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In order to better understand the structure—activity relationship of mangostin, a series of xanthone
derivatives based on a-mangostin were designed and synthesized. All the compounds were evaluated for
their cytotoxicity against a panel of five human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7 and
SW480) using MTT assays. Most of them showed cytotoxicity and most of all, compounds la and 2h
showed the highest cytotoxic potency by HL-60 cancer cell lines with ICsq values of 5.96 uM and 6.90

uM respectively; compound 3e showed the highest cytotoxic potency against SMMC-7221 cancer cell
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Accepted 26th November 2018 line with ICsq values of 3.98 uM; compounds 2e and 2m showed lower cytotoxicity but higher selectivity

than a-mangostin against HL-60 and SMMC-7221 cancer cell lines respectively. Structure-—activity

DOI 10.1035/c8ra08409b relationship analysis indicates that the maintenance of the isopentene group at C-8 is essential for the

rsc.li/rsc-advances cytotoxic activity.

1. Introduction

a-Mangostin (1) (Fig. 1) is a kind of bioactive xanthone
derivative, which can be isolated from the pericarps of the
mangosteen fruit (Garcinia mangostana L.)."”* This compound
has shown increasing promise due to an abundance of
therapeutic functions, including anti-tumor,®> anti-oxidant,*
anti-inflammatory,>® anti-bacterial,”** and inhibition of fatty
acid synthase,"”'*> neuraminidase,”® a-glycosidase and
cholinesterase.'® The broad spectrum of mangostin against
cancer cell lines has attracted considerable awareness;
pharmacological’®**® and medicinal chemistry*® research of
a-mangostin has been widely performed. Pharmacological
studies have revealed that mangostin possesses potent anti-
tumor activity both in vitro and in vivo. a-Mangostin has been
found in the past few decades to exhibit anticancer proper-
ties on various cancer models in vivo. a-Mangostin can also
be used in combination with other chemotherapeutic agents
to increase therapeutic efficacy or reduce side effects.”*™>
Despite its promising therapeutic values, there are no
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clinically approved drugs based on a-mangostin because of
its high hydrophobicity, low selectivity** and low
bioavailability.>*2¢

To overcome these drawbacks, related a-mangostin deriva-
tives have been synthesized through various modifications of
the phenolic hydroxyl groups (C-1, C-3 and C-6 positions)'**”
and substitution reactions (C-4 and C-5 positions).>** Chemical
isolation of oxidative cyclized isopentene groups (C-2 and C-8
positions) has been reported,* and however, the modifica-
tions of the isopentene groups are limited. Thus, chemical
modifications of the isopentene groups of mangostin were done
herein to get more derivatives.

In this manuscript, a series of o-mangostin derivatives were
synthesized and then all compounds were evaluated for cyto-
toxic activities against five human cancer cell lines, including
HL-60 (leukemia), SMMC-7721 (hepatoma cells), A-549 (lung
cancer), MCF-7 (breast cancer) and SW480 (colon cancer). To
study the selectivity of tumor cells and normal cells, their
growth inhibitory effect was evaluated against human normal
pulmonary epithelial cells (BEAS-2B).

Fig.1 The structure of a-mangostin.
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2. Results and discussion
2.1 Chemical synthesis

The synthesized compounds (1a-1l, 2a-2u, 3a-3e) can be
divided into three groups according to the variety of functional
groups: the isopentene groups (C-2 and C-8 positions), the
phenolic hydroxyl groups (C-1, C-3 and C-6 positions) and the
vacant sites of benzene ring (C-4 and C-5 positions).

2.1.1 The modification of phenolic hydroxyl groups (C-1, C-
3 and C-6 positions). There are three free phenolic hydroxyl
groups (C-1, C-3 and C-6 positions) in a-mangostin, which are
suitable for chemical modifications. It is noteworthy that the
hydroxyl group at the C-1 position is less reactive because an
intermolecular hydrogen bond may form between the hydroxyl
group (C-1) and the carbonyl group (C-8), thus harsher condi-
tions are required for C-1 alkylation. Therefore we could control
the condition of O-alkylation reaction so that it occurred only at
C-3 and C-6 positions by using mild reaction conditions.

Treatment of a-mangostin with BrBn in the presence of
K,COjs/acetone gave compound 1a; acetylation of a-mangostin
with Ac,O in the addition of DMAP furnished a mixture of
compounds 1b and 1c, which were separated by silica gel
chromatography; the methylation compounds 1d and 1e were
prepared by reaction of a-mangostin with (CH;),SO, in the
presence of K,COj, followed again by chromatographic sepa-
ration; alkylation of a-mangostin to the desired compounds 1f
and 1g was accomplished by reactions with BrCH,CHCH, and
K,COj; in acetone at 65 °C, followed by partial catalytic hydro-
genation to afford 78% and 75% yields respectively. For the
prenylation compound 1h, a-mangostin was reacted with
BrCH,CHC(CH3), at 65 °C for 12 h resulting in yields of 15%.*"

To speak of, we also designed a series of o-mangostin
derivatives by attaching different lengths (1-4) of carbon chains
carboxylic ester groups to the free hydroxyl groups (at C-1, C-3
and C-6 positions) according to the references.* Therefore
compounds 1i-11 were synthesized in good yields (25-60%) by

1 Ry=R,=Rz=H
1aR;=H,R;=R3=Bn
1b Ry =H, Ry=Ry=Ac
1cR1=Ry;=R3=Ac

1d Ry =H, Ry =Ry = CHy
1e Ry =R, =Ry =CH

3
1f Ry = H, Ry = Ry = CH,CH=CH,
1g Ry = H, Ry = Ry = CH,CH,CHj
1h Ry = H, Ry = Ry = CH,CHC(CH3),
1i Ry = H, Ry = Ry = CH,CO,CH,
1j Ry = H, Ry = Ry = CH,CO,CH,CH;
1k Ry = H, Ry = R = CH,CH;CH,CO,CH3
11 Ry = H, Ry = Ry = CH,CH,CH,CO,CH,CH;

Scheme 1 Reagents and conditions: BrBn, K,COs, acetone, reflux,
80% for 1a; Ac,O, DMAP, DCM, cool temperature to room tempera-
ture, 80% for 1b and 1c; (CH3),SO4, K,COs3, acetone, reflux, 80% for 1d
and le; BrCH,CHCH,, K,COs, acetone, reflux, 78% for 1f; Pd/C, H,,
MeOH, rt, 75% for 1g; BrCH,CHC(CH=),, K,COs, acetone, reflux, 15%
for 1h; BrCH,CO,CHs, NaH, acetone, reflux, 60% for 1i; BrCH,CO,-
CH,CHs, NaH, acetone, reflux, 60% for 1j; BrCH,CH,CH,CO,CHs,
NaH, acetone, reflux, 25% for 1k; BrCH,CH,CH,CO,CH,CHz, NaH,
acetone, reflux, 25% for 1l.
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Scheme 2
rt, 12-78%.

Reagents and conditions: OsO4, NMO, acetone-H,O (1 : 1),

the reaction with various bromo-carboxylic acid esters and NaH
(Scheme 1). Unfortunately, they showed complete absence of
cytotoxicity.

In general, the alkylation of phenolic hydroxyl groups of
mangostin can mainly cause the loss of cytotoxicity, so we
focused on the structural modifications of isopentyl groups of
mangostin.

2.1.2 The modification of isopentene group (C-2 and C-8
positions). Compounds 2a-2u were designed to test whether
the modification of isopentene groups could enhance the
cytotoxicity activity and improve their selectivity between
normal and tumour cells. The synthetic methodologies used to
synthesize the derivatives 2a-2u are outlined in Schemes 2-7.

Firstly, a-mangostin derivatives based on the oxidation of
isopentene group (at C-2 and C-8 positions) were synthesized. a-
Mangostin was treated with OsO, and NMO in mixed solvent
(acetone : H,O = 1:1) to afford compounds 2a-2¢, using
a similar method as reported in the literature,*® with yields of
10%, 12% and 78% respectively. These products containing
functional groups of O-diol act as key intermediates for the
further synthesis of mangostin derivatives.

Compounds 2a and 2b have many identical partial structure
similarities: one O-diol hydroxyl group and one isopentene
group; the structural differences were substitution positions at
C-2 or C-8 positions. As shown in Scheme 3, the isopentene
group of compounds 2a and 2b was reduced to isopentyl group
under H,, Pd/C to afford compounds 2d and 2e in high yields
from 78% to 98%. Compounds 2r and 2t were separately

HO O OH HO O OH
_o z _O
— O
HO (&) OH HO' €] OH
2b 2e

Scheme 3 Reagents and conditions: H,, Pd/C, MeOH, rt, 78—-98%.

This journal is © The Royal Society of Chemistry 2018
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Scheme 4
60%.

Reagents and conditions: NalOy4, THF-H,O (2 : 1), rt, 40—

Scheme 5 Reagents and conditions: NaH, CHzl, DMF, rt, 60%.

prepared from a-mangostin (1) and y-mangostin (2s) under the
same conditions as for preparation of compounds 2d and 2e
(Scheme 7). Compound 2d was prepared in 80% from 2a by
catalytic hydrogenation, which served as starting material for
the synthesis of oxidation product analogous. As shown in
Scheme 4, compounds 2a, 2¢ and 2d, having the vicinal diol
groups, were oxidized by NalO, in mixed solvent (THF : H,O =
2 : 1) to afford compounds 2f, 2g and 2h with good yields (40-
60%) according to the relative reference.**

With compounds 2a and 2d in hands, in order to increase
their lipotropic properties, different contents of various alkyl-
ation products were obtained (Scheme 5). Methylation of
compounds 2a and 2d with CH;I-NaH yielded the total meth-
ylation products 2i and 2j.

In order to discuss the structure-activity relationship (SAR)
more entirely, then we turned to synthesize the cyclization
series of xanthone derivatives 2k-2p (Scheme 6) according to
the relevant references.** Initially, the cyclization of a-man-
gostin with DDQ afforded compound 2k with a yield of 40%; o-
mangostin was oxidized with m-CPBA in the presence of
NaHCO; to yield compounds 21 and 2m followed again by
chromatographic separation in 4% to 49% yields; compound 2n
was obtained through an addition reaction in which a-man-
gostin was reacted with HCOOH with yield of 25%; the treat-
ment of a-mangostin with p-TsOH produced compounds 20, 2p
and 2q, which were separated by silica gel chromatography with
a relatively low yield of 12-23%; compound 2u was prepared by
the cyclization of 2,4-dihydroxybenzoic acid and phloroglucin
under the condition of Eaton's reagents at 60 °C.

This journal is © The Royal Society of Chemistry 2018
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2.1.3 The substitution reaction at C-4 and C-5 (C-4 and C-5
positions). In addition to a scaffold leading to diverse func-
tionalities, the biology effects of halogens is worth studying.
Considering the vacant sites of C-4 and C-5 positions of man-
gostin, the chloride and bromide substitution compounds 3a-
3e were generated accompanied by a small amount of N-chlor-
osuccinimide (NCS) and N-bromobutanimide (NBS) respec-
tively. The halogenated o-mangostin derivatives
synthesized as shown in Scheme 7.

In conclusion, we had synthesized three series of mangostin
derivatives. All reactions were described in the experimental
section. All synthesized target compounds were purified by
column chromatography (silica gel, 200-300 mesh, petroleum
ether/ethyl acetate, 1:1 — 20:1) and their structures were
elucidated by "H NMR, "*C NMR, electrospray ionization mass
spectrometry (ESI-MS) and high-resolution mass spectrometry
(HR-ESIMS).

were

2.2 Evaluation of biological activity

The cytotoxicity of these derivatives was evaluated in vitro
against five human cancer cell lines (HL-60, SMMC-7721, A-549,
MCF-7 and SW480). Cisplatin (DDP) and Adriamycin (ADM)
were taken as control drugs and their ICs, data were present in
Tables 1, 2 and 3. The inhibitory of the tested compounds on
cell viability was measured by the MTT colorimetric methods. A
few of them showed higher potency than the parent compound
and most of them displayed moderate cytotoxicity against all
five cancer cell lines. In order to test the cytotoxicity of these
derivatives with promising anticancer activity on normal cells,
their growth inhibitory effect was evaluated against human
normal pulmonary epithelial cells (BEAS-2B).

Overall, these synthesized compounds show a broad range of
growth inhibitory effect against all five cancer cell lines tested.
In general, the HL-60 cell line was most sensitive to these
compounds. Noteworthy, compound 2h possesses remarkable
anti-proliferation activity against all the tested cancer cell lines.
Compound 2e, which solely possesses notable anti-proliferation
activity against HL-60 cancer cells (IC5, = 18.65 + 0.23 uM) is
non-cytotoxic to BEAS-2B cell line. Moreover,
compounds (2a, 2f, 2k, 2n and 2r) with pretty anti-proliferation
activity against all the tested cancer cell lines are observed to be
less toxic to BEAS-2B cells compared with o-mangostin. The
results suggest that these compounds are more sensitive to
certain tested cancer cells than normal cells in vitro and hence
possess good selectivity.

These data have allowed us to carry out a structure and
activity relationship (SAR) study on the influence of the modi-
fications of the isopentene group and halogen atoms in the
cholinesterase inhibitory activities. The main conclusions can
be summarized as follows:

(1) With respect to the SAR, the effects of the substitution
reactions at phenolic hydroxyl groups were examined. Di-
substitution at both C-3 and C-6 hydroxyl groups (1a-1I) cau-
ses totally decrease in the cytotoxicity of mangostin against the
five tested cancer cell lines; while the acetylation form of
mangostin (1b and 1c¢) can remain the cytotoxic activity,

several

RSC Adv., 2018, 8, 41377-41388 | 41379


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra08409b

Open Access Article. Published on 12 December 2018. Downloaded on 11/17/2025 5:55:21 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances
OH |
O OH
OO
HO (0] (0]
20

OH + |

s

O OH

/O -— —— +
S, W T
HO' O OH 1
OH 2p

+

O O
Nees
HO O OH
2q

O OH
Bo8se
HO O O

2k

View Article Online

Paper

Scheme 6 Reagents and conditions: (a) DDQ, toluene, reflux, 41%; (b) m-CPBA, NaHCOs3, CH,Cl,, rt, 4-49%; (c) HCOOH, acetone, rt, 25%; (d) p-

TsOH, toluene—-CH,Cl, (2 : 1), rt, 12-23%.
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Scheme 7 Reagents and conditions: (a) Hp, Pd/C, MeOH, rt, 95%; (b)
NCS/NBS, DCM or THF, rt, 12-60%; (c) Eaton's reagents, 60 °C, 60%.

Table 1 In vitro cytotoxic activity (ICso, pM) of mangostin derivatives

compound 1a possessed the most potent cytotoxicity against
HL-60 cancer cell line with ICs, value of 5.96 + 0.16 pM. In
summary, the numbers of phenolic hydroxyl groups have
certain effects on maintaining cytotoxicity.

(2) The oxidation of the isopentene group at C-8 causes
drastically decreases in the cytotoxicity of mangostin against all
the tested cancer cell lines. Compounds 2b, 2¢, 2g, 21 and 2m
displayed weak activity, all having ICs, > 40 uM, indicating that
the isopentene group at C-8 was necessary for the cytotoxicity
and the hydroxyl group at C-8 can cause totally loss of the
cytotoxicity. However, one interesting exception is observed:
compound 2e possesses notable anti-proliferation activity
against HL-60 cancer cells with ICs, value of 18.65 £+ 0.23 uM.

(3) Several structure features and their effects need to be
pointed out. Oxidation of the isopentene group at C-2
(compounds 2a, 2d, 2f, 2k, 2m and 2n) generally resulted in
slightly decreased activity or comparative activity with one
exception. Compound 2h exhibited greater activity against HL-
60 and SMMC-7221 cell lines with ICs, values of 6.90 + 0.55
uM and 6.92 + 0.55 puM respectively. These data indicate the
number and position of hydroxyl group at C-2 have limited
potency on the cytotoxicity and selectivity.

(4) By comparing compounds 1 and 2r, 2a and 2d, 2b and 2e,
2f and 2h, 2s and 2t, it is obvious to find that the reduction of

ICso + SD (uM)

Compounds HL-60 SMMC-7721 A-549 MCF-7 SW480 BEAS-2B

1 15.04 £ 0.33 10.30 £ 0.48 13.82 £ 0.61 10.81 £+ 1.12 14.45 £ 0.85 15.81 £ 1.02
la 5.96 + 0.16 11.64 £ 0.61 10.27 £ 0.42 12.95 £ 0.44 15.85 £ 0.46 NT

1b 11.92 £ 0.48 13.56 £ 0.32 11.60 £ 0.24 16.65 £+ 1.32 16.17 £ 0.13 NT

DDP 3.19 £0.18 18.03 £ 0.49 13.75 £ 0.74 28.42 £ 3.71 14.77 £ 2.15 >40

ADM 0.14 £ 0.00 0.90 £ 0.03 0.30 = 0.01 0.90 £ 0.02 0.11 £ 0.01 >40

41380 | RSC Adv., 2018, 8, 41377-41388
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Table 2 In vitro cytotoxic activity (ICso, tM) of mangostin derivatives

ICs0 & SD (uM)
Compounds HL-60 SMMC-7721 A-549 MCF-7 SW480 BEAS-2B
1 15.04 £ 0.33 10.30 + 0.48 13.82 £ 0.61 10.81 + 1.12 14.45 £ 0.85 15.81 + 1.02
2a 18.22 + 0.48 23.42 + 1.29 19.82 + 1.42 23.65 + 0.64 >40 18.31 + 0.51
2b >40 >40 >40 >40 >40 NT
2¢ >40 >40 >40 >40 >40 NT
2d 21.59 £ 2.41 26.87 £ 3.75 35.96 £+ 0.99 >40 >40 >40
2e 18.65 £ 0.23 >40 >40 >40 >40 >40
2f 14.96 £ 0.80 11.93 £ 0.28 18.03 £ 1.49 19.75 £ 0.26 18.24 £ 0.79 27.20 £ 2.42
2g >40 >40 >40 >40 >40 NT
2h 6.90 &+ 0.55 6.92 £+ 0.55 11.77 £ 0.13 17.97 £ 0.23 15.86 + 0.2 17.56 + 0.60
2i >40 >40 >40 >40 >40 NT
2j >40 >40 >40 >40 >40 NT
2k 13.72 £ 0.50 11.52 + 0.17 11.47 £ 0.33 16.80 £+ 1.04 17.35 £ 1.15 18.60 £ 0.70
21 >40 >40 >40 >40 >40 NT
2m >40 53.75 £ 0.26 >40 >40 >40 NT
2n 14.40 £ 0.05 26.31 £ 1.04 16.96 £ 0.77 24.62 £ 0.47 22.69 £ 2.35 29.34 £ 1.02
20 >40 >40 >40 >40 >40 NT
2p >40 >40 >40 >40 >40 NT
2q NT NT NT NT NT NT
2r 11.13 £ 0.15 15.68 + 0.34 14.93 £ 0.15 8.29 £ 0.59 14.46 £ 0.15 14.35 £ 0.41
2s 7.39 + 0.33 6.57 + 0.14 10.07 £ 0.59 5.33 £ 0.43 8.40 £+ 0.67 7.43 + 0.65
2t 13.72 £ 0.06 6.51 £+ 0.49 15.56 £ 0.17 12.32 + 0.12 11.59 £ 0.52 6.48 + 0.08
2u >40 >40 >40 >40 >40 NT
DDP 3.19 + 0.18 18.03 + 0.49 13.75 + 0.74 28.42 + 3.71 14.77 + 2.15 >40
ADM 0.14 4+ 0.00 0.90 + 0.03 0.30 £ 0.01 0.90 + 0.02 0.11 + 0.01 >40

the isopentene group to isopentyl group has no significant
effect on the decrease or increase of cytotoxicity.

(5) The totally methylation of compounds 2a and 2d cause
the disappearance of cytotoxicity of compound 2i and 2j.
However, the cytotoxicity of compounds 2¢ and 2g with 5-7
hydroxyl groups also completely disappeared. Compound 2s (-
mangostin) is more active than compound 1 (a¢-mangostin)
indicating the importance of the presence of hydroxyl group at
the C-7 position, whereby substituting it with methoxy group
reduced the cytotoxicity. To summarize, a certain number of
hydroxyl groups contribute to the maintenance of cytotoxic
activity. The number and location of hydroxyl functional groups
have different effects on cytotoxicity.

(6) A closer look at the data reveals that the effect of halo-
genation on the selective potency of these compounds is quite
subtle. Some of the halogenated products showed better

cytotoxicity, for example, compound 3e is up to three times
more cytotoxic than the parent compound with ICs, value of
3.98 £ 0.63 uM for SMMC-7721 cell lines.

3. Experimental
3.1 Materials and methods

All reagents were purchased from Sigma-Aldrich or Aladdin or
Innochem Co. Ltd. and were of commercial quality. They were
used as received without further purification. Solvents were
dried by standard methods prior to use. The other reagents were
of analytical grade. Air and moisture sensitive reactions were
performed under nitrogen atmosphere. All synthesized target
compounds were purified by column chromatography (silica
gel, petroleum ether/ethyl acetate, 1:1 ~ 20:1) and their
structures were elucidated by "H NMR, "*C NMR, electrospray

Table 3 In vitro cytotoxic activity (ICsq, pM) of mangostin derivatives

ICso £ SD (M)
Compounds HL-60 SMMC-7721 A-549 MCF-7 SW480 BEAS-2B
1 15.04 £ 0.33 10.30 + 0.48 13.82 £ 0.61 10.81 £ 1.12 14.45 £+ 0.85 15.81 £ 1.02
3a >40 34.67 £ 2.22 >40 >40 >40 >40
3b >40 24.11 £ 0.16 >40 22.18 £+ 0.20 >40 >40
3c 16.91 + 0.19 8.07 &+ 0.76 14.30 + 0.85 16.01 & 0.66 36.63 £+ 0.74 21.83 £ 0.14
3d 14.55 £ 0.40 10.76 + 1.02 16.18 £+ 0.13 21.92 £ 0.50 17.30 + 0.49 16.05 £ 0.47
3e 14.87 £ 0.33 3.98 + 0.63 12.02 + 0.19 19.66 + 0.62 21.29 £ 0.44 20.74 £+ 0.18
DDP 3.19 £ 0.18 18.03 + 0.49 13.75 £ 0.74 28.42 £+ 3.71 14.77 £ 2.15 >40
ADM 0.14 + 0.00 0.90 + 0.03 0.30 &+ 0.01 0.90 + 0.02 0.11 + 0.01 >40

This journal is © The Royal Society of Chemistry 2018

RSC Adv., 2018, 8, 41377-41388 | 41381


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra08409b

Open Access Article. Published on 12 December 2018. Downloaded on 11/17/2025 5:55:21 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

ionization mass spectrometry (ESI-MS) and high-resolution
mass spectrometry (HR-ESIMS). Mass spectra were performed
on an API QSTAR time-of-flight spectrometer (MDS Sciqaszex,
Concord, Ontario, Canada) and LCMS-IT-TOF (Shimadzu,
Kyoto, Japan) spectrometer. NMR spectra were recorded on
Bruker AM-400 and DRX-500 instruments with TMS as the
internal standard (Bruker, Bremerhaven, Germany). The
chemical shifts were given in 6 (ppm) with reference to the
solvent signal. "H NMR data were reported in the order of
chemical shift, multiplicity (s, singlet; d, doublet; t, triplet; m,
multiple resonances), number of protons, and coupling
constant (/) in hertz (Hz). Column chromatography was per-
formed on silica gel (200-300 and 300-400 mesh, Qingdao
Marine Chemical Inc., Qingdao, China) with the indicated
solvents. The fractions were monitored by TLC and the spots
were visualized by UV light and sprayed with 10% H,SO, in
EtOH, followed by heating.

3.2 Synthetic procedures and crystallography

3.2.1 General procedure for synthesis of compound 1a-1l.
Potassium carbonate and corresponding brominated
compounds were added to a solution of ¢-mangostin (41 mg, 0.1
mmol) in acetone. The reaction mixture was heated at reflux for
24 h. The reaction was cooled to room temperature and the
solvent was removed under reduced pressure. The residue was
diluted with ethyl acetate and then washed with saturated
NaHCO; (aq) and brine. The organic phase was dried over
anhydrous Na,SO, and concentrated in vacuo. The crude
product was purified by column chromatography on silica gel to
afford intermediated 1a to 1l.

3,6-Di-O-benzyl-a-mangostin (1a). Yield 80%, 'H NMR (CDCl,,
500 MHz) 6 13.51 (s, 1H, 1-OH), 7.48-7.34 (m, 10H, Ar-H), 6.75
(s, 1H, H-5), 6.34 (s, 1H, H-4), 5.28 (br t, 2H, J = 7.0 Hz, H-12, H-
17), 5.18, 5.15 (each s, each 2H, H-21, H-28), 4.15 (d, 2H, | =
6.5 Hz, H-16), 3.83 (s, 3H, 7-OCH3), 3.41 (d, 2H, J = 7.0 Hz, H-
11), 1.86-1.59 (s, each 3H, H-14, H-15, H-19, H-20); *C NMR
(CDCl,, 125 MHz) 6 182.0 (C-9), 162.4 (C-3), 159.9 (C-1), 157.0 (C-
6), 155.2 (C-10a), 155.0 (C-4a), 144.2 (C-7), 137.4 (C-8), 136.3,
135.7 (C-22, C-29), 131.8, 131.6 (C-13, C-18), 128.8, 128.6, 128.4,
128.1, 127.4, 127.2 (C-23, C-24, C-25, C-26, C-27, C-30, C-31, C-
32, C-33, C-34), 123.3, 122.4 (C-12, C-17), 112.3 (C-8a), 111.8
(C-2), 104.1 (C-9a), 99.4 (C-5), 89.8 (C-4), 70.7, 70.2 (C-21, C-28),
61.0 (OCH;), 26.2 (C-16), 26.0, 25.9 (C-15, C-20), 21.6 (C-11),
18.2, 17.8 (C-14, C-19); positive ESIMS m/z 591 [M + H]".

3,6-Di-O-acetyl-a-mangostin (1b). Yield 82%, "H NMR (CDCl,,
500 MHz) 6 13.42 (s, 1H, 1-OH), 7.13 (s, 1H, H-5), 6.64 (s, 1H, H-
4),5.17 (brt, 2H, J = 7.0 Hz, H-12, H-17), 4.13 (d, 2H, ] = 6.0 Hz,
H-16), 3.77 (s, 3H, 7-OCH3), 3.32 (d, 2H, J = 7.0 Hz, H-11), 2.39,
2.34 (each s, each 3H, COCH3;), 1.83, 1.78 (each s, each 3H, H-15,
H-20), 1.68 (s, 6H, H-14, H-19); °C NMR (CDCl;, 125 MHz)
6 182.9 (C-9), 168.5 (C-23), 168.1 (C-21), 161.0 (C-1), 154.9 (C-3),
154.1 (C-4a), 153.7 (C-10a), 149.4 (C-7), 146.7 (C-6), 139.2 (C-8),
132.4, 132.3 (C-13, C-18), 122.6, 121.3 (C-12, C-17), 116.9 (C-
8a), 116.2 (C-2), 110.6 (C-5), 107.1 (C-9a), 100.3 (C-4), 61.7
(OCHj,), 26.5 (C-16), 25.9, 25.7 (C-15, C-20), 22.3 (C-11), 21.0 (C-
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22), 20.9 (C-24), 18.2, 17.9 (C-14, C-19); positive ESIMS m/z 517
[M + Na]".

1,3,6-Tri-O-acetyl-a-mangostin (1c). Yield 80%, 'H NMR
(CDCl3, 500 MHz) 6 7.13 (s, 1H, H-5), 7.09 (s, 1H, H-4), 5.17 (br t,
H,J = 7.0 Hz, H-12), 5.03 (br t, H, J = 7.0 Hz, H-17), 4.06 (d, 2H,
H-16), 3.75 (s, 3H, 7-OCHj,), 3.27 (d, 2H, H-11), 2.46, 2.37, 2.33
(each s, each 3H, COCH3;), 1.82, 1.75, 1.67, 1.42 (each s, each 3H,
H-14, H-15, H-19, H-20); *C NMR (CDCl;, 125 MHz) 6 176.1 (C-
9), 169.3 (C-21), 168.2 (C-22), 168.1 (C-23), 154.5 (C-3), 153.2 (C-
1), 153.1 (C-10a), 148.8 (C-4a), 148.5 (C-7), 146.7 (C-6), 139.0 (C-
8), 132.5, 131.8 (C-13, C-18), 123.6, 122.9 (C-12, C-17), 120.9 (C-
8a), 118.9 (C-2), 113.6 (C-9a), 110.3 (C-5), 109.0 (C-4), 61.6
(OCHj,), 26.2 (C-16), 25.8, 25.6 (C-15, C-20), 23.5 (C-11), 21.2,
21.0, 20.9 (C-21, C-23, C-25), 18.2, 17.9 (C-14, C-19); positive
ESIMS m/z 537 [M + H]".

3,6-Di-O-methyl-a-mangostin (1d). Yield 80%, "H NMR (CDCl;,
500 MHz) ¢ 6.73 (s, 1H, H-5), 6.32 (s, 1H, H-4), 5.24 (br t, 2H, J =
7.3 Hz, H-12, H-17), 4.13 (d, 2H, J = 6.6 Hz, H-16), 3.95, 3.90
(each s, each 3H, 3-OCH3, 6-OCH3), 3.79 (s, 3H, 7-OCH3), 3.35 (d,
2H, J = 7.1 Hz, H-11), 1.82, 1.80 (each s, each 3H, H-14, H-19),
1.68 (s, 6H, H-15, H-20); "*C NMR (CDCl;, 125 MHz) 6 182.0
(C-9), 163.4 (C-3), 159.8 (C-1), 158.0 (C-10a), 155.4 (C-4a), 155.2
(C-7), 144.0 (C-6), 137.3 (C-8), 131.8, 131.7 (C-13, C-18), 123.2,
122.3 (C-12, C-17), 112.1 (C-8a), 111.5 (C-2), 104.0 (C-9a), 98.2 (C-
5), 88.7 (C-4), 61.0 (7-OCH3), 56.0, 55.8 (3-OCHj;, 6-OCH3), 26.2
(C-16), 25.9 (C-15, C-20), 21.4 (C-11), 18.2, 17.8 (C-14, C-19);
positive ESIMS m/z 439 [M + H]'.

1,3,6-Tri-O-methyl-a-mangostin (1e). Yield 80%, 'H NMR
(CDCl3, 500 MHZ) 6 6.74 (s, 1H, H-5), 6.61 (s, 1H, H-4), 5.35 (br t,
H,J = 6.5 Hz, H-12), 5.21 (br t, H, ] = 7.0 Hz, H-17), 4.17 (d, 2H, J
= 6.7 Hz, H-16), 3.98, 3.94, 3.89, 3.82 (each s, each 3H, 1-OCHj3,
3-OCHj;, 6-OCHj3, 7-OCH3), 3.42 (d, 2H, J = 7.0 Hz, H-11), 1.82,
1.80 (each s, each 3H, H-15, H-20), 1.68 (s, 6H, H-14, H-19); °C
NMR (CDCly, 125 MHz) 6 176.3 (C-9), 162.1 (C-3), 158.6 (C-1),
157.0 (C-10a), 156.6 (C-4a), 154.3 (C-6), 143.9 (C-7), 137.4 (C-8),
131.5, 131.3 (C-13, C-18), 123.8, 122.8 (C-12, C-17), 120.5 (C-2),
114.7 (C-9a), 110.9 (C-8a), 97.8 (C-5), 94.2 (C-4), 62.0 (1-OCH3),
60.9 (7-OCH3), 55.9, 55.9 (3-OCHj3;, 6-OCHj), 29.7 (C-16), 26.0,
25.9 (C-15, C-20), 22.4 (C-11), 18.2, 17.9 (C-14, C-19); positive
ESIMS m/z 453 [M + H]'.

3,6-Bis(allyloxy)-1-hydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-
y1)-9H-xanthen-9-one (1f). Yield 78%, "H NMR (CDCl;, 500 MHz)
4 13.49 (s, 1H, 1-OH), 6.69 (s, 1H, H-5), 6.27 (s, 1H, H-4), 6.08 (m,
2H, -CH=, H-22, H-25), 5.47, 5.34 (m, each 2H, =CH,, H-23, H-
26),5.25 (brt, 2H, ] = 6.0 Hz, H-12, H-17), 4.66, 4.60 (each d, each
2H, J = 5.0 Hz, -OCH,, H-21, H-24), 4.13 (d, 2H, J = 7.0 Hz, H-16),
3.81 (s, 3H, 7-OCHj,), 3.38 (d, 2H, J = 7.0 Hz, H-11), 1.85, 1.79
(each s, each 3H, H-15, H-20), 1.68 (s, 6H, H-14, H-19); *C NMR
(CDCl;, 125 MHz) 6 182.0 (C-9), 162.2 (C-3), 159.9 (C-1), 156.9 (C-
4a), 155.2 (C-10a), 155.0 (C-6), 144.1 (C-7), 137.4 (C-8), 132.5, 132.0
(C-22, C-25), 131.8, 131.6 (C-13, C-18), 123.3, 122.3 (C-12, C-17),
118.5, 111.7 (C-23, C-26), 112.1 (C-8a), 111.7 (C-2), 104.0 (C-9a),
99.2 (C-5), 89.6 (C-4), 69.4, 69.1 (C-21, C-24), 60.9 (7-OCHj), 26.2
(C-16), 26.0, 25.9 (C-15, C-20), 21.5 (C-11), 18.2, 17.9 (C-14, C-19);
positive ESIMS m/z 491 [M + H]".

1-Hydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-3,6-dipro-
poxy-9H-xanthen-9-one (1g). Yield 75%, '"H NMR (CDCl;, 500

This journal is © The Royal Society of Chemistry 2018


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra08409b

Open Access Article. Published on 12 December 2018. Downloaded on 11/17/2025 5:55:21 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

MHz) 6 13.50 (s, 1H, 1-OH), 6.69 (s, 1H, H-5), 6.27 (s, 1H, H-4),
5.25 (br t, 2H, J = 7.0 Hz, H-12, H-17), 4.13 (d, 2H, ] = 6.5 Hz, H-
16), 4.03, 3.98 (each t, each 2H, J = 6.5 Hz, H-21, H-24), 3.81 (s,
3H, 7-OCH3), 3.36 (d, 2H, J = 7.0 Hz, H-11), 1.93-1.06 (m, 10H,
-CH,, -CH3); **C NMR (CDCl;, 125 MHz) 6 182.0 (C-9), 162.8 (C-
3), 159.8 (C-1), 157.5 (C-4a), 155.3 (C-10a), 155.1 (C-6), 144.0 (C-
7), 137.1 (C-8), 131.7, 131.3 (C-13, C-18), 123.3, 122.5 (C-12, C-
17), 111.8 (C-2), 111.4 (C-8a), 103.8 (C-9a), 98.7 (C-5), 89.2 (C-
4), 70.3, 70.0 (C-21, C-24), 60.8 (7-OCHj,), 26.2 (C-16), 26.0,
25.9 (C-15, C-20), 22.5, 22.3 (C-22, C-25), 21.4 (C-11), 18.2, 17.8
(C-14, C-19), 10.7, 10.6 (C-23, C-26); positive ESIMS m/z 517 [M +
Na]".

3,6-Di-0-3,3-dimethylallyl-a-mangostin (1h). Yield 15%, 'H
NMR (DMSO-dg, 500 MHz) 6 13.50 (s, 1H, 1-OH), 7.03 (d, 1H, ] =
4.2 Hz, H-5), 6.55 (s, 1H, J = 4.3 Hz, H-4), 5.49, 5.46 (each t, each
1H,J = 6.6 Hz, H-22, H-27), 5.13 (br t, 2H, H-12, H-17), 4.71, 4.64
(each d, each 2H, J = 6.5 Hz, H-21, H-26), 3.99 (d, 2H, ] = 6.0 Hz,
H-16), 3.68 (s, 3H, 7-OCHj,), 3.19 (d, 2H, J = 7.0 Hz, H-11), 1.77,
1.75,1.75,1.72, 1.69, 1.60, 1.59 (s, each 3H, H-14, H-15, H-19, H-
20, H-24, H-25, H-29, H-30); *C NMR (DMSO-dg, 125 MHz)
6181.5 (C-9), 162.5 (C-3), 158.8 (C-1), 157.3 (C-4a), 154.8 (C-10a),
154.6 (C-6), 143.9 (C-7), 138.7, 138.2 (C-23, C-28), 135.7 (C-8),
130.7, 130.5 (C-13, C-18), 123.5 (C-12, C-17), 122.1 (C-22, C-27),
119.1 (C-8a), 118.8 (C-2), 102.8 (C-9a), 99.8 (C-5), 90.3 (C-4),
65.7, 65.4 (C-21, C-26), 60.3 (7-OCHj,), 25.6 (C-16), 25.5 (C-15,
C-20, C-25, C-30), 21.0 (C-11), 18.2, 18.1, 18.0, 17.6 (C-14, C-19,
C-24, C-29); positive ESIMS m/z 547 [M + H]".

Dimethyl-2,2'-((1-hydroxy-7-methoxy-2, 8-bis(3-methylbut-2-en-
1-y1)-9-ox0-9H-xanthene-3,6-diyl)bis(oxy))diacetate ~ (1i).  Yield
60%, 'H NMR (DMSO-dg, 500 MHz) 6 13.47 (s, 1H, 1-OH), 7.03
(s, 1H, H-5), 6.50 (s, 1H, H-4), 5.17 (m, 2H, H-12, H-17), 5.07,
4.98 (each s, each 2H, H-21, H-24), 4.01 (d, 2H, J = 6.3 Hz, H-16),
3.76, 3.73, 3.72 (each s, each 3H, 23-OCH;, 26-OCH;, 7-OCHj),
3.27(d, 2H,J = 7.1 Hz, H-11), 1.77, 1.72, 1.61, 1.60 (each s, each
3H, H-14, H-15, H-19, H-20); C NMR (DMSO-ds, 125 MHz)
6 181.6 (C-9), 168.6, 168.5 (C-22, C-25), 161.5 (C-3), 159.0 (C-1),
156.4 (C-4a), 154.5 (C-10a), 154.4 (C-6), 143.7 (C-7), 136.2 (C-8),
130.9, 130.7 (C-13, C-18), 123.3, 121.9 (C-12, C-17), 111.4 (C-
8a), 111.0 (C-2), 103.3 (C-9a), 99.9 (C-5), 90.2 (C-4), 65.2, 65.1
(C-21, C-24), 60.4 (7-OCH3;), 52.1, 52.0 (C-23, C-26), 25.6 (C-16),
25.6, 25.5 (C-15, C-20), 21.0 (C-11), 18.0, 17.7 (C-14, C-19);
negative ESIMS m/z 553 [M — H| .

Diethyl-2,2'-((1-hydroxy-7-methoxy-2, 8-bis(3-methylbut-2-en-1-
yl)-9-0x0-9H-xanthene-3,6-diyl)bis(oxy))diacetate (1j). Yield 60%,
"H NMR (DMSO-dg, 500 MHz) 6 13.49 (s, 1H, 1-OH), 7.04 (s, 1H,
H-5), 6.51 (s, 1H, H-4), 5.20, 5.15 (each t, each 1H, /= 7.0 Hz, H-
12, H-17), 5.06, 4.97 (each s, each 2H, H-21, H-25), 4.19 (m, 4H,
H-23, H-27), 4.02 (d, 2H, J = 7.0 Hz, H-16), 3.76 (s, 3H, 7-OCH3;),
3.28 (d, 2H,J = 7.0 Hz, H-11), 1.77, 1.72, 1.61, 1.60 (each s, each
3H, H-14, H-15, H-19, H-20), 1.22 (m, 6H, H-24, H-28); >*C NMR
(DMSO-dg, 125 MHz) 6 181.6 (C-9), 168.1, 168.0 (C-22, C-26),
161.5 (C-3), 159.0 (C-1), 156.5 (C-4a), 154.6 (C-10a), 154.5 (C-6),
143.8 (C-7), 136.2 (C-8), 130.9, 130.8 (C-13, C-18), 123.3, 121.9
(C-12, C-17), 111.4 (C-8a), 111.0 (C-2), 103.3 (C-9a), 99.9 (C-5),
90.3 (C-4), 65.3, 65.2 (C-21, C-25), 61.0, 60.9 (C-23, C-27), 60.4
(7-OCH3), 25.6 (C-16), 25.6, 25.5 (C-15, C-20), 21.0 (C-11), 18.0,
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17.7 (C-14, C-19), 14.1 (C-24, C-28); positive ESIMS m/z 605 [M +
Na]'.
Dimethyl-4,4'-((1-hydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-
1-yl)-9-0x0-9H-xanthene-3,6-diyl)bis(oxy))dibutanoate (1k). Yield
25%, 'H NMR (DMSO-dg, 500 MHz) § 13.44 (s, 1H, 1-OH), 6.87
(s, 1H, H-5), 6.38 (s, 1H, H-4), 5.10 (br t, 2H, J = 7.0 Hz, H-12, H-
17), 4.10, 4.05 (each t, each 2H, H-21, H-26), 3.93 (d, 2H, J =
6.5 Hz, H-16), 3.67 (s, 3H, 7-OCHj,), 3.61, 3.60 (each s, each 3H,
H-25, H-30), 3.14 (d, 2H, J = 7.0 Hz, H-11), 2.50 (m, 4H, H-23, H-
28), 2.02 (m, 4H, H-22, H-27), 1.74, 1.68, 1.60, 1.59 (each s, each
3H, H-14, H-15, H-19, H-20); *C NMR (DMSO-ds, 125 MHz)
6 181.3 (C-9), 172.9, 172.9 (C-24, C-29), 162.3 (C-3), 158.8 (C-1),
157.2 (C-4a), 154.7 (C-10a), 154.6 (C-6), 143.6 (C-7), 135.7 (C-8),
130.5 (C-13, C-18), 123.4, 122.3 (C-12, C-17), 110.7 (C-8a),
110.4 (C-2), 102.8 (C-9a), 99.3 (C-5), 89.7 (C-4), 67.8, 67.3 (C-21,
C-26), 60.3 (7-OCH,), 51.4 (C-25, C-30), 29.9, 29.8 (C-23, C-28),
25.5 (C-16), 25.4, 24.0, 23.9 (C-15, C-20, C-22, C-27), 20.9 (C-
11), 17.9, 17.5 (C-14, C-19); positive ESIMS m/z 633 [M + Na]".
Diethyl-4,4'-((1-hydroxy-7-methoxy-2, 8-bis(3-methylbut-2-en-1-
yl)-9-0x0-9H-xanthene-3,6-diyl)bis(oxy))dibutanoate  (11). Yield
25%, "H NMR (CDCl;, 500 MHz) 6 13.49 (s, 1H, 1-OH), 6.72 (s,
1H, H-5), 6.29 (s, 1H, H-4), 5.23 (br t, 2H, ] = 7.0 Hz, H-12, H-17),
4.15 (m, 8H, H-21, H-25, H-27, H-31), 4.09 (t, 2H, J = 6.0 Hz, H-
16), 3.79 (s, 3H, 7-OCH3), 3.35 (d, 2H, J = 7.1 Hz, H-11), 2.56 (dt,
4H, ] = 7.2, 12.5 Hz, H-23, H-29), 2.20 (m, 4H, H-22, H-28), 1.85,
1.79 (each s, each 3H, H-15, H-20), 1.68 (s, 6H, H-14, H-19), 1.27
(t, 6H, H-26, H-32); *C NMR (CDCl;, 125 MHz) 6 182.0 (C-9),
173.1, 172.9 (C-24, C-30), 162.5 (C-3), 159.9 (C-1), 157.2 (C-4a),
155.3 (C-10a), 155.1 (C-6), 144.0 (C-7), 137.3(C-8), 131.8, 131.5
(C-13, C-18), 123.2, 122.5 (C-12, C-17), 112.1 (C-8a), 111.5 (C-2),
104.0 (C-9a), 98.8 (C-5), 89.3 (C-4), 67.6, 67.2 (C-21, C-27), 60.9,
60.6 (C-25, C-31), 60.5 (7-OCH3), 30.6 (C-23, C-29), 26.2 (C-16),
25.9, 25.8, 24.4, 24.3 (C-15, C-20, C-22, C-28), 21.4 (C-11), 18.2,
17.8 (C-14, C-19), 14.2 (C-26, C-32); positive ESIMS m/z 661 [M +
Na]".
3.2.2 General procedure for synthesis of compound 2a-2c.
A 1% (w/v) osmium tetroxide solution (100 pl) in +-BuOH was
added to a mixture of a-mangostin (1) (41 mg, 0.1 mmol), NMO
(17.6 mg, 0.15 mmol), acetone (1 mL) and water (1 mL), and the
whole was stirred at room temperature for 24 h. Sodium sulfite
was added to the resulting mixture and stirring was continued
for a further 30 min. The mixture was diluted with water,
extracted with ethyl acetate (3 x 20 mL). The combined organic
layers were dried over sodium sulfate and concentrated in vacuo
to give a yellow solid. The residue was purified on column
chromatograph using petroleum ether/ethyl acetate (1:1) to
afford 2a (4.4 mg, 10%), 2b (5 mg, 12%) and 2c¢ (37 mg, 78%).
1,3,6-Trihydroxy-2-(2,3-dihydroxy-3-methylbutyl)-7-methoxy-8-
(3-methyl-2-butenyl)xanthone (2a). Yield 10%, 'H NMR (CD;0D,
500 MHz) 6 6.70 (s, 1H, H-5), 6.27 (s, 1H, H-4), 5.21 (br t, 1H, J =
6.5 Hz, H-2"), 4.07 (d, 2H, J = 6.5 Hz, H-1"), 3.75 (s, 3H, 7-OCHj,),
3.61 (dd, 1H, J = 2.5, 10.0 Hz, H-2'), 3.04 (dd, 1H, J = 2.5,
14.0 Hz, H-1'), 2.68 (dd, 1H, J = 10.0, 14.0 Hz, H-1), 1.82, 1.66
(each s, each 3H, H-4", H-5"), 1.26 (s, 6H, H-4/, H-5'); *C NMR
(CD,0D, 125 MHz) 6 183.2 (C-9), 164.4 (C-3), 162.1 (C-1), 158.1
(C-6), 156.8 (C-4a), 156.6 (C-10a), 144.9 (C-7), 138.5 (C-8), 131.9
(c-3/), 125.1 (C-2"), 112.2 (C-8a), 109.8 (C-2), 103.8 (C-9a), 102.8
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(C-5), 93.9 (C-2'), 80.0 (C-4), 74.0 (C-3'), 61.3 (OCH,), 27.1 (C-1'),
26.0 (C-1"), 25.8, 25.6, 25.2, 18.3; negative ESIMS m/z 443 [M —
H] .

1,3,6-Trihydroxy-2-(3-methyl-2-butenyl)-7-methoxy-8-(2, 3-
dihydroxy-3-methylbutyl)xanthone (2b). Yield 12%, 'H NMR
(CD;0D, 500 MHz) 6 6.77 (s, 1H, H-5), 6.28 (s, 1H, H-4), 5.22 (m,
1H, H-2'), 3.84 (s, 3H, 7-OCHj3), 3.66 (dd, 1H, J = 2.8, 10.2 Hz, H-
2"),3.54 (dd, 2H, J = 2.8, 12.3 Hz, H-1"), 3.33 (m, 2H, H-1'), 1.77,
1.65 (each s, each 3H, H-4", H-5"), 1.34, 1.33 (each s, each 3H, H-
4', H-5'); *C NMR (CD;0D, 125 MHz) 6 184.0 (C-9), 164.2 (C-3),
161.5 (C-1), 158.3 (C-4a), 156.7 (C-10a), 156.4 (C-6), 145.9 (C-7),
136.5 (C-8), 131.8 (C-3), 123.7 (C-2), 112.9 (C-8a), 111.8 (C-2),
103.7 (C-9a), 103.2 (C-5), 93.3 (C-4), 80.7 (C-2"), 74.3 (C-3"),
60.9 (OCH3), 29.6 (C-1"), 26.0, 25.8, 25.4, 22.2 (C-1'), 17.9;
negative ESIMS m/z 443 [M — H| .

1,3,6-Trihydroxy-7-methoxy-2,8-bis(2,3-dihydroxy-3-methyl-
butyl)-9H-xanthen-9-one (2c). Yield 78%, '"H NMR (CD;0D, 500
MHz) 6 6.74 (s, 1H, H-5), 6.29 (s, 1H, H-4), 3.85 (s, 3H, 7-OCHj),
3.65 (m, 1H, H-2"), 3.61 (m, 1H, H-2'), 3.56 (m, 2H, H-1"), 3.02
(dd, 1H,J = 2.4, 14.0 Hz, H-1'), 2.68 (dd, 1H,J = 10.2, 14.0 Hz, H-
1'),1.33,1.32,1.26, 1.25 (each s, each 3H, H-4/, H-5', H-4", H-5");
3C NMR (CD;0D, 125 MHz) 6 183.9 (C-9), 164.9 (C-3), 161.9 (C-
1), 158.3 (C-4a), 156.7 (C-10a), 156.7 (C-6), 145.9 (C-7), 136.5 (C-
8), 112.8 (C-8a), 110.0 (C-2), 103.7 (C-9a), 103.3 (C-5), 94.0 (C-4),
80.6 (C-2"), 79.8 (C-2'), 74.3 (C-3"), 74.0 (C-3'), 61.0 (OCH3), 29.6
(C-1"), 25.9, 25.8 (C-1'), 25.6, 25.4, 25.2; negative ESIMS m/z 477
[M — H]; HRESIMS m/z 477.1766 [M — H]  (caled for
C4H,5040, 477.1766).

3.2.3 General procedure for synthesis of compound 2d, 2e
and 2r. A solution of 1, 2a or 2b (44 mg, 0.1 mmol) and 10% Pd/
C (5 mg) in CH;0H (2 mL) was placed under an atmosphere of
hydrogen. After stirring for 24 h, the reaction mixture was
filtered through filter paper and concentrated under reduced
pressure. The crude product was purified on column chro-
matograph using petroleum ether/ethyl acetate (1:1 ~2:1) to
afford 2d, 2e or 2r respectively.

1,3,6-Trihydroxy-2-(2,3-dihydroxy-3-methylbutyl)-7-methoxy-8-
isopentyl-9H-xanthen-9-one (2d). Yield 78%, 'H NMR (CD;O0D,
500 MHz) 6 6.62 (s, 1H, H-5), 6.21 (s, 1H, H-4), 3.78 (s, 3H, 7-
OCH3), 3.60 (dd, 1H, J = 2.4, 10.1 Hz, H-2'), 3.26 (m, 2H, H-1"),
3.01 (dd, 1H, J = 2.4, 14.1 Hz, H-1'), 2.65 (dd, 1H, J = 10.1,
14.1 Hz, H-1"), 1.71 (m, 1H, H-3"), 1.41 (m, 2H, H-2"), 1.26 (s, 6H,
H-4", H-5"), 1.00, 0.98 (each s, each 3H, H-4', H-5'); *C NMR
(CD;0D, 125 MHz) 6 183.1 (C-9), 164.2 (C-1), 162.1 (C-3), 157.8
(C-4a), 156.7 (C-10a), 156.5 (C-6), 144.6 (C-7), 140.4 (C-8), 112.1
(C-8a), 109.6 (C-2), 103.8 (C-9a), 102.6 (C-5), 93.9 (C-4), 80.0 (C-
2"), 74.0 (C-3"), 61.5 (OCH,), 41.4 (C-2'), 30.1 (C-3), 26.3 (C-1"),
25.8 (C-1'), 25.7, 25.1, 23.0; negative ESIMS m/z 445 [M — H];
HRESIMS m/z 445.1870 [M — H]| (caled for C, H,Og,
445.1868).

1,3,6-Trihydroxy-2-isopentyl-7-methoxy-8-(2,3-dihydroxy-3-
methylbutyl)-9H-xanthen-9-one (2e). Yield 78%, 'H NMR
(CD;0D, 500 MHz) 6 6.66 (d, 1H, ] = 1.8 Hz, H-5), 6.18 (d, 1H, ] =
1.6 Hz, H-4), 3.84 (s, 3H, 7-OCHj), 3.63 (dd, 1H, J = 2.7, 10.5 Hz,
H-2"), 3.48 (m, 2H, H-1"), 2.56 (m, 2H, H-1), 1.55 (m, 1H, H-3'),
1.37 (m, 2H, H-2'), 1.32 (s, 6H, H-4", H-5"), 0.95, 0.93 (each s,
each 3H, H-4/, H-5'); "*C NMR (CD;0D, 125 MHz) ¢ 183.8 (C-9),
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164.2 (C-1), 161.5 (C-3), 158.0 (C-4a), 156.6 (C-10a), 156.1 (C-6),
145.7 (C-7), 136.3 (C-8), 112.8 (C-8a), 112.8 (C-2), 103.6 (C-9a),
103.2 (C-5), 93.3 (C-4), 80.8 (C-2'), 74.3 (C-3'), 60.9 (OCHj),
39.1 (C-2"), 29.6 (C-1'), 29.5 (C-3"), 25.9, 25.3, 23.1, 21.2 (C-1")
negative ESIMS m/z 445 [M — H]; HRESIMS m/z 445.1867 [M —
H]™ (caled for Cp,Hp90g, 445.1868).

Tetrahydro-a-mangostin (2r). Yield 95%, "H NMR (CD;0D, 500
MHz) 6 6.60 (s, 1H, H-5), 6.17 (s, 1H, H-4), 3.77 (s, 3H, 7-OCHj),
3.24 (m, 2H, H-1"), 2.57 (m, 2H, H-1'), 1.70 (m, 1H, J = 6.6,
13.1 Hz, H-3), 1.56 (m, 1H, ] = 6.6, 13.1 Hz, H-3"), 1.39 (m, 4H,
H-2/, H-2"), 0.99, 0.97, 0.95, 0.94 (each s, each 3H, H-4/, H-5', H-
4" H-5"); *C NMR (CD;0D, 125 MHz) 6 183.1 (C-9), 163.6 (C-1),
161.7 (C-3), 157.6 (C-4a), 156.7 (C-6), 156.0 (C-10a), 144.5 (C-7),
140.4 (C-8), 112.5 (C-8a), 112.2 (C-2), 103.7 (C-9a), 102.5 (C-5),
93.0 (C-4), 61.5 (7-OCH,), 41.5 (C-2'), 39.1 (C-2"), 30.1 (C-3'),
29.5 (C-3"),26.2 (C-1"), 23.1 (C-4, C-5'), 23.0 (C-4", C-5"), 21.2 (C-
1'); negative ESIMS m/z 413 [M — H] .

3.2.4 General procedure for synthesis of compound 2f-2h.
A solution of 2a, 2¢ or 2d (0.1 mmol) in mixed reagent (2 mL,
THF : H,O = 2 : 1) was added NalO, (26 mg, 0.12 mmol) at cool
temperature. After the addition was completed, the reaction
solution was allowed to warm to room temperature. After stir-
ring for 4 h, the reaction mixture was diluted with water,
extracted with ethyl acetate (3 x 10 mL). The organic phase
solvent was washed with brine, dried over anhydrous sodium
sulfate, and then concentrated in vacuo to give a yellow solid.
The crude product was purified on column chromatograph
using petroleum ether/ethyl acetate (2 : 1 ~ 4 : 1) to afford 2f, 2g
or 2h.

1,3,6-Trihydroxy-7-methoxy-8-(3-methylbut-2-en-1-yl)-2H-furo
[3,2-bJxanthen-5(3H)-one (2f). Yield 60%, 'H NMR (CD;0D, 500
MHz) 6 6.64 (s, 1H, H-5), 6.21 (s, 1H, H-4), 5.19 (m, 1H, H-2"),
4.83 (t, 1H, J = 5.7 Hz, H-2'), 4.02 (t, 2H, ] = 6.2 Hz, H-1"), 3.74 (s,
3H, 7-OCH3), 2.91 (m, 2H, H-1'), 1.81, 1.66 (each s, each 3H, H-
4" H-5"); '*C NMR (CD;0D, 125 MHz) ¢ 183.1 (C-9), 164.2 (C-3),
162.4 (C-1), 158.0 (C-6), 156.7 (C-4, C-10a), 144.8 (C-7), 138.5 (C-
8), 131.8 (C-3"), 125.1 (C-2"), 112.1 (C-8a), 107.0 (C-2), 103.7 (C-
9a), 102.8 (C-5), 99.0 (C-2'), 93.5 (C-4), 61.3 (OCH;), 30.9 (C-1/),
27.1 (C-1"), 26.0, 18.3; negative ESIMS mj/z 383 [M — HJ];
HRESIMS m/z 383.1134 [M — H] (caled for C,;H;50-,
383.1136).

1,3,6-Trihydroxy-7-methoxy-8-(2,3-dihydroxy-3-methylbutyl)-
2H-furo[3,2-b]xanthen-5(3H)-one (2g). Yield 50%, 'H NMR
(CD,0D, 500 MHz) § 6.67 (s, 1H, H-5), 6.21 (s, 1H, H-4), 4.83 (t,
1H, J = 5.7 Hz, H-2), 3.84 (s, 3H, 7-OCHj,), 3.63 (m, 1H, H-2"),
3.48 (m, 2H, H-1"), 2.91 (dd, 2H,J = 5.7, 14.4 Hz, H-1'), 1.32, 1.31
(each s, each 3H, H-4", H-5"); >*C NMR (CD;OD, 125 MHz)
6 183.8 (C-9), 164.7 (C-3), 162.3 (C-1), 158.2 (C-6), 156.7 (C-4a),
156.6 (C-10a), 145.9 (C-7), 136.4 (C-8), 112.7 (C-8a), 107.3 (C-2),
103.6 (C-9a), 103.3 (C-5), 98.9 (C-2), 93.7 (C-4), 80.6 (C-2"),
74.3 (C-3"), 60.9 (OCH,), 30.9 (C-1'), 29.6 (C-1"), 25.9, 25.4;
negative ESIMS m/z 417 [M — H|; HRESIMS m/z 417.1187 [M —
H]™ (caled for C,;H,;00, 417.1191).

1,3,6-Trihydroxy-7-methoxy-8-isopentyl-2H-furo[3,2-b]
xanthone-5(3H)-one (2h). Yield 60%, "H NMR (CD;0D, 500 MHz)
6 6.65 (s, 1H, H-5), 6.23 (s, 1H, H-4), 4.84 (t, 1H, ] = 5.7 Hz, H-2'),
3.79 (s, 3H, 7-OCH3), 3.29 (m, 2H, H-1"), 2.94 (m, 2H, H-1'), 1.72

’
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(m, 1H, H-3"), 1.42 (m, 2H, H-2"), 1.00, 0.99 (each s, each 3H, H-
4" H-5"); *C NMR (CD;0D, 125 MHz) 6 183.1 (C-9), 164.2 (C-3),
162.5 (C-1), 157.9 (C-6), 156.7 (C-4a), 156.7 (C-10a), 144.7 (C-7),
140.4 (C-8), 112.1 (C-8a), 107.0 (C-2), 103.8 (C-9a), 102.6 (C-5),
99.0 (C-2), 93.5 (C-4), 61.3 (OCH3), 41.5 (C-2"), 30.9 (C-1'), 30.1
(c-3"), 26.2 (C-1"), 23.0; negative ESIMS m/z 385 [M — H];
HRESIMS m/z 385.1295 [M — H] (caled for C,;H,;0,
385.1293).

3.2.5 General procedure for synthesis of compound 2i-2j. A
solution of 2a or 2d (0.1 mmol) and NaH (80 mg, 2 mM) in DMF
(2 mL) was placed under an atmosphere of nitrogen, after stir-
ring for 30 min, the reaction mixture was added CH;I (0.2 mL, 3
mM). After stirring for 4 h, the reaction mixture was diluted with
water, extracted with ethyl acetate (3 x 10 mL). The organic
phase solvent was washed with brine, dried over anhydrous
sodium sulfate, and then concentrated in vacuo to give a yellow
solid. The crude product was purified on column chromato-
graph using petroleum ether/ethyl acetate (9 : 1) to afford 2i or
2j.

2-(2,3-Dimethoxy-3-methylbutyl)-1,3,6,7-tetramethoxy-8-(3-
methylbut-2-en-1-yl)-9H-xanthen-9-one (2i). Yield 60%, "H NMR
(DMSO-d,, 500 MHz) 6 6.98 (s, 1H, H-5), 6.82 (s, 1H, H-4), 5.15
(brt, 1H, J = 7.0 Hz, H-17), 3.99 (dd, 2H, ] = 6.6, 15.6 Hz, H-16),
3.92, 3.77, 3.68 (each s, each 3H, 1-OCH;, 3-OCHj;, 6-OCHj, 7-
OCHj,), 3.39 (dd, 1H, J = 3.0, 10.0 Hz, H-11), 3.15 (s, 3H, 12-
OCH3), 2.93 (s, 3H, 13-OCHj3), 2.85 (dd, 1H, J = 10.0, 13.4 Hz, H-
12), 2.66 (dd, 1H, J = 3.0, 13.4 Hz, H-11), 1.76, 1.58, 1.15, 1.11
(each s, each 3H, C-14, C-15, C-19, C-20); *C NMR (DMSO-d,
125 MHz) 6 175.2 (C-9), 162.5 (C-3), 158.5 (C-1), 157.0 (C-10a),
156.2 (C-4a), 153.7 (C-6), 143.6 (C-7), 135.6 (C-8), 130.3 (C-18),
123.9 (C-17), 118.4 (C-2), 113.7 (C-8a), 110.0 (C-9a), 98.5 (C-5),
94.5 (C-12), 84.6 (C-4), 77.2 (C-13), 61.3 (1-OCHj;), 60.4 (7-
OCH3), 60.1 (12-OCHj3), 56.3 (3-OCH3, 6-OCH3), 48.9 (13-OCH3),
25.6, 25.3 (C-16), 23.8 (C-11), 22.1, 20.6, 18.0; positive ESIMS m/z
537 [M + Na]'; HRESIMS m/z 537.2472 [M + Na]' (caled for
CaoH;5Na0g, 537.2464).

2-(2,3-Dimethoxy-3-methylbutyl)-8-isopentyl-1,3,6, 7-tetrame-
thoxy-9H-xanthen-9-one (2j). Yield 60%, '"H NMR (DMSO-d, 500
MHz) 6 6.93 (s, 1H, H-5), 6.78 (s, 1H, H-4), 3.92, 3.91, 3.76, 3.70
(each s, each 3H, 1-OCH3s, 3-OCH3, 6-OCH3, 7-OCH3), 3.37 (dd,
1H,J = 3.0, 10.0 Hz, H-12), 3.24 (m, 2H, H-16), 3.14, 2.92 (each s,
each 3H, 12-OCHj, 13-OCHj), 2.84 (m, 1H, H-11), 2.64 (dd, 1H, J
= 3.0, 13.0 Hz, H-11), 1.14, 1.10, 0.95, 0.94 (each s, each 3H, C-
14, C-15, C-19, C-20); **C NMR (DMSO-dg, 125 MHz) 6 175.1 (C-
9), 162.4 (C-3), 158.6 (C-1), 156.8 (C-4a), 156.2 (C-10a), 153.7 (C-
6), 143.4 (C-7), 137.5 (C-8), 118.3 (C-2), 113.7 (C-8a), 110.0 (C-9a),
98.3 (C-12), 94.4 (C-5), 84.6 (C-13), 77.2 (C-4), 61.2, 60.6, 60.1,
56.3, 56.2 (1-OCHj3, 3-OCHj, 6-OCHj3, 12-OCHj, 13-OCHj), 48.9
(C-17), 28.3 (C-18), 24.2 (C-16), 23.7 (C-11), 22.5, 22.5, 22.1, 20.6;
positive ESIMS m/z 539 [M + Na]'; HRESIMS m/z 539.2625 [M +
Na]" (caled for C,9H4oNaOg, 539.2621).

A solution of mangostin (0.1 mmol) and DDQ (27 mg, 0.12
mM) in toluene (2 mL) was placed in a flask with round bottom
(10 mL), after slowly heating up to 120 °C. After stirring for 4 h,
the reaction mixture was concentrated in vacuo to give a yellow
solid. The crude product was purified on column chromato-
graph using petroleum ether/ethyl acetate (9 : 1) to afford 2k.
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9-Hydroxycalabaxanthone (2k). Yield 40%, "H NMR (CD;OD,
500 MHz) ¢ 6.66 (s, 1H, H-5), 6.62 (d, 1H, J = 10.0 Hz, H-1'), 6.13
(s, 1H, H-4), 5.61 (d, 1H, J = 10.0 Hz, H-2'), 5.20 (br t, 1H, J =
6.5 Hz, H-2"), 4.03 (d, 2H, J = 6.5 Hz, H-1"), 3.75 (s, 3H, 7-OCH3),
1.81, 1.66, 1.43 (each s, each 3H, H-4, H-5', H-4", H-5"); *C
NMR (CD;0D, 125 MHz) ¢ 183.2 (C-9), 161.0 (C-1), 158.9 (C-3),
158.2 (C-4a), 157.5 (C-10a), 156.7 (C-6), 145.0 (C-7), 138.5 (C-8),
131.9 (C-3"), 128.3 (C-2'), 125.0 (C-2"), 116.4 (C-1'), 112.1 (C-
8a), 105.3 (C-2), 104.4 (C-9a), 102.9 (C-5), 94.9 (C-4), 79.0 (C-
3'), 61.3 (OCH3), 28.6, 27.1 (C-1"), 26.0, 18.3; negative ESIMS m/z
407 [M — H] .

A solution of mangostin (0.1 mmol) in DCM (2 mL) was
placed under an atmosphere of nitrogen, a m-CPBA solution in
DCM (2 mL) was then added drop wise over 10 min. The reac-
tion mixture was stirred at 0 °C for 12 h, washed with 10%
sodium hydrogen sulfite solution (10 mL), saturated hydrogen
carbonate solution (10 mL), saturated sodium chloride (10 mL)
and dried with anhydrous sodium sulfate. The reaction mixture
was concentrated in vacuo to give a yellow solid and the crude
product was purified on column chromatograph using petro-
leum ether/ethyl acetate (9 : 1) to afford 21 and 2m respectively.

1-((3,3-Dimethyloxiran-2-yl)methyl)-3,6,8-trihydroxy-2-methoxy-
7-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (2I). Yield 4%, 'H
NMR (DMSO-ds, 600 MHz) 6 13.82 (s, 1H, 1-OH), 6.79 (s, 1H, H-
5),6.30 (s, 1H, H-4), 5.28 (d, 1H, ] = 4.8 Hz, H-2"), 5.15 (t, 1H, ] =
6.6 Hz, H-2'), 4.02 (t, 2H,J = 6.0 Hz, H-1"), 3.71 (d, H, ] = 6.3 Hz,
H-1'), 3.70 (s, 3H, 7-OCH3), 2.79 (dd, H, J = 16.8 Hz, H-1), 1.77,
1.62, 1.30, 1.24 (each s, each 3H, H-4', H-5', H-4", H-5"); *C
NMR (DMSO-dg, 150 MHz) 6 181.4 (C-9), 161.2 (C-3), 159.6 (C-1),
157.3 (C-4a), 154.9 (C-10a), 154.2 (C-6), 143.4 (C-7), 136.5 (C-8),
130.5 (C-3'), 123.6 (C-2), 109.8 (C-8a), 102.8 (C-2), 102.1 (C-
10a), 101.8 (C-5), 93.4 (C-4), 79.0 (C-2"), 66.9 (C-3"), 60.2
(OCHj,), 25.8 (C-1"), 25.6 (C-5'), 25.3, 25.0, 21.2 (C-1/, C-4", C-5"),
18.1(C-4'); negative ESIMS m/z 425 [M — H| ; HRESIMS m/z
425.1600 [M — H] ™ (caled for Cy,H,505, 425.1600).

Mangostanin (2m). Yield 49%, "H NMR (DMSO-dg, 500 MHz)
6 13.63 (s, 1H, 1-OH), 6.78 (s, 1H, H-5), 6.37 (s, 1H, H-4), 5.15 (br t,
1H, ] = 6.5 Hz, H-2"), 4.73 (m, 1H, H-2'), 3.99 (d, 2H, = 6.6 Hz, H-
1”), 3.69 (s, 3H, 7-OCH3), 3.03 (d, 2H, J = 8.6 Hz, H-1), 1.75, 1.61,
1.14, 1.12 (each s, each 3H, H-4, H-5', H-4", H-5"); *C NMR
(DMSO-ds, 125 MHz) § 181.5 (C-9), 166.6 (C-1), 157.2 (C-6), 157.1 (C-
10a), 156.4 (C-4a), 154.7 (C-3), 143.6 (C-7), 136.3 (C-8), 130.4 (C-3"),
123.6 (C-2"), 109.8 (C-8a), 107.8 (C-2), 102.9 (C-9a), 101.7 (C-5), 91.6
(C2), 88.0 (C-4), 70.0 (C-3), 60.2 (OCH3), 26.0 (C-1'), 25.8, 25.7,
25.6 (C-1"), 25.0, 18.0; negative ESIMS m/z 425 [M — H] .

1,3,6-Trihydroxy-2-(3-hydroxy-3-methylbutyl)-7-methoxy-8-(3-
methylbut-2-en-1-yl)-9H-xanthen-9-one (2n). Yield 25%, "H NMR
(CD;0D, 500 MHz) 6 6.70 (s, 1H, H-5), 6.24 (s, 1H, H-4), 5.22 (t,
1H, J = 6.5 Hz, H-2"), 3.82 (s, 3H, 7-OCH3;), 3.34-3.40 (m, 4H, H-
1',H-1"),1.77 (s, 3H, H-4'), 1.73 (m, 2H, H-2'), 1.65 (s, 3H, H-5"),
1.33 (s, 6H, H-4/, H-5'); "*C NMR (CD;0D, 125 MHz) § 183.2 (C-
9), 163.7 (C-3), 161.6 (C-1), 160.0 (C-6), 156.8 (C-10a), 156.2 (C-
4a), 144.7 (C-7), 139.9 (C-8), 131.7 (C-3"), 123.8 (C-2"), 112.2
(C-8a), 111.5 (C-2), 103.8 (C-9a), 102.7 (C-5), 93.1 (C-4), 71.9 (C-
3'), 61.5 (OCHj,), 45.6 (C-2'), 29.0, 26.0, 23.6 (C-1"), 22.2 (C-1'),
17.9; negative ESIMS m/z 427 [M — H] .
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3-Isomangostin hydrate (20). Yield 23%, "H NMR (CD;0D, 500
MHz) 6 6.65 (s, 1H, H-5), 6.12 (s, 1H, H-4), 3.82 (s, 3H, 7-OCH3;),
3.36 (m, 2H, H-1"), 2.65 (m, 2H, H-1"), 1.83 (t, 2H, J = 6.8 Hz, H-
2/),1.72 (m, 2H, H-2"), 1.34, 1.32 (s, 12H, H-4', H-5', H-4", H-5");
3C NMR (CD;0D, 125 MHz) 6 183.2 (C-9), 161.9 (C-1), 161.6 (C-
3), 158.8 (C-4a), 157.0 (C-10a), 156.0 (C-6), 144.9 (C-7), 139.7 (C-
8), 111.8 (C-8a), 104.7 (C-2), 103.6 (C-9a), 102.9 (C-5), 94.8 (C-4),
77.1(C-3'), 71.9 (C-3"), 61.5 (OCHj), 45.5 (C-2"), 32.8 (C-2'), 29.0,
27.0, 23.6 (C-1"), 17.0 (C-1'); negative ESIMS m/z 427 [M — H] .

1-Isomangostin hydrate (2p). Yield 12%, "H NMR (CD;0D, 500
MHz) é 6.66 (s, 1H, H-5), 6.29 (s, 1H, H-4), 3.80 (s, 3H, 7-OCHj3),
3.37 (m, 2H, H-1"), 2.66 (m, 2H, H-1'), 1.82 (t, 2H, J = 6.9 Hz, H-
2'),1.75 (m, 2H, H-2"), 1.40 (s, 6H, H-4', H-4""), 1.32 (s, 6H, H-5',
H-5"); *C NMR (CD;0D, 125 MHz) 6 179.0 (C-9), 161.9 (C-1),
161.6 (C-2), 158.2 (C-4a), 157.1 (C-10a), 155.8 (C-6), 144.8 (C-7),
139.5 (C-8), 114.7 (C-8a), 107.6 (C-9a), 106.2 (C-2), 102.2 (C-5),
93.9 (C-4), 76.7 (C-3), 71.9 (C-3"), 61.4 (OCH,), 45.5 (C-2"),
32.6 (C-2"), 30.8,29.2, 26.8 (C-1"), 24.0, 23.2, 18.1 (C-1'); negative
ESIMS mj/z 427 [M — H] .

1-Isomangostin (2q). Yield 20%, '"H NMR (CD;0D, 500 MHz)
0 6.61 (s, 1H, H-5), 6.05 (s, 1H, H-4), 5.21 (br t, H, ] = 6.5 Hz, H-
2"), 4.02 (d, 2H, J = 6.5 Hz, H-1"), 3.75 (s, 3H, 7-OCH3), 2.62 (t,
2H, ] = 6.8 Hz, H-1'), 1.81 (m, 2H, H-2'), 1.81, 1.67, 1.33 (each s,
each 3H, H-4, H-5', H-4", H-5"); >*C NMR (CD;0D, 125 MHz)
0183.1 (C-9), 161.8 (C-3), 161.5 (C-1), 158.3 (C-4a), 156.8 (C-10a),
155.9 (C-6), 144.8 (C-7), 138.4 (C-8), 131.6 (C-3"), 125.2 (C-2"),
111.9 (C-8a), 104.6 (C-9a), 103.5 (C-2), 102.9 (C-5), 94.8 (C-4),
77.0 (C-3'), 61.3 (7-OCH3), 32.8 (C-2'), 27.1, 27.0 (C-4, C-4"),
26.0 (C-2"), 18.3 (C-5, C-5"), 17.0 (C-1"); negative ESIMS m/z 409
M — H].

y-Mangostin (2s). "H NMR (CD;0D, 500 MHz) 6 6.66 (s, 1H, H-
5), 6.22 (s, 1H, H-4), 5.25 (br t, 2H, ] = 6.5 Hz, H-2', H-2"), 4.11 (d,
2H,J = 6.7 Hz, H-1"), 3.34 (m, 2H, H-1'), 1.83, 1.78 (each s, each
3H, H-4/, H-4"), 1.65 (s, 6H, H-5, H-5"); "*C NMR (CD;0D, 125
MHz) 6 183.6 (C-9), 163.4 (C-3), 161.5 (C-1), 156.3 (C-4a), 154.0
(C-10a), 153.2 (C-6), 142.0 (C-7), 131.7, 131.6 (C-3/, C-3"), 129.5
(C-8),124.8,124.0 (C-2/, C-2"), 112.2 (C-8a), 111.1 (C-2), 103.9 (C-
9a), 100.9 (C-5), 92.9 (C-4), 26.6 (C-1"), 26.1, 26.0 (C-4, C-4"),
22.2 (C-1'), 18.3, 17.9 (C-5', C-5"); negative ESIMS m/z 395 [M —
H] .

Tetrahydro-y-mangostin (2t). Yield 96%, "H NMR (CD;0D, 500
MHz) 6 6.64 (s, 1H, H-5), 6.21 (s, 1H, H-4), 3.35 (m, 2H, H-1"),
2.60 (m, 2H, H-1'), 1.70, 1.57 (dt, each 1H, J = 6.6, 13.2 Hz, H-3’,
H-3"), 1.42 (m, 4H, H-2/, H-2"), 1.00, 0.99, 0.95, 0.94 (each s,
each 3H, H-4, H-5', H-4", H-5"); >*C NMR (CD;0D, 125 MHz)
0 183.6 (C-9), 163.4 (C-1), 161.7 (C-3), 156.1 (C-4a), 154.1 (C-10a),
153.0 (C-6), 141.8 (C-7), 131.6 (C-8), 112.3 (C-8a), 112.2 (C-2),
103.9 (C-9a), 100.8 (C-5), 92.9 (C-4), 40.4, 39.2 (C-2/, C-2"), 30.0
(Cc-3"), 29.5 (C-3"), 25.8 (C-1"), 23.1 (C-4', C-5', C-4", C-5"), 21.2
(C-1); negative ESIMS m/z 399 [M — H] .

1,3,6-Trihydroxy-9H-xanthen-9-one (2u). Yield 60%, '"H NMR
(CD;0D, 500 MHz) ¢ 7.97 (d, 1H, H-8), 6.82 (dd, 1H, J = 2.2,
8.8 Hz, H-7), 6.73 (d, 1H, J = 2.2 Hz, H-2), 6.27 (d, 1H, ] = 2.2 Hz,
H-2), 6.13 (d, 1H, J = 2.2 Hz, H-2); *C NMR (CD;0D, 125 MHz)
0 181.2 (C-9), 166.7 (C-1), 165.7 (C-3), 164.6 (C-7), 159.4 (C-4a),
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159.4 (C-10a), 128.3 (C-8), 114.7 (C-8a), 114.2 (C-7), 103.1 (C-
9a, C-2), 99.0 (C-5), 95.0 (C-4); negative ESIMS m/z 243 [M — H]| .
3.2.6 General procedure for synthesis of compound 3a-3e.
A solution of 1 or 2r (0.1 mmol) and NBS or NCS (40 mg, 0.22
mM) in DCM or THF (2 mL) was placed under an atmosphere of
nitrogen. After stirring for 24 h, the reaction mixture was
diluted with saturated sodium thiosulfate solution, extracted
with dichloromethane (3 x 10 mL). The organic phase solvent
was washed with brine, dried over anhydrous sodium sulfate,
and then concentrated in vacuo to give a yellow solid. The crude
product was purified on column chromatograph using petro-
leum ether/ethyl acetate (9 : 1) to afford 3a-3e.
4-Chloro-a-mangostin (3a). Yield 30%, 'H NMR (CD;0D, 500
MHz) 6 6.77 (s, 1H, H-5), 5.21 (br t, 2H, H-2, H-2"), 4.05 (d, 2H, J
= 6.5 Hz, H-1"), 3.76 (s, 3H, 7-OCH3), 3.34 (m, 2H, H-1'), 1.82,
1.78, 1.66, 1.65 (each s, each 3H, H-4', H-5', H-4", H-5"); *C
NMR (CD;0D, 125 MHz) 6 182.7 (C-9), 160.5 (C-1), 159.6 (C-3),
158.8 (C-10a), 156.5 (C-6), 151.2 (C-4a), 145.4 (C-7), 138.5 (C-8),
132.1, 131.9 (C-3/, C-3"), 125.0, 123.5 (C-2/, C-2"), 112.8 (C-8a),
111.6 (C-2), 103.8 (C-9a), 103.0 (C-5), 98.5 (C-4), 61.3 (7-OCH;),
27.1 (C-1"), 26.0, 26.0 (C-4', C-4"), 22.9 (C-1'), 18.3, 18.0 (C-1/, C-
1"); negative ESIMS m/z 443 [M — H]".
4-Bromo-a-mangostin (3b). Yield 12%, 'H NMR (CDCl;, 500
MHz)  13.69 (s, 1H, 1-OH), 6.97 (s, 1H, H-5), 5.25 (br t, 2H, H-2/,
H-2"), 4.08 (d, 2H, J = 6.5 Hz, H-1"), 3.82 (s, 3H, 7-OCH3), 3.46
(m, 2H, H-1'), 1.83, 1.82, 1.71, 1.69 (each s, each 3H, H-4', H-5,
H-4", H-5"); *C NMR (CDCl;, 125 MHz) 6 181.8 (C-9), 160.0 (C-
1), 156.8 (C-3), 155.5 (C-10a), 155.0 (C-6), 150.7 (C-4a), 143.0 (C-
7), 137.2 (C-8), 133.4, 132.4 (C-3/, C-3"), 122.9, 121.4 (C-2/, C-2"),
111.9 (C-8a), 110.6 (C-2), 104.3 (C-9a), 101.9 (C-5), 86.4 (C-4),
62.1 (7-OCH3), 26.6 (C-1"), 25.9, 25.8 (C-4', C-4"), 22.3 (C-1'),
18.3, 17.9 (C-1/, C-1"); negative ESIMS m/z 488 [M — H] .
4,5-Dibromo-a-mangostin (3c). Yield 50%, 'H NMR (CD;0D,
500 MHz) 6 5.20 (br t, 2H, H-2/, H-2"), 4.03 (d, 2H, ] = 6.5 Hz, H-
1", 3.75 (s, 3H, 7-OCH3;), 3.36 (d, 2H, J = 7.0 Hz, H-1'), 1.82, 1.79,
1.66, 1.66 (each s, each 3H, H-4', H-5, H-4", H-5"); "*C NMR
(CD;0D, 125 MHz) 6 182.6 (C-9), 160.4 (C-1), 160.1 (C-3), 156.1
(C-10a), 153.4 (C-6), 152.1 (C-4a), 145.2 (C-7), 137.3 (C-8), 132.5,
132.4 (C-3/, C-3"),124.5,123.1 (C-2/, C-2"), 113.2 (C-8a), 112.4 (C-
2), 104.5 (C-9a), 97.6 (C-5), 87.8 (C-4), 62.0 (7-OCH3), 27.1 (C-1"),
26.0, 26.0 (C-4', C-4"), 23.1 (C-1'), 18.4, 18.0 (C-1/, C-1"); negative
ESIMS m/z 567 [M — H]"; HRESIMS m/z 564.9863 [M — H]~
(caled for C,4H,3Br,06, 564.9867).
4-Bromo-tetrahydro-a-mangostin (3d). Yield 12%, 'H NMR
(DMSO-ds, 500 MHz) 6 13.86 (s, 1H, 1-OH), 6.79 (s, 1H, H-5), 3.74
(s, 3H, 7-OCH3), 3.20 (m, 2H, H-1"), 2.61 (m, 2H, H-1'), 1.65 (dt,
H,J = 6.5, 13.0 Hz, H-3"), 1.53 (dt, H, ] = 6.5, 13.0 Hz, H-3'), 1.33
(dt, 4H,J = 16.5, 7.0 Hz, H-2', H-2"), 0.95, 0.93, 0.91, 0.89 (each s,
each 3H, H-4', H-5', H-4", H-5"); "*C NMR (DMSO-d, 125 MHz)
6 181.2 (C-9), 159.0 (C-1), 158.5 (C-3), 157.2 (C-10a), 154.5 (C-6),
150.2 (C-4a), 143.6 (C-7), 138.5 (C-8), 112.4 (C-8a), 109.6 (C-2),
102.9 (C-9a), 101.6 (C-5), 86.7 (C-4), 60.4 (7-OCH,), 39.0, 37.5
(C-2/, C-2"), 28.3,27.7 (C-3/, C-3"), 24.6 (C-1"), 22.5, 22.4 (C-4', C-
4", C-5', C-5"), 20.6 (C-1'); negative ESIMS m/z 491 [M — H];
HRESIMS m/z 491.1072 [M — H]  (caled for C,4H,gBrOg,
491.1069).
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4,5-Dibromo-tetrahydro-a-mangostin (3e). Yield 60%, '"H NMR
(DMSO-dg, 500 MHz) 6 13.54 (s, 1H, 1-OH), 3.70 (s, 3H, 7-OCH3),
3.16 (m, 2H, H-1"), 2.59 (m, 2H, H-1'), 1.63 (dt, H, J = 6.5,
13.0 Hz, H-3"), 1.53 (dt, H, J = 6.5, 13.0 Hz, H-3'), 1.32 (m, 4H, H-
2/, H-2"), 0.93, 0.92, 0.90, 0.89 (each s, each 3H, H-4', H-5', H-4",
H-5"); "*C NMR (DMSO-d,, 125 MHz) § 182.7 (C-9), 160.7 (C-1),
160.6 (C-3), 156.3 (C-10a), 153.4 (C-6), 152.0 (C-4a), 145.4 (C-7),
139.2 (C-8), 114.6 (C-8a), 112.3 (C-2), 104.6 (C-9a), 98.1 (C-5),
88.8 (C-4), 63.3 (7-OCHj,), 41.0, 39.3 (C-2/, C-2"), 30.1, 29.5 (C-
3’,C-3"),26.4 (C-1"),24.3,24.2 (C-4/, C-4", C-5/, C-5"), 22.4 (C-1');
negative ESIMS m/z 571 [M — H]|~; HRESIMS m/z 569.0170 [M —
H]™ (caled for C,,H,;Br,06, 569.0174).

3.3 Biological assays

The following human cancer cell lines were used: HL-60,
SMMC-7721, A-549, MCF-7 and SW-480. These cells were ob-
tained from ATCC (Manassas, VA, USA). All the cells were
cultured in RPMI-1640 or DMEM medium (Hyclone, Logan, UT,
USA), supplemented with 10% fetal bovine serum at 37 °C in
a humidified atmosphere with 5% CO,. Cell viability was
assessed by conducting colorimetric measurements of the
amount of insoluble formazan formed in living cells based on
the reduction of MTS (Sigma, St. Louis, MO, USA). Briefly, 100
uM of adherent cells were seeded into each well of a 96-well cell
culture plate and allowed to adhere for 12 h before drug addi-
tion, while suspended cells were seeded just before drug addi-
tion, both with an initial density of 1 x 10> cells per mL in 100
uM medium, Each tumour cell line was exposed to the test
compound at various concentrations in triplicate for 48 h, with
cisplatin and paclitaxel (Sigma) as positive controls. After the
incubation, MTS (100 pg) was added to each well and the
incubation continued for 4 h at 37 °C. The cells were lysed with
100 uM of 20% SDS-50% DMF after removal of 100 uM
medium. The optical density of the lysate was measured at
490 nm in a 96-well microtiter plate reader (Bio-Rad 680). The
IC5o value of each compound was calculated by Reed and
Muench's method.

4. Conclusions

In order to enrich the types of mangostin derivatives and
improve the structure-activity relationship, in this investiga-
tion, we report the synthesis of a series of a-mangostin deriva-
tives based on three kinds of different functional groups. They
have been assessed for their cytotoxicity against a panel of
human cancer cell lines, including HL-60, SMMC-7721, A-549,
MCF-7 and SW480. Most of them exhibited good cytotoxicity
against all five cancer cell lines evaluated and several of them
were even better than a-mangostin. Structure-activity relation-
ship (SAR) analysis reveals that the isopentene group at C-8 is
critical for retaining the exceptional cytotoxicity of a-mangostin;
the oxidation form of isopentene group at C-8 causes the loss of
the cytotoxicity. Based on the SAR studies, further study is under
progress. Some active compounds were obtained in this study
and our results suggest that some of these compounds have
potential for further development as anticancer agents.

This journal is © The Royal Society of Chemistry 2018
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