in the chromatogram due to
the low concentrations of reactants (see ESIt). Nonetheless,
these dilution experiments indicate that the templated reaction
likely proceeds in a concentration-independent manner as
predicted. Given the difficulties for reproducible UV-based
detection and reaction monitoring by LC-MS at
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concentrations at or below 20 pM, all further model experi-
ments were conducted at a standard concentration of 100 uM.
In the original report of the untemplated selenocystine-
selenoester ligation methodology, the reaction did not proceed
at concentrations of 100 uM or less.”® Our preliminary results
show that this reaction proceeds rapidly in a templated format
at concentrations considerably lower than 100 uM, suggesting
that the adjacent hybridisation of the reactive partners is likely
the driving force for the success of the reaction (Scheme 3A). In
order to confirm this, we performed further control experi-
ments. Firstly, model peptide selenoester 6 (missing the PNA
tag) was synthesised and reacted with PNA diselenide dimer 2
(Scheme 3B). The reaction was monitored over 24 h, however, in
the absence of hybridisation, the ligation reaction did not
proceed at 100 pM concentration of reactants and only led to
selenoester hydrolysis over this time. As a further control
experiment, a non-complementary PNA selenoester 7 was syn-
thesised and allowed to react with diselenide dimer 2 in
competition with the complementary PNA selenoester 1
(Scheme 3C). Strikingly, the only ligation product observed in
this competition experiment was that bearing complementary
PNA sequences, confirming that the ligation reaction is facili-
tated by the hybridisation-driven increase in effective molarity
of the reactants. Additionally, a control experiment with non-
complementary probes 2 and 7 (in the absence of comple-
mentary PNA selenoester 1) under the same conditions did not
yield detectable ligation product. This result is consistent with
the control ligation reaction between peptide selenoester 6 and
PNA diselenide 2 and suggests that the discrimination observed
in the competition reaction is not simply the result of kinetic
selectivity. Taken together, these results rule out the occurrence
of bimolecular background reactions at this concentration.
Next, we sought to determine the apparent rate constant of
the pseudo-first order templated selenocystine-selenoester
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Fig.1 Rate of model PNA-templated ligation reactions. (A) Ligation of
diselenide dimer 2 and selenoester 8. (B) Rate comparison of sele-
nocystine—selenoester ligation and NCL (Cys 10 + thioester 9).
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ligation reaction and compare it to the homologous templated
NCL variant (Fig. 1). To this end, PNA selenoester 8 was syn-
thesised on-resin via an operationally simple side-chain
anchoring strategy recently reported by Hanna et al.’® Briefly,
Fmoc-Glu-OAll was first loaded to Rink amide resin via the
carboxylate side chain. Following elongation of the desired
peptide sequence, the C-terminal allyl protecting group was
removed followed by en bloc selenoesterification by treatment
with DPDS and BuzP. Acidolytic side chain deprotection and
cleavage from the resin followed by HPLC purification then
afforded the target peptide selenoester. Importantly, this solid-
phase methodology enabled the synthesis of PNA selenoester 8
and PNA thioester 9 (using a thioesterification step instead of
selenoesterification) from the same resin-bound PNA peptide
precursor (see ESIT for synthetic details). Cysteine-bearing PNA
10 was also produced in an analogous manner to the chalco-
genic diselenide dimer 2. In order to determine the half-life of
the selenium-mediated reaction, we initially attempted to
quench the ligation. Addition of a large excess of competing
cysteine, increasing the pH to hydrolyse the selenoester and
flash-freezing methods all proved ineffective at quenching the
selenium-mediated ligation. With the knowledge that the
untemplated selenocystine-selenoester ligation does not
proceed at a reactant concentration of 100 pM, we opted for an
alternative approach whereby we dehybridised the PNA tags by
rapidly reducing the pH to 1.0 through addition of neat TFA to
aliquots taken at precise time points. Gratifyingly, the kinetic
data obtained via this method proved to be highly reproducible
(Fig. 1). A rate constant of 5.3 x 10~ > s was calculated. The
reaction has a ¢, = 13 s, which offers approximately an order of
magnitude increase in reaction rate over the equivalent PNA-
templated NCL reaction (¢;,, = 166 s, Fig. 1).

Having demonstrated that templated selenium-mediated
ligation reactions proceed with fast kinetics at high dilution,
we were next interested in exploring the potential application of
the reaction in immediate read-out nucleic acid detection
assays. Nucleic acids represent an important class of target
biomolecules and current detection approaches, such as real-
time polymerase chain reaction, northern blotting and micro-
array analysis, offer highly accurate and sensitive detection.
However, most of these conventional methods are hindered by
complicated and costly procedures, time consuming target
amplification steps and/or diminishing sensitivity of
fluorophore-based detection methods. These limitations
severely restrict the practical applications of such methods to
specialised environments, such as in the field. There is there-
fore a need for the development of a rapid, widely-applicable
and operationally simple nucleic acid detection system. Paper-
based diagnostics have proven to be a robust format for
economical point-of-care diagnostics and field application
devices and was the device modality pursued here.>”*® Due to
the mass production of lateral-flow immunochromatographic
assays (LFA),* such as commercially available pregnancy test
strips, we opted for this format (Fig. 2). More specifically, we
designed a nucleic acid-templated reaction utilising two
synthetic PNA-peptide probes, one functionalised with a biotin
and a selenocystine residue, and one with fluorescein (FITC)

This journal is © The Royal Society of Chemistry 2018
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Fig.2 Illustrative representation of the principle of the lateral flow test
strips employed.
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and a selenoester moiety that could react under a selenium-
mediated ligation manifold upon hybridisation to the desired
analyte (Scheme 4). It was proposed that upon addition of the
two probes at a given concentration to a sample solution con-
taining the oligonucleotide sequence of interest, the probes
would adjacently hybridise to the target analyte and react to
form a covalent peptide linkage. Given that the product of the
ligation affords a junction between the probes that is the same
length as a single PNA residue, the reactions were designed to
leave a single unpaired nucleobase on the template between the
hybridisation sites (Scheme 4). Previous studies with NCL have
shown that this spacing improves sequence fidelity of tem-
plated reactions.*® Insertion of a lateral flow test strip into the
sample solution would then provide a rapid indication of the
presence/absence of the oligonucleotide target sequence
through the capture of biotin by streptavidin in the test zone
and by subsequent binding of the anti-FITC antibody coated
gold nanoparticles to the FITC moiety that are then visible to
the naked eye. When a single species containing both a FITC
and a biotin tag is present, the Au-nanoparticles are bound to
the test zone and indicate a positive result as a red line. Each
strip also contains an internal control band.

In an initial proof of concept study we chose to target the
miRNA-31 (microRNA) sequence which has been characterised
as a tumour suppressor, with altered expression levels of the
miRNA detected in a large variety of tumour types.** A pair of
labelled PNA probes were therefore designed and synthesised
possessing complementary sequences for hybridisation to the
analyte of interest. More specifically, two complementary liga-
tion partner probes were synthesised, a biotin-labelled PNA
diselenide-dimer probe 11 and a FITC-labelled PNA bearing
a selenoester functionality 12 (see Scheme 4 and ESI{ for
synthetic details). The PNA sequences of 11 and 12 were
designed to ensure reaction in the presence of the specific miR-
31 analyte. Having successfully prepared 11 and 12, the assay
was performed by simultaneous addition of the two probes as
stock solutions in DMF (100 nM final concentration) to the
sampling buffer solution containing the purified DNA version of
the miR-31 target analyte (10 nM). It should be noted that
aqueous buffer containing TCEP (5 uM) as a reductant was used
to ensure diselenide probe 11 was reduced and existed in the
monomeric form. The analyte-templated ligation reaction was
allowed to proceed for 2 min at room temperature before the LF
test strip was inserted into the solution. Once the solution had
migrated through the test strip beyond the control zone, the

Chem. Sci,, 2018, 9, 896-903 | 899
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miRNA detection assay conditions.

strip was removed and allowed to dry at room temperature.
Visual inspection of the strip revealed a positive result in the
test zone indicating that the hybridisation-driven ligation
reaction had proceeded and was capable of confirming the
presence of the miR-31 target analyte. A control experiment
performed under identical conditions with the carboxylic acid
of probe 12 rather than the selenoester failed to produce
a positive result indicating that a covalent adduct between the
probes must be formed, consistent with the fact that dissocia-
tion kinetics of the 9-mer PNAs and the analyte is fast relative to
the LF strip readout (see ESIt). Next, in order to determine the
detection limits of the LF strips, a concentration gradient of the
ligation product was set up by dilution of the product solution
from 100 nM down to 33 pM. We found that the streptavidin test
zone reached saturation of the biotin-labelled ligation product
at approximately 10 nM and the positive result was undetectable
to the naked eye at a concentration of 33 pM (Fig. 3A). Imaging
software, Image], was used to process digital photographs of the
test strips in order to gain a semi-quantitative reading of the
outcome and to enable presentation of the results in a graphical
format. With the standard product concentration gradient
established, we next determined the effect of varying the miR-31
template concentration (Fig. 3B). The assay was conducted at
a constant concentration of both probes (10 nM, 1 : 1 stoichi-
ometry with respect to monomeric 11) and a range of template
concentrations between 10 and 0.1 nM. After 2 min, the LF
strips were inserted and the sample solution migrated by
capillary flow through the strip. The resulting test strips were

900 | Chem. Sci,, 2018, 9, 896-903

imaged and processed in order to measure the intensity of the
test zone band for each strip. The results were then plotted on
the standard titration curve to estimate the concentration of the
ligation product (Fig. 3B). At analyte concentrations of 1 nM and
below, the estimated analyte concentrations were in excellent
agreement with the experimental values (see ESIf). These
results demonstrate that the assay provides a method of esti-
mating the concentration of the ligation product and hence the
concentration of the analyte within the sample solution in
a semi-quantitative manner.

In order to investigate the sequence fidelity of our synthetic
PNA probes, we used the miR-31 PNA probes to detect three
different template sequences (Fig. 3C). Following addition of
the probes to the different template-containing buffer solutions
at room temperature, 2 min later test strips were inserted. A
positive result was obtained for the ligation product in the
presence of the matched sequence template (A), a significantly
less intense signal was produced for the ligation product in the
presence of partially mismatched template (B) and with
completely mismatched template (C) a negative result was
returned, thus indicating the absence of the selenocystine-
selenoester ligation product. In an attempt to refine the
sequence specificity of the hybridisation-driven reaction we next
investigated the effect of raising the temperature (see ESIT).
Pleasingly, at 40 °C the resolution was improved dramatically
and clearly indicated the presence of ligation product with
template (A) compared to the reaction in the presence of
template (B) and (C) which did not produce a signal visible to

This journal is © The Royal Society of Chemistry 2018
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Fig. 3 Lateral flow miRNA detection assays using probes 11 and 12. (A)

Titration of ligation product showing upper and lower detection limits of

test strips. (B) Quantification tests: assays performed at a constant probe concentration (10 nM) and varied miR-31 analyte concentration (10-0.1
nM). Test strip images processed and plotted on standard titration curve. Table shows estimated ligation product concentrations determined
from standard titration curve and resulting conversion to ligation reaction yield (%). (C) Image of exemplar test strip results from sequence fidelity
test at 40 °C and processed image in graphical format. (D) Image of test strip results (n = 2) from detection of miR-31in lysates of HelLa, MCF-7
and HEK293-T cell lines and processed image in graphical format of averaged test zone intensities.

the naked eye (Fig. 3C). Remarkably, the reaction proceeded
equally well at 70 °C (see ESIT). The ability to perform nucleic
acid templated reactions at higher temperature may be impor-
tant in certain settings to disrupt secondary structure or other
interactions that would shield the template.

Having demonstrated that the templated ligation-based LF
assays could be used to detect miRNA at low concentration with
sequence fidelity, we next sought to assess the viability of the
assay in a more complex environment. To this end, lysates of

This journal is © The Royal Society of Chemistry 2018

three different cell lines (HeLa, MCF-7, HEK293-T) with
differing reported levels of miRNA expression were cultured.
The miR-31 detection assay was performed in HeLa cell lysate,
a cervical cancer cell line which overexpresses miR-31,** by
addition of the appropriately labelled synthetic probes to a final
concentration of 10 nM. Upon insertion of the LF test strip,
visual inspection of the results indicated a positive reading for
the presence of miR-31 in HeLa lysate (Fig. 3D), consistent with
the result obtained for the in vitro experiments described in

Chem. Sci,, 2018, 9, 896-903 | 901
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Fig. 3A and B. The same experiment was next performed using
MCF-7 and HEK293-T lysates which do not overexpress miR-31.
Both experiments yielded negative results upon visual inspec-
tion of the test zone (Fig. 3D), suggesting that the LFA could be
used to detect threshold concentrations of specific miRNA
sequences. Finally, to highlight the versatility of the technology
for miRNA detection we synthesised new probes bearing
appropriate PNA sequences for miR-21 hybridisation and
detection. It has been previously reported that miR-21 is over-
expressed in MCF-7 cells.*® The LF assay was carried out on
the lysates of the same three cell lines (HeLa, MCF-7 and
HEK293T) and importantly showed a higher concentration of
the miR-21 analyte in the lysate of the MCF-7 cell line compared
to both HeLa and HEK293T lysates (see ESIt). These results are
in agreement with prior qPCR quantification of the miRNA
targets.*

Conclusions

In summary, we have developed a rapid and chemoselective
PNA-templated selenocystine-selenoester peptide ligation
reaction. We have shown that under highly dilute conditions,
the reaction does not proceed in the absence of the PNA
template and is therefore facilitated by the sequence-specific
hybridisation of the PNA tags. The pseudo-first order rate
constant of the ligation reaction was calculated to be 5.3 x 10>
s~ which, to our knowledge, represents the fastest peptide
ligation method reported to date.** We also demonstrate that
selenocystine can be converted to a native alanine residue
following the templated reactions, which is an important asset
for the application of this reaction in templated synthesis of
peptide libraries or hairpin loops.***” This novel templated
ligation technology was showcased through the rapid detection
of specific miRNA analytes using an operationally simple paper-
based lateral flow assay. Importantly, the assays were also
effective for rapid miRNA detection in crude lysates demon-
strating that the technology operates within a complex biolog-
ical and analytical environment. The assay described here is the
first enzyme-free method to detect nucleic acids in such
a format and, given the considerable interest in fast and inex-
pensive analytical methods based on paper microfluidics e.g.
pregnancy test strips, the technology platform described may
find use in simple and rapid detection assays for a range of
oligonucleotide analytes.
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