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Ligand-based and energy-optimized structure-based approaches were considered to obtain excellent

candidates as AChE inhibitors. The known AChE inhibitors were utilized to develop a pharmacophore

hypothesis, HPRRR and X-ray crystallographic structures of AChE were used to produce three e-

pharmacophore hypotheses viz. AHHRR, AHRR, and DHRR. Based on in silico approaches, we came

across eight structurally diverse hits as non-competitive AChE inhibitors with good ADME properties. The

best four hits, ZINC20592007, ZINC05354646, ZINC20649934, and ZINC39154782 were non-toxic,

neuroprotective, and were selective AChE inhibitors (IC50 values 482 � 1.88 nM, 580 � 1.63 nM, 854 �
2.65 nM, and 636 � 1.79 nM respectively). The hits showed non-competitive inhibition of AChE at PAS

site with attractive Ki values (0.21 � 0.027 mM, 0.27 � 0.064 mM, 0.3 � 0.018 mM, and 0.28 � 0.032 mM

for ZINC20592007, ZINC05354646, ZINC20649934, and ZINC39154782 respectively), and increased the

cholinergic activity as well as inhibited Ab aggregation.
Introduction

Acetylcholinesterase (AChE), a 3.5 kDa protein, is a member of
the carboxylesterase family with an a/b-hydrolase fold.1 The
leading role of AChE is the hydrolysis of synaptic acetylcholine
(ACh) and regulation of cholinergic neurotransmission in the
body. It also plays a pivotal role in neuritogenesis, synapto-
genesis, amyloidosis, dopamine neuron activation, regulation
of apoptosis, nerve regeneration, hematopoiesis, and lympho-
cyte activation.2,3 The in vitro and in vivo exercises explain the
relationship between amyloid precursor protein (APP) process-
ing and cholinergic activation through muscarinic and nico-
tinic receptors.4,5

Structurally, AChE consists of ‘large central mixed b-sheets’
surrounded by ‘15 a-helices’.6 The catalytic anionic site (CAS) is
located at the bottom of a narrow gorge of AChE consisting of
esteratic site (Ser203, Glu334, and His447) and anionic site
(Trp86). Another site, named as peripheral anionic site (PAS)
(consisting of Tyr72, Asp74, Tyr124, Trp286, and Tyr341 resi-
dues) is 20 Å from the catalytic center. The aromatic residue's
ratory, Department of Pharmaceutical
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hemistry 2018
ring creates 40% surface of the gorge and is located in the loop,
thus presenting greater conformational exibility. The Trp86
residue forms p-cation interaction with quaternary nitrogen of
the ACh along with Phe 338.7 The PAS of AChE acts as an
adhesion site to non-amyloidogenic conformer of Ab leading to
its conformational change to produce amyloid brils.8 The
Trp286 at the PAS site mimics response of the whole enzyme on
amyloid formation.9 Further, AChE–Ab complexes induce
neurotoxicity and trigger more neurodegeneration than Ab
peptide alone. Thus, designing AChE inhibitor (AChEI) that
blocks PAS of the enzyme will prevent Ab aggregation as well as
enhance cholinergic transmission for treating Alzheimer's
disease (AD).

Both, b-amyloid protein (Ab) and abnormally hyper-
phosphorylated tau (P-tau) can inuence AChE overexpression
in AD.10 The improvement of cholinergic transmission by using
AChEI may boost cognitive impairment of patients with
schizophrenia,11,12 and Parkinson's disease (PD).13 The acetyl-
choline receptors at neuromuscular junction are reduced in
myasthenia gravis (MG),14 and AChEIs are considered essential
for the treatment of MG. AChEIs can enhance cholinergic up-
regulation by weakening the effect of neuroinammation via
immunocompetent cells expressing a-7-acetylcholine receptor
(AChR).15

Butyrylcholinesterase (BuChE) level is increased by up to 2-
fold during mild to moderate AD,16 and causes an imbalance
between synthesis or synaptic release of ACh and its enzymatic
hydrolysis. Therefore, AChEIs with BuChE inhibition property
may provide better therapeutic value in neurological disorders.
RSC Adv., 2018, 8, 39477–39495 | 39477
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Fig. 1 Flowchart of hit identification based on ligand-based and structure-based pharmacophore models.
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The drug discovery process is time-consuming and
cumbersome, but the use of in silico approaches helps to
identify better hits and scaffolds for a target. The pharmaco-
phore modeling is a mathematical modeling technique which
may help in the quick prediction of hits. The combination of
ligand-based and structure-based pharmacophore models help
in better productivity of outcome.17 Earlier researchers
attempted to develop pharmacophore models and utilized them
for virtual screening of database molecules to nd new AChE
inhibitors.18–23

Present work combines both ligand-based (3D-QSAR) and
energy optimized structure-based pharmacophore (e-
pharmacophore) approaches for virtual screening of free
‘ZINC15’ database molecules. The hits, as AChE inhibitors, were
recognized by utilizing HTVS and molecular docking studies of
pharmacophore matched compounds aer removal of pan-
assay interference compounds (PAINS).24 The workow of hit
identication based on ligand-based 3D-QSAR and structure-
based e-pharmacophore is explicit in Fig. 1.

The in vitro studies viz. enzyme inhibitions (AChE & BuChE),
enzyme kinetics (AChE), propidium iodide displacement from
AChE, parallel articial membrane permeability assay for
blood–brain barrier (PAMPA-BBB), effects on cell viability and
neuroprotectivity against apoptosis triggered by L-glutamate,
approved and validated the outcome from the in silico study.

Results and discussion
Development of ligand-based pharmacophore model

Atom-based 3D-QSAR model was developed by using 142 data-
sets, which was divided into actives, inactives, and moderately
Table 1 The 3D-QSAR pharmacophore hypothesis with various scores

Hypothesisa Survival score Survival-inactive score

HPRRR 3.7 2.22

a H, hydrogen bond donor; P, positively ionizable group; and R, aromatic

39478 | RSC Adv., 2018, 8, 39477–39495
actives. Total 163 hypotheses were generated and the best
pharmacophore hypothesis, HPRRR, was selected on the basis
of good survival activity (3.7), survival-inactive score (2.22),
vector score (0.998), volume (0.862), selectivity (2.576), energy
scores, best active alignment, and number of site matches
(Table 1).

Hypothesis HPRRR: one hydrogen-bond acceptor, one posi-
tive ionizable group, and three aromatic rings showed the
highest survival score. The developed 3D-QSAR pharmacophore
model was statistically validated internally and externally to
exhibit reliable predictions. We randomly selected 100
compounds in the training set and 42 in the test set to generate
3D-QSAR model. The statistical parameters were obtained by
‘leave one out’ (LOO) method and by partial least-square (PLS)
analyze. HPRRR hypothesis showed better predictive ability,
with PLS factor 5 than others (Table 2).
Validation of ligand-based pharmacophore model

At PLS factor 5, hypothesis HPRRR showed low SD value of
0.225, RMSE of 0.409, and P value of 1.13� 10�64, and higher R2

of 0.961 for the training set, and good Q2 of 0.729; Person-R of
0.857; F value of 465.7 for the test set. Therefore, HPRRR model
had good predictivity at PLS factor 5 and was taken for further
pharmacophore-based screening of database molecules. The
pharmacophoric features of 3D-QSAR hypothesis are sketched
in Fig. 2. The distance between pharmacophores was within the
range of 2.174–11.329 Å (Table 3).

All the parameters for external validation of ligand-based
pharmacophore model helped to select best model (Table 4).
The correlation coefficient (r2) value of 0.922, cross-validation
Site score Vector score Volume Selectivity

0.84 0.998 0.862 2.576

ring.

This journal is © The Royal Society of Chemistry 2018
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Table 2 PHASE 3D-QSAR and PLS statistics for internal validation of hypothesis

Hypothesis PLS factor SDa R2b Fc P Stability RMSEd Q2e Pearson-Rf

HPRRR 1 0.735 0.570 129.7 1.204 � 10�19 0.933 0.651 0.314 0.588
2 0.482 0.817 216.5 1.706 � 10�36 0.843 0.480 0.627 0.797
3 0.376 0.890 257.8 8.733 � 10�46 0.770 0.468 0.646 0.813
4 0.288 0.936 347.5 8.721 � 10�56 0.702 0.437 0.691 0.834
5 0.225 0.961 465.7 1.13 � 10�64 0.678 0.409 0.729 0.857

a Standard deviation of the regression. b The square of correlation coefficient. c Variance ratio. d Root-mean-square error. e Squared Q value for the
predicted activities. f Correlation between the predicted and observed activities for the test set.

Fig. 2 3D-QSAR pharmacophore hypotheses and structure-based pharmacophores models with their respective crystal structures. (A) H-bond
acceptor, pink sphere containing arrow; (D) H-bond donor, sky blue sphere with arrow; (H) hydrophobic group, green sphere; (P) positive
ionizable group, violet sphere; (R) aromatic ring, yellow circle.
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View Article Online
coefficient (rcv
2) value of 0.919, square of correlation coefficient

value using the LOOmethod, (Rm(LOO)
2), of 0.834, also helped to

consider 3D-QSAR model as a better predictive model. The
slopes of regression lines through origin (K and K0 value) and
substantial values of correlation coefficients (R0

2 and R0
0
2) were

obtained from observed activity versus predictive activity plots
(Fig. 3). The values were also within the limits and encouraged
the model predictivity.
Development of energy-optimized structure-based
pharmacophore

Total three human AChE (hAChE) crystal structures with
a resolution between 2.0 Å and 2.35 Å and potent AChE inhib-
itory activity (IC50 from 5.3 to 7 nM and Ki 1.7 to 700 nM) were
This journal is © The Royal Society of Chemistry 2018
selected for developing e-pharmacophore. Protein preparation
wizard was used to prepare the proteins with an OPLS_2005
force eld. Aer renement, the protein structures with ligand
interaction showed that donepezil (cocrystal of 4EY7) interacted
with Trp86, and TRP286 by a pi–pi stacking, H-bond interacted
with Phe295, and pi-cationic with Phe338 residue. The dihy-
drotanshinone I (cocrystal of 4M0E) interacted with TRP286 by
a pi–pi stacking, H-bond interaction was with Phe295; and ter-
ritrem B (cocrystal of 4M0F) interacted with TRP286 by a pi–pi
stacking and H-bond interaction was with Tyr124 at the PAS site
(Fig. 4).

The rened cocrystal ligands were redocked onto the
respective prepared protein structures to generate energy-
optimized structure-based pharmacophore (e-
RSC Adv., 2018, 8, 39477–39495 | 39479
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Table 3 Distance between features of 3D-QSAR hypotheses and e-pharmacophores

Pharmacophore
model a

Distance
from
A to H (Å)

Distance
from
A to R (Å)

Distance
from
H to H (Å)

Distance
from
H to P (Å)

Distance
from
H to R (Å)

Distance
from
P to R (Å)

Distance
from
R to R (Å)

Distance
from
D to H (Å)

Distance
from
D to R (Å)

3D-QSAR-HPRRR 4.703 3.205 6.419 2.174
4.45 8.05 9.409
7.968 3.773 11.328

4EY7-AHHRR 3.532 3.796 3.917 2.303 11.435
4.425 9.214

9.803 6.021
5.863

4M0E-AHRR 3.576 5.102 4.844 2.463
6.36 7.105

4M0F-DHRR 5.054 4.288 2.816 3.495
8.549 7.135

a Type of model written with pharmacophores; PDB used for the respective e-pharmacophore model.

Table 4 External validation parameters for 3D-QSAR

External validation
parameters HPRRR Limitations

rcv
2a 0.919 rcv

2 > 0.5
r2b 0.922 r2 close to 1
k valuec 0.990 0.85 # k # 1.15
K0 valued 1.008 0.85 # k # 1.15
R0

2e 0.916 Close to r2

R0
0
2f 0.921 Close to r2

Rm(LOO)
2g 0.834 Rm(LOO)

2 > 0.5
rpred

2h 0.738 rpred
2 > 0.5

a Cross-validated coefficient. b Correlation coefficient between actual
and predicted values. c Slope values of regression lines. d Slope values
of regression lines. e Correlation coefficients for regression lines
through origin. f Correlation coefficients for regression lines through
origin. g Modied squared correlation coefficient using LOO method.
h Predictive correlation coefficient value.

Fig. 3 Plot of predicted pIC50 versus observed pIC50 of AChE inhibi-
tors developed by model HPRRR with regression lines (original
regression lines represented in green break line and regression lines
with intercept zero in purple break line).
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View Article Online
pharmacophore). The root-mean-square deviation (rmsd) was
less than 1 Å for all the three cocrystal ligands. The e-
pharmacophore hypotheses were generated by mapping Glide
XP energetic terms onto pharmacophore sites, which were
calculated from the structural and energy information between
39480 | RSC Adv., 2018, 8, 39477–39495
protein and ligand. Initially, the numbers of pharmacophore
sites were set up to 10 for each of crystal structures for phar-
macophore generation, but numbers of pharmacophore sites
were selected, for the best hypothesis, on the basis of validation
parameters. The total number of pharmacophore sites for each
cocrystal ligand before energy-based site selection and selected
sites for hypothesis generation for the three crystal structures
with pharmacophoric feature scores are given in Table 5. The e-
pharmacophore models generated were AHHRR with 5 sites
from 4EY7, AHRR with 4 sites from 4M0E, and DHRR with 4
sites from 4M0F crystal structure (Fig. 2). In these pharmaco-
phore modeling, A stranded for H-bond acceptor, D for H-bond
donor, H for hydrophobic group, R for aromatic ring. The
distance between e-pharmacophore features was within range
of 2.303–11.435 Å (Table 3).
Validation of energy-optimized structure-based
pharmacophore

The database, consisting of 1053 compounds using 1000 drug-
like decoys and 53 known AChE inhibitors, was utilized for e-
pharmacophore validation., We evaluated enrichment factor
(EF) and Goodness of hit score (GH) utilizing Güner–Henry
scoring method To validate the e-pharmacophores (Table 6).
The values of GH over 0.5 and EF higher than 10, ensured the
suitability of pharmacophores for further pharmacophore-
based virtual screening.
Pharmacophore matched screening and removal of pan-assay
interference compounds (PAINS)

Pharmacophore matched molecules were separated out from
the total 3530990 ZINC15 database compounds (without known
AChE inhibitors) by utilizing advance pharmacophore
screening option of PHASE. The tness value is a measure of
how well the ligand ts with the pharmacophore. The hits with
high tness value of more than 1.5 are probably very active
inhibitors. We employed the validated three e-pharmacophores,
and one ligand-based pharmacophore to screen the database of
2000 AChE inhibitor molecules by each model.
This journal is © The Royal Society of Chemistry 2018
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Fig. 4 Crystal structures of AChE with cocrystal ligands (purple color) and bonding interactions.

Table 5 e-Pharmacophore hypotheses with features scores

PDB No. of possible site No. of accepted site Hypothesesa Pharmacophore features with score

4EY7 6 5 AHHRR H7: �1.64, H6: �1.5, R10: �1.48, R9: �1.2, A3: �0.73
4M0E 4 4 AHRR A3: �1.7, R7: �1.62, H4: �1.5, R8: �1.13
4M0F 7 4 DHRR R19: �1.5, D11: �1.49, R20: �1.3, H15: �0.66

a A, H-bond acceptor; D, hydrogen bond donor; H, hydrophobic group; P, positively ionizable group; R, aromatic ring.

Table 6 Validation of e-pharmacophores with the Güner–Henry
scoring method using a dataset consisting of total 1053 compounds
with 53 total actives compounds

Parameters 4EY7 4M0E 4M0F

Hta 74 69 71
Hab 41 37 43
EFc 11.008 10.654 12.033
GHd 0.589 0.558 0.639

a Total hits. b Active hits. c Overall enrichment factor. d Goodness of hit
score.
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The reactivity towards proteins to develop poor potentiality
or known toxicity of molecules, i.e., PAINS was removed from
pharmacophore matched compounds by using RDKit, ZINC,
and FAF-Drugs4 server. Only less than 1% of PAINS compounds
were removed and mild PAINS were ignored for virtual
screening.
High throughput virtual screening (HTVS) and molecular
docking

High throughput screening of PAINS removed pharmacophore
matched database and was a fruitful resource for initial hit
identication. The number of hits from pharmacophore-based
virtual screening and process of selection with their respective
PDB are presented in Table 7.

Molecular XP docking was performed for all the outcome
HTVS retrieves with 4M0E crystal structure to compare docking
This journal is © The Royal Society of Chemistry 2018
scores of hits with reference donepezil. We found that 55
molecules were having docking score more than �9.0. Finally,
eight compounds with structural diversity, PAINS free (except
ZINC20592007, a PAINS-ok molecule), better docking scores
(�12.87 to �10.74) and Glide energies (�56.48 to
�42.16 kcal mol�1) than donepezil were selected for further
studies (Table 8). The hits outcome with respect to pharmaco-
phore models are listed in ESI (Table S1†). The protein-ligand
interactions with types of interactions and interacting resi-
dues with hits and donepezil are included in Table 8. The
chemical structures of hits are sketched in Fig. 5 and ligand–
protein interactions are pictured in Fig. 6; hits are represented
in yellowish green, interacting amino acid residues of protein in
gray, H-bond in red, pi-cationic interaction in green and pi–pi
stacking in cyan color. The presence of more hydroxyl, keto,
secondary amine and nitrogen-containing hetero aromatics in
hits were responsible for formation of hydrogen bond and more
docking score than donepezil.

The hits mainly bind at PAS site of AChE through H-bond
interactions with Phe295, Tyr337, and Phe338 residues (within
1.8–2.3 Å bond distance), pi–pi stacking with Trp286, His 287,
Phe297, and Tyr341 residues (within 3.8–5.1 Å distance), and pi-
cationic or salt bridge interactions with Asp74, Tyr341, and
Trp286 residues (within 1.9–5.6 Å distance). Keto group of all
hits, except ZINC77161317 and ZINC39154782 were formed H-
bonding with Phe295 and Ser293, were formed hydrogen
bonding with Phe295 reside of protein. Aromatic group of hits
were produced p–p stacking interaction with Trp286, except
ZINC39154782 interacting with Phe297.
RSC Adv., 2018, 8, 39477–39495 | 39481
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Table 7 Number of compounds retrieved at each stage of screening of dataset

Pharmacophore
models PDB HTVS hits SP hits XP hits No. of selected hits

AHHRR 4EY7 1991 200 20 1
AHRR 4M0E 1873 199 19 2
DHRR 4M0F 1993 200 20 2
HPRRR 4M0F 1945 200 20 3

Fig. 5 Structures of final hits with zinc database ids.

Table 8 Hit molecules with their Glide docking score, number of H-bonds, interaction with essential amino acids, IFD docking score, and
AutoDock binding energy

a Salt bridge. b H-bond interaction. c Pi–Pi stacking. d Pi-cation interaction.

39482 | RSC Adv., 2018, 8, 39477–39495
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Induced t docking

The IFD scores of hits were close to the Glide XP docking scores
(Table 8). The conformations generated from the IFD were little
different from the docked poses produced from the rigid
receptor docking. The Glide-basedmodel gave an RMSD of 5.2�A
when compared to the native pose in the crystal structure. The
IFD docking pose and score were supported by the binding
positions, affinity, and stability of hits.

Calculation of prime MM-GBSA

To predict the binding mode and binding free energy (DGbind),
the Prime MM-GBSA simulation was calculated for AChE–hits
and AChE–cocrystal ligand complexes utilizing Maestro 10.1
(Table 8). All the hits showed better DGbind, and ZINC20649934
provided highest DGbind, �94.16 kcal mol�1. The binding free
energy determination, based on Prime MM-GBSA, established
the stability of AChE–hits complexes.

Docking with AutoDock

The AutoDock binding energy of the hits was calculated and
presented in Table 8. The binding energy of nal eight hits was
between �9.32 to �11.69 kcal mol�1. The prediction of results
was fully supported Glide XP docking and IFD results (Table 8).
All the hits displayed similar binding affinity and docking pose
with 4M0E utilizing AutoDock and Glide (ESI, Fig. S1 and S2†).
This journal is © The Royal Society of Chemistry 2018
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Fig. 6 Docking poses of ZINC72451013, ZINC20649934, ZINC05354646, ZINC79331983, ZINC20592007, ZINC77161317, ZINC58160603, and
ZINC39154782 with AChE crystal structure; hits represented in yellowish green, residues in gray, H-bond in red, pi-cationic interaction in green
and pi–pi stacking in cyan color.
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Predicted ADME properties

The predictions of drug-likeness and pharmacokinetics
including absorption, distribution, metabolism, and excretion
(ADME) were performed by utilizing QikProp tools of Maestro,
This journal is © The Royal Society of Chemistry 2018
Schrödinger. We evaluated physiochemically descriptors and
pharmaceutically relevant properties of hits to analyze drug-
gable properties (Table 9). All the hit molecules showed a good
partition coefficient (QP log Po/w) values (1.6 to 3.854), which
RSC Adv., 2018, 8, 39477–39495 | 39483
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Table 10 Inhibitory activity on AChE (electric eel) and BChE (horse serum) and propidium competition assay results

Compounds IC50 AChE
a (nM) IC50 BChE

a (nM) Selectivityb (AChE/BChE)

Propidium displacement (%)

0.24 mM 1 mM 3 mM

ZINC20592007 482 � 1.88 23954 � 5.69 49.7 44 70 100
ZINC05354646 580 � 1.63 147424 � 6.66 254.2 0 42 57
ZINC20649934 854 � 2.65 148654 � 6.24 174.1 0 25 58
ZINC39154782 636 � 1.79 128064 � 5.13 201.4 29 58 100
Donepezil 24 � 0.29 7421 � 2.00 309.2 0 0 0

a Each assay was repeated three times independently. b Selectivity for AChE ¼ [IC50 (BuChE)]/[IC50 (AChE)].

Table 9 Hit molecules with their physiochemical descriptors determined by Qikprop tools

Compound ida QP log Po/wb QP log Sc QP log HERGd QPPCacoe QPPMDCKf QP log Kp
g % of human oral absorptionh Rule of vei

ZINC72451013 3.586 �4.62 �6.76 249.141 121.859 �4.273 90.835 0
ZINC20649934 2.619 �3.37 �6.631 529.903 1193.73 �3.718 91.036 0
ZINC05354646 1.627 �1.92 �5.112 553.223 288.626 �4.359 85.562 0
ZINC79331983 3.854 �4.37 �5.055 1879.796 978.659 �3.407 100 0
ZINC20592007 3.448 �4.50 �6.75 199.231 173.105 �4.22 88.291 0
ZINC77161317 1.6 �2.38 �5.559 79.257 56.117 �4.617 70.301 0
ZINC58160603 2.674 �3.38 �6.619 393.786 546.198 �3.897 89.056 0
ZINC39154782 3.311 �5.64 �6.286 406.683 187.069 �2.709 93.035 0

a Zinc database compound id. b QP log Po/w for octanol/water (�2.0 to 6.5). c QP log S: predicted aqueous solubility, S in mol dm�3 (�6.5 to 0.5).
d log HERG: HERG K+ channel blockage (<�5). e Apparent Caco-2 cell permeability (nm s�1) (<25 poor, >500 great). f Apparent MDCK permeability
(nm s�1) (<25 poor, >500 great). g QP log Kp: skin permeability. h % human oral absorption (>80% is high and <25% is poor). i Rule of ve: no. of
violations of Lipinski's rule of ve (0 is good and 4 is bad).
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were critical for absorption and distribution of drugs. Factor
QPPCaco, indicating permeability of these hits, was in the range
of 79.257 to 1879.796, where QPPCaco was a predicted apparent
Caco-2 cell permeability in nm s�1 value, a key factor for the
estimation of cell permeability in biological membranes.

All the hits successfully passed the entire pharmacokinetic
requirements for a drug-like compound and were within the
acceptable range as dened for human use. Overall, the
percentage of human oral absorption for the compounds were
between 70.301 to 100%, their water solubility (QP log S) ranged
between �1.919 to �6.373, pMDCK (cell permeable parameter)
values were between 56.117 to 1193.73, skin permeability
(log Kp) values were within �2.709 to �4.898; p log HERG (K+
channel blockage) values were less than �5. Additional
parameters i.e., molecular weight, H-bond donors, H-bond
acceptors, and log P according to Lipinski's rule of ve, were
also evaluated for their drug-like behavior. Thus, hits with
better binding interaction and good predicted pharmacokinetic
properties were considered for in vitro studies.
Table 11 Permeability, Pe (10�6 cms�1) determined by BBB-PAMPA stud

Compounds Pe(exp)
a [10�6 cm s�1]

ZINC20592007 5.00 � 0.3
ZINC05354646 7.8 � 0.25
ZINC20649934 3.74 � 0.136
ZINC39154782 4.69 � 0.2

a Data expressed as mean � SEM of three independent experiments. b CN

39484 | RSC Adv., 2018, 8, 39477–39495
Density functional theory

The HOMO and LUMO of chemical compounds are crucial
indicators of their reactivity and also stability of ligand–receptor
interactions.25 The stability of interactions is inversely corre-
lated to energy gap between HOMO and LUMO orbitals. The
orbital energy of all energetically stable hit molecules was
calculated by using a DFT method. The high value of HOMO
energy is likely to indicate the tendency of molecule to donate
electrons to an appropriate acceptor molecule with LUMO. The
correlation of HOMO energies with IC50 data suggested that the
HOMO of inhibitor might transfer its electrons to less energy,
LUMO, of some amino residues in the active site of the enzyme.
The calculated DFT properties of all hits are given in ESI (Table
S2†). The HOMO–LUMO energy gaps of hits were minimal, and
between �0.182 to �0.012 eV. Leaser HOMO–LUMO energy gap
facilitated electron(s) density exchanging properties or encour-
aged some interaction(s). The mean ESP indicated electron
density distribution around nuclei of the molecules and was
y of hit compounds

Pe(actual)
a [10�6 cm s�1] Predictionb

5.7 � 0.20 CNS+
9.39 � 0.36 CNS+
5.45 � 0.79 CNS+
5.29 � 0.31 CNS+

S + indicates good passive CNS permeation.

This journal is © The Royal Society of Chemistry 2018
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Fig. 7 Michaelis–Menten kinetics curve resulting from velocity of
AChE activity with different substrate concentrations (0.15–1.15 mM) in
absence and presence of 0.25, 0.5 and 1 mM of ZINC20592007.

Fig. 8 Michaelis–Menten kinetics curve resulting from velocity of
AChE activity with different substrate concentrations (0.15–1.15 mM) in
absence and presence of 0.25, 0.5 and 1 mM of ZINC05354646.

Fig. 10 Michaelis–Menten kinetics curve resulting from velocity of
AChE activity with different substrate concentrations (0.15–1.15 mM) in
absence and presence of 0.5, 1 and 2 mM of ZINC39154782.
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between �0.22 to 1.89 kcal mol�1. The ESP data indicated that
most of the hits contained both low and high electron density
sites in a molecule. The upper and low electron density regions
may correspond to the hydrogen bonding between the hits and
enzyme.
In silico AChE selectivity study

We performed Glide XP docking study against BuChE by
utilizing 4BDS crystal structure to estimate selectivity of hits
Fig. 9 Michaelis–Menten kinetics curve resulting from velocity of
AChE activity with different substrate concentrations (0.15–1.15 mM) in
absence and presence of 0.5, 1 and 2 mM of ZINC20649934.

This journal is © The Royal Society of Chemistry 2018
towards AChE. All the hits had BuChE binding affinity with
more selectivity towards AChE (ESI Table S3†). The hit
ZINC05354646 showed lowest Glide docking score (�5.66), and
next lowest score compound was ZINC20649934 (�5.85) against
BuChE crystal structure, 4BDS. The BuChE binding property of
hits with AChE inhibition improved the therapeutic property of
hits for cholinergic activity. The hits had moderate BuChE
binding affinity which may improve cholinergic activity.
In vitro inhibition of AChE and BuChE

Four hits (ZINC20592007, ZINC05354646, ZINC20649934, and
ZINC39154782) were selected, based on Glide docking score,
AutoDock energy, AChE selectivity, PAS site selectivity, ADME
properties, and interesting structural features for further in vitro
studies. ZINC20592007 contains a 2,3-dihydrocyclopenta[c]
chromen-4(1H)-one fused nucleus, which is PAINS-ok
(mannich-A type) molecule. ZINC05354646, a 2,3,9,10-tetrahy-
dro-8H-cyclopenta[3,4]chromeno[6,7-e][1,3]oxazin-4(1H)-one
fused compound, is PAINS free with similar scaffold of
ZINC20592007. ZINC20649934 has thieno[2,3-d:4,5-d0]dipyr-
imidin-4(3H)-one nucleus with attached morpholine ring to
ethylene linker. ZINC39154782 contains 1,2,4-triazin-5(6H)-one
with indole ring attached through an ethyl amino linker (Fig. 5).

The selected hits were evaluated for their anti-cholinesterase
(anti-ChE) activity. AChE and BuChE inhibition activities were
evaluated by the method described by Ellman,26 wherein
donepezil was used as reference standard. Compound
ZINC20592007 exhibited higher AChE inhibitory activity than
ZINC05354646, ZINC20649934, and ZINC39154782 [IC50 values
(nM) of 482 � 1.88, 580 � 1.63, 854 � 2.65, and 636 � 1.79,
respectively (Table 10)]. All the hits has selective AChE inhibi-
tory activity than BuChE enzyme (Table 10). The half maximal
enzyme inhibitory concentration (IC50), a measure of potency of
hits inhibiting AChE and BuChE, was calculated by construct-
ing a dose-response curve (ESI, Fig. S3†) by utilizing GraphPad
Prism 5.0.

The mechanism of AChE enzyme inhibition of the four hits
was determined by an enzyme kinetic study. Lineweaver–Burk
reciprocal plots were generated by plotting reciprocal of reac-
tion rates and reciprocal of substrate concentrations using
RSC Adv., 2018, 8, 39477–39495 | 39485
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Table 12 Cell viability, and neuroprotection of hit molecules in human
neuroblastoma SH-SY5Y cell line

Compounds

Cell viabilitya (%) Neuroprotectionb (%)

50 mM 100 mM 25 mM

ZINC20592007 98.0 � 0.34 95.3 � 0.32 18.2 � 0.086
ZINC05354646 90.2 � 0.39 88.7 � 0.77 20.0 � 0.061
ZINC20649934 94.8 � 0.49 93.0 � 0.45 67.8 � 0.013
ZINC39154782 98.6 � 0.55 97.1 � 0.08 26.3 � 0.077

a Percentage cell viability of SH-SY5Y cells exposed at relatively high
concentrations (50 mM and 100 mM) of test compounds. b Percentage
neuroprotection of SH-SY5Y cells at relatively lower concentrations (25
mM) of test compounds against L-glutamate(100 mM).

Fig. 11 RMSD plot (donepezil–AChE, ZINC20592007–AChE, and ZINC2
axis and for ligand these values were displayed on right Y-axis; protein b

39486 | RSC Adv., 2018, 8, 39477–39495
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different concentrations of hit molecules. Michaelis–Menten
kinetics curve resulting from velocity of AChE activity with
varying concentrations of substrate (0.15–1.15 mM) in absence
and presence hit molecules (0.25, 0.5 and 1 mM of
ZINC20592007 and ZINC05354646, and 0.5, 1, and 2 mM for
ZINC20649934, and ZINC39154782) are shown in Fig. 7, 8, 9,
and 10 respectively. The Ki values of hits were determined by
Yonetani–Theorell method from Lineweaver–Burk plots and
presented in ESI as Fig. S4–S7† for ZINC20592007,
ZINC05354646, ZINC20649934, and ZINC39154782 respectively.

The plots revealed that with increasing the concentrations of
inhibitor, an increase in slope (decreased Vmax) and the inter-
cept (higher Km) occurred. The lower apparent value of Vmax in
Michaelis–Menten plot to increase, decrease, or leave
0649934–AChE complexes) of RMSD values for protein on the left Y-
ackbone in green color, and ligand in maroon color.

This journal is © The Royal Society of Chemistry 2018
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unaffected apparent value of Km, (ESI, Table S4†), indicated as
non-competitive inhibitor on the kinetic constants. The double
reciprocal Lineweaver–Burk displayed a nest of lines that
intersect at a point other than y-axis, and intersecting lines
converge to the le of y-axis, and below the x-axis, i.e., a < 1, and
indicating that the inhibitor binds with greater affinity to the
enzyme–substrate (ES) complex or subsequent species. The
calculated inhibitor constant (Ki) of hits (ZINC20592007,
ZINC05354646, ZINC20649934, and ZINC39154782) were 0.21�
0.027 mM, 0.27 � 0.064 mM, 0.3 � 0.018 mM, and 0.28 � 0.032
mM respectively and were attractive.

Propidium iodide displacement assay

The particular PAS site binding affinity through Trp286 amino
acid residue was established by propidium iodide displace-
ment method. The hits successfully displaced propidium, and
were selective PAS ligands (Table 10). Molecule ZINC20592007
and ZINC39154782 displaced 100% propidium from PAS of
AChE at 3 mM concentration, but ZINC05354646 and
ZINC20649934 displaced 57% and 58% respectively, at the
same concentration.
Fig. 12 RMSF of the protein C-a chain in donepezil–AChE, ZINC205920

This journal is © The Royal Society of Chemistry 2018
In vitro blood–brain barrier permeation assay

A parallel articial membrane permeation assay of blood–
brain barrier (PAMPA-BBB) was performed, as the method
described by Di L. et al.,27 to explore inltration of the selected
hits into brain. The in vitro permeability (Pe) of the four hits
(Table 11) and nine commercially available drugs (Table S5,
ESI†) was determined through a lipid extract of porcine brain
lipid in PBS. The assay was validated by comparing the
experimentally obtained permeability [Pe(exp)] of the nine
drugs with reported values of permeation [Pe(ref)] offering
a linear relationship, i.e.,Pe(exp) ¼ 1.308 Pe(literature) � 0.8394,
(R2 ¼ 0.9317).

The permeability values (Pe) greater than 4.3 � 10�6 cm s�1

were capable of CNS permeability (Fig. S8 & Table S6, ESI†) and
the tested compounds demonstrated permeability values
above it. Thus, the experimentally determined permeability
values (Pe) of the test compounds were a pointer towards their
potential to comfortably cross the BBB by passive diffusion.
07–AChE, and ZINC20649934–AChE complexes.

RSC Adv., 2018, 8, 39477–39495 | 39487
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Fig. 13 Schematic diagram of detailed ligand (donepezil, ZINC20592007, and ZINC20649934) interactions with AChE protein amino acid
residues after MD simulation.
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Cellular cytotoxicity and neuroprotection assessment

The cell viability and neuroprotective potential, against
apoptosis of selected hits, were evaluated by utilizing human
neuroblastoma SH-SY5Y cell line. To investigate the cytotoxicity
of compounds, cells were exposed to considerably high
concentrations of the test compounds (50 mM and 100 mM) for
24 h. The cell viability was determined by 3-(4,5-dimethyl
thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The
selected compounds showed insignicant cell death even at
high concentrations (Table 12). The neuroprotective potential of
selected hit molecules was assessed by using L-glutamate as
excitotoxicity. In this assay, addition of L-glutamate (100 mM) to
growth media caused signicant cell death as was evidenced by
reduction in cell viability. The results (Table 12) are mean �
SEM of at least three independent experiments.
Molecular dynamics (MD) simulation

The analyses of molecular dynamic (MD) simulation of
ZINC20592007, ZINC20649934 and donepezil with AChE were
performed to establish the binding potency and amino acid
residue interactions. In MD simulations, RMSD of the protein
backbone C-a atoms and individual inhibitor, Root Mean
Square Fluctuation (RMSF) in the individual amino acid side
chain and ligand–AChE interactions were recorded concerning
time over a period of 50 ns of simulation. The total energy of
dynamic ligand–protein complexes was found stable in last 40
ns of entire simulation. Furthermore, temperature, pressure,
volume, and potential energy of the complex remained
constant, indicating the robustness and reliability of MD
simulations. The RMSD of simulation converging between 1.5
and 2.5 Å, denoted the stability of macromolecular ligand–
protein complexes during 50 ns simulation. The RMSF in
individual amino acid residues during the entire simulation
was below 4.0 Å, indicating a lower degree of conformational
changes in the side chains.

Aer initial 10 ns simulation, RMSD of protein backbone C-
a along with the ligand RMSD values were stabilized. RMSD plot
of RMSD values for protein on the le Y-axis and for ligand
these values were displayed on right Y-axis in Fig. 11; protein
backbone in green color, and ligand in maroon color. The mean
RMSD value for donepezil–AChE complex was 2.04 Å, whereas
39488 | RSC Adv., 2018, 8, 39477–39495
ZINC20592007–AChE and ZINC20649934–AChE complexes
were 1.76 and 2.11 Å respectively. RMSF was useful for charac-
terizing local changes along the protein chain C-a and peaks
indicated areas of the protein that uctuate the most during the
simulation. RMSF values of hits and donepezil were below 4.0 Å,
indicated less uctuation and better stability of ligand–protein
complex during simulation (Fig. 12). The interaction of hits
with AChE enzyme higher than 30% aer MD simulation is
provided in Fig. 13.

MD study revealed that ZINC20649934 was interacted Phe
295 with H-bonding through a water molecule, Thr 83 residue
with direct H-bonding, and Tyr 341 amino acid with p–p

stacking; ZINC20592007 interacted Tyr341, Trp 286, and Phe
295 with H-bond formation through a water molecule, Trp86
with direct H-bonding, and Asp 74 with p–p stacking; and
donepezil interacted Trp286, Phe297, and Tyr241 with p–p

stacking, and Glu292, and Phe295 with H-bond, and His447
through water involvement H-bonding. MD simulation dis-
played that all the ligands were interacting with protein at Phe
295 and Trp286, which were present at PAS site of AChE.

Materials and methods
Computational details

The computational tasks, except MD, were performed on an
Intel(R) Core (TM) i5-3210M CPU @ 2.50 GHz processor with
a memory of 8.0 GB RAM running on a Linux 64 operating
system. Schrödinger suite 2015-1 (Schrödinger, LLC, New York,
NY, 2015) was utilized to develop structure-based and ligand-
based pharmacophore models and for the screening of
publicly free ‘ZINC15’ database. MD simulation was perform
using Desmond package on an Intel(R) Xeon(R) CPU E3-
1225v5@ 3.30 GHz 3.31 GHz processor, RAM 32.0 GB system
with Nvidia ‘Quadro P600’GPU running on a Linux 64 operating
system.

Development of ligand-based pharmacophore

Total 1062 structurally diverse AChE inhibitors with known and
wide range of IC50 values (0.043–20 000 nM) were collected from
Binding DB database (2017). The LigPrep in Maestro,
Schrödinger 2015-1 was utilized to minimize the energy of
inhibitor molecules by applying OPLS_2005 force eld.28 As,
This journal is © The Royal Society of Chemistry 2018
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Fig. 14 Cocrystal ligands structure with PDB id and resolution.
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donepezil has mixed type (PAS and CAS site) of binding prop-
erties with AChE, therefore, all the compounds were clustered
by Tanimoto similarities against donepezil using linear nger-
print descriptors with Canvas v2.3. Compounds were collected
depending upon canvas similarity higher than and equal to 0.15
and molecular weight below 500. Finally, 142 inhibitors (Fig. S9
in ESI†) were selected based on Glide docking study at PAS of
AChE. The IC50 values of inhibitors were converted to pIC50 for
the generation of 3D-QSAR model. PHASE v4.2, Schrödinger
2015-1 was used to generate 3D-QSAR model.29 The ConfGen,
Schrödinger 2015-1 was used to create maximum 1000 number
of conformers per structure utilizing force eld OPLS_2005. The
threshold of actives was above 8.0 and inactives was below 5.7.
The PHASE randomly divided all ligands into two sets, i.e., the
test set contained 42, and the training set included 100
compounds, to develop an Atom-based 3D-QSAR model in 1.00
Å of grid spacing. The ligands used for development of phar-
macophore hypothesis are listed (ESI, Table S7†) with their
tness score, observed pIC50, phase predictive activity, and
errors (the difference between observed and predicted activity).
The common pharmacophore was obtained from the score of
hypotheses having the best alignment of the active set ligands.
All 142 compounds were aligned with the template pharmaco-
phore hypothesis of the highly active molecule (Fig. S10 in
ESI†).

Validation of ligand-based pharmacophore

The QSAR model was developed with partial least-squares (PLS)
factors one to ve and was validated by predicting pIC50 value of
molecules. The QSARmodel with PLS factor 5 was considered as
the best model. The 3D-QSAR models were externally validated
by using LOO method to evaluate the predictivity of
hypotheses.30,31

Energy-optimized structure-based pharmacophore generation

Out of total 15, three X-ray crystal structures of hAChE were
collected with good resolution and PAS site AChE inhibition
activity of cocrystal ligand from the Protein Data Bank (https://
www.rcsb.org). The cocrystal ligands of three PDB structures viz.
4EY7 (donepezil, IC50 5.3 nM), 4M0E (dihydrotanshinone I, Ki

700 nM), and 4M0F (territrem B, IC50 7 nM, & Ki 1.7 nM) are
shown in Fig. 14.

Protein structures were prepared using protein preparation
wizard in Maestro 10.1, Schrödinger 2015-1 with an OPLS_2005
force eld. The Grids of all three PDB structures were prepared
at the center of cocrystal ligand using receptor Grid Generation
tool in Maestro 10.1, Schrödinger 2015-1. The rened crystal
This journal is © The Royal Society of Chemistry 2018
ligands were docked by utilizing Glide XP (extra precision)
docking with corresponding protein structures. The Glide XP
energy was ranked by their contribution for the binding of
pharmacophoric sites to cocrystal ligand.32 PHASE v4.2,
Schrödinger, 2015-1 was applied to generate pharmacophore
features based on XP energy descriptor information. It was used
to develop pharmacophore sites viz. H-bond acceptor (A), H-
bond donor (D), hydrophobic group (H), negative ionizable
group (N), positive ionizable group (P), and aromatic ring (R). H-
bond acceptor and H-bond donor were pointed as vectors,
directed to corresponding H-bond donor and acceptor positions
at the binding site of receptors respectively. The Glide XP
descriptors consisted of hydrophobic enclosure, hydrophobi-
cally packed associated hydrogen bonds, electrostatic rewards,
p–p stacking, p-cation, and other interactions. The most
favorable sites were selected for the development of e-
pharmacophore hypothesis by using excluded volume.
Energy-optimized structure-based pharmacophore validation

Enrichment factor (EF) and goodness of hit (GH) were calcu-
lated to validate e-pharmacophore hypotheses (eqn (1) and (2)
respectively). A dataset of compounds was prepared using 1000
drug-like decoys (http://www.schrödinger.com/glide_decoy_set)
with an average molecular weight of 400 D (the “dl-400” dataset)
and known actives of 53 AChE inhibitors (inhibitors with IC50

less than 100 nM and out of molecules utilized for the 3D-QSAR
model), to validate e-pharmacophore models. LigPrep in
Schrödinger 2015-1 with Epik was applied to prepare database
ligands with an OPLS_2005 force eld. EF is the fraction of
known actives retrieved aer a screening of decoy database
compounds.33

EF ¼ Ha�D

Ht� A
(1)

GH ¼
�ðHað3A þ HtÞÞ

4HtA

��
1� ðHt�HaÞ

ðD� AÞ
�

(2)

where, EF ¼ enrichment factor, GH ¼ goodness of hit, D ¼ total
compounds in the data set, A ¼ total number of actives in the
data set, Ht ¼ total hits, and Ha ¼ active hits.
Pharmacophore-based screening of the database

Only ‘hit-like’ compounds without known AChE inhibitors were
collected from ‘ZINC15’ database utilizing Lipinski's lter.
LigPrep with Epik was employed to prepare database ligands
utilizing OPLS_2005 force eld. One ligand-based pharmaco-
phore and three e-pharmacophores based matched molecules
were separately screened against prepared database
compounds with PHASE v4.2, Schrödinger 2015-1.34 Pharma-
cophore matching was required for the most energetically
favorable site, and score of more than 1.0 kcal mol�1 was
selected for the pharmacophore screening, four sites for
hypotheses with 3 or 4 and ve sites for hypotheses with 4 or 5
were required to match. The tolerance of distance matching was
set up to 2.0 Å. The aligned conformer of molecule matches the
hypothesis based on rmsd, site matching, vector alignments,
RSC Adv., 2018, 8, 39477–39495 | 39489

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra08198k


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
N

ov
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 2

/7
/2

02
6 

1:
36

:0
8 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
and volume terms expressed as tness score.35 The pharmaco-
phore matched database was ranked in order of the tness
score ranging from 0 to 3, as applied in the PHASE. The ligands
were selected based on highest tness scores up to 2000 mole-
cules for each pharmacophore and scores above 1.5 were
considered as suitable inhibitors. The molecules with best
tness score were docked into the binding sites of AChE crystal
structure.32

Removal of pan-assay interference compounds (PAINS)

Baell and Holloway reported a list of structural features which
generated frequent false positives across screening, known as
PAINS.24 Jasial S. et al. established a large-scale analysis of
behavior of PAINS in biological screening assays.36 The ‘ZINC15’
database molecules are categories within (A) anodyne, and (B)
clean (PAINS-ok),37 were selected as hits from HTVS retrieves. A
KNIME (freely available Konstanz Information Miner, http://
knime.org)38 workow distributed with the RDKit39 soware
package utilizing GUI data analysis platform was developed by
Saubern S. et al.40 The obtained HTVS hits were screened in
silico for PAINS to avoid false positives in biochemical and
pharmacological assays using three public lters, including
RDKit,39 ZINC,37 and FAF-Drugs4 server.41

High throughput virtual screening (HTVS) and molecular
docking

Glide HTVS (high throughput virtual screening) is faster than
Glide SP and XP, has higher tolerance to suboptimal ts than
Glide XP and thus is selected for the study.33 Aer removal of
PAINS, e-pharmacophore matched compounds were docked
into binding sites of respective crystal structures, and ligand-
based matched molecules were docked into 4M0E structure
with Glide, Schrödinger 2015-1.42 The grid was generated at the
center position of cocrystal ligand, through Grid Generation
tools in Glide. Post-docking MM-GBSA minimization was per-
formed to optimize the ligand geometries. The Glide HTVS
screened molecules with best docking scores were selected for
Glide SP (standard precision), and XP (extra precision) screen-
ings. Top 10% of retrieves out from each step were taken up for
next step. Finally, all the non-peptide retrieves from HTVS and
donepezil were docked in Glide XP molecular docking using
4M0E crystal structure (highest resolution PDB with cocrystal
ligand, 2.0 Å) to compare the docking score of screened out
retrieves with reference donepezil.

Induced t docking

We applied a mixed molecular docking and dynamics method
known as induced t docking (IFD),43 where the receptor was
exible in docking study. Aer ADME screening, selected hits
were prepared by OPLS_2005 force eld utilizing LigPrep. The
hits were docked to rigid protein by using Glide, Schrödinger
2015-1 with scaling of ligand van der Waals (vdW) radii 0.5 for
nonpolar atoms.44 Constrained energy minimization was per-
formed on AChE (PDB: 4M0E) crystal structure, keeping it close
to the original crystal structure while removing bad steric
contacts. The energy minimization of protein structure was
39490 | RSC Adv., 2018, 8, 39477–39495
performed using OPLS_2005 force-eld. The Glide XP was
utilized for initial docking, and 20 ligand poses were retained
for protein structural renement. Prime, Schrödinger 2015-1
was used to rene residue within 5.0 Å of ligand poses and to
generate the induced-t protein–ligand complexes. Each of the
20 complexes was subjected to renements of side-chain and
backbone,44 and were ranked according to Prime energy. The
receptor structures within 30 kcal mol�1 were redocked for nal
round of Glide docking and scoring. The Prime renement
included at least one atom of all residue located within 4.0 Å of
corresponding ligand pose. In the last step, every ligand was
redocked into each rened low-energy receptor structure
generated in the renement step. The new 20 receptor confor-
mations were taken forward for Glide XP redocking. The
binding affinity of each complex was reported in the docking
score. The more negative docking score indicates more favor-
able binding with receptor.
Prime MM-GBSA simulation

The free binding energies of highest scoring docked complexes
were computed utilizing molecular mechanic-generalized Born
surface area (MM-GBSA)45 followed by default parameters.
Based on the docking score and MM/GBSA binding-free energy,
Jin et al. developed correlationmodel between docking scores or
calculated binding-free energies and experimental pIC50

values.46 The Prime (Maestro v10.1, Schrödinger, LLC, New
York, NY, 2015) was employed to calculate the MM-GBSA energy
of Glide XP docked complex. The OPLS_2005 force eld in
conjunction with GBSA continuum model47 was utilized to
determine energies of selected complexes of ligands. Compu-
tationally, the binding free energies (DGbind) of ligands were
calculated using the following equation.48

DGbind ¼ DEMM + DGsolv + DGSA

where DEMM is the difference between minimized energies of
the AChE-inhibitor complex and sum of the minimized energies
of unliganded AChE and its inhibitor, DGsolv is difference
between GBSA solvation energies of enzyme–inhibitor complex
and sum of the GBSA solvation energies of unliganded AChE
and inhibitor, and DGSA is the difference between surface area
energies of the complex and sum of the surface area of unli-
ganded enzyme and its inhibitor.
Docking using Autodock

AutoDockTools-1.5.6. and AutoDock 4.2 suite were utilized to
redock the selected hits as AChE inhibitor for comparison of the
Glide XP docking, IFD, and AutoDock results. AChE crystal
structure, 4M0E, was prepared using AutoDock Tools. Atom
charges, solvation parameters, and polar hydrogens were added
to enzyme structure for docking simulation before applying to
PDBQT le format. The Chem3D 16.0 chemical structure
drawing soware was utilized to draw hits with standard 3D
structures and to minimize energies of the compounds using
MM2 energy minimization method.49 The AutoDock 4.2 ligand
optimization was performed using Gasteiger charges
This journal is © The Royal Society of Chemistry 2018
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optimization, non-polar hydrogens were merged, and saved as
PDBQT le. AutoDock requires pre-calculated grid maps, and
the grid must surround the region of active site of AChE.
Therefore, the grid box was centered at the active site including
Leu 289, Arg 296, Phe 297, Phe 338, Trp 286, Ser 293, Val 294,
Phe 295, Tyr 72, Tyr 341, Asp 74, Tyr 124 and Tyr 337 amino acid
residues. The grid box size was positioned at 40, 42, and 48 Å
and the grid center was set to 20.683, �16.615, 19.006 for x, y
and z respectively, covering the active pocket. AutoGrid 4.0 was
used to produce a grid with 0.375 Å spacing between grid points.
The Lamarckian Genetic Algorithm (LGA) was used to search
best conformers, and a maximum of 50 conformers was
considered for each compound with the default setting. The
Discovery Studio Visualizer was used for visualization of inter-
actions. AutoDock Tools provided various methods for
analyzing the results of docking simulations, viz. conforma-
tional similarity, visualizing the binding site and its energy,
intermolecular energy and inhibition constant.
ADME properties prediction

The QikProp in Maestro 10.1, Schrödinger 2015-1 (ref. 50) was
used to predict ADME properties of hit molecules. As the Qik-
Prop was unsuitable to neutralize the compounds and generate
the descriptors, in the normal mode, hence, neutralization of all
molecules was essential before performing QikProp. The Qik-
Prop predicted physicochemically signicant and pharmaceu-
tically applicable 44 descriptors for the hits. These included
principle descriptors, physiochemical properties as well as log P
(octanol/water), QP%, log HERG, Caco-2 cell membrane
permeability, MDCK cell permeability, skin permeability log Kp

and Lipinski's rule of ve, which were crucial for rational drug
design.51,52
Density functional theory

Density functional theory (DFT) is utilized to determine and
validate enzymatic reaction mechanisms and the enzyme active
sites. Electronic effects of drug-like compounds play an essen-
tial role in the pharmacological effects.53 The most and least
active AChE inhibitors of training set were optimized with the
nal hits in Jaguar (Jaguar v8.7, Schrödinger, LLC, New York,
NY, 2015) program utilizing Lee–Yang–Parr correlation func-
tional (B3LYP) theory, and Becke's three–parameter exchange
potential54,55 with 6-31G* basis set. The molecular orbital
surfaces, atomic electrostatics potential charges (EPS) and
molecular electrostatic potential (MESP) were determined to
calculate the HOMO and LUMO. The HOMO energy of small
ligand molecules can donate electrons during the drug–enzyme
complex formation, while LUMO energy manifests the capacity
of the molecule to accept the electrons from the protein. The
HOMO–LUMO gap energy (difference in HOMO and LUMO
energy), expresses the electronic excitation energy, that is
essential to compute the molecular reactivity and stability of the
drug–protein complex.25
This journal is © The Royal Society of Chemistry 2018
In silico AChE selectivity study

To determine binding affinity of hits towards BuChE, we carried
out XP docking of hits using crystal structure of 4BDS (highest
resolution PDB of human BuChE, 2.1 Å). The Glide (Glide,
Schrödinger, LLC, New York, NY, 2015) was used to perform
Glide XP docking in default setting for all docking steps, and the
Grid was centralized at the PAS site of BuChE i.e., centralized
the residues ASp70, Trp 82, Asn83, Ser198, and Tyr332.56
In vitro AChE and BuChE enzyme inhibition

The AChE and BuChE inhibition studies were performed by
Ellman et al. method.26 Four selected hit molecules
(ZINC20592007, ZINC05354646, ZINC20649934, and
ZINC39154782) out of ten, were procured from MolPort SIA,
Riga, Latvia (MolPort id: MolPort-002-672–705, MolPort-002-
658-497, MolPort-005-915-644, and MolPort-004-876-009
respectively). The AChE from Electrophorus electricus and
BuChE from horse serum (lyophilized powder) (CAS No. 9000-
81-1, CAS No. 9001-08-5, respectively) were purchased from
Sigma Aldrich, India. Acetylthiocholine iodide (ATCI), butyr-
ylthiocholine iodide (BTCI), 5,50-dithio-bis(2-nitrobenzoic
acid) (DTNB–Ellman's reagent) and phosphate buffer saline
(PBS), pH 7.4 were procured from HiMedia Laboratories,
India, and donepezil (Sigma Aldrich, India) was used as
reference. Six different concentrations (75 mM, 15 mM, 7.5 mM,
3 mM, 0.6 mM, and 0.12 mM) of hits, 0.25 mM DTNB, 0.06unit
mL�1 of AChE or BuChE were combined in PBS and incubated
at 37 �C for 30 min to determine inhibition of AChE or BuChE.
0.36 mM of the substrate (ATCI or BTCI) was added to reaction
mixture before measuring absorbance at 415 nm wavelength
by Synergy HTX multi-mode reader (BioTek, USA). The process
was performed in triplicate with a blank and control, to
calculate the percentage inhibition due to selected hits. The
IC50 values, i.e., the concentration of the drug resulting in 50%
inhibition of enzyme activity, were determined graphically
from inhibition curves (log inhibitor concentration vs. percent
inhibition) utilizing GraphPad Prism 5.0, GraphPad
Soware Inc.57

The enzyme kinetics (the mechanism of inhibition by
ligands) of were determined by previously described method.26

Eight concentrations of substrate (ATCI; 0.1–1.15 mM) were
incubated with AChE in absence and presence of different
concentrations of test molecules (0.25 mM, 0.5 mM & 1 mM for
ZINC20592007, and ZINC05354646; and 0.5 mM, 1 mM & 2 mM
for ZINC20649934, and ZINC39154782). The absorbance was
measured for 30 min at intervals of 5 min at 415 nm wave-
length. The products formed during the time frame of 30 min
were estimated by Beer–Lambert law. Vmax and Km values of
Michaelis–Menten kinetics were computed by nonlinear
regression from substrate–velocity curves using GraphPad
Prism 5. Linear regression was used to calculate inhibition
constant (Ki) utilizing Lineweaver–Burk plots.58 Ki value was
determined by Yonetani–Theorell method in which the lines
from the double reciprocal Lineweaver–Burk plot were
extrapolated to intersect at a point.59 The positive reciprocal
x-values of intersecting point were the determined Ki value
RSC Adv., 2018, 8, 39477–39495 | 39491
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of hits. The enzyme kinetics assays were performed in
triplicate.

Assay of propidium iodide displacement

The molecular modeling studies illustrated that selected hits
were PAS selective AChE inhibitors. Propidium iodide is
a specic PAS selective ligand, which displays 10-fold uores-
cence enrichment when bound to AChE. The displacement by
hits was measure of their affinity towards PAS of AChE. Three
concentrations (0.24, 1.0, and 3.0 mM) of test compounds, 5 mM
AChE from electric eel (eeAChE) in PBS, pH 7.4, were added in
black 96-well plates and were kept at room temperature for
6 h.60 The sample solutions were incubated for 15 min with 20
mM of propidium iodide (HiMedia, India), and intensity of
uorescence was measured in excitation and emissionmodes at
485 and 620 nm, respectively. The assay was carried out in
triplicate.

In vitro blood–brain barrier permeation assay

The possible in vitro blood–brain barrier (BBB) permeation of
compounds was predicted by parallel articial membrane
permeation assay (PAMPA) of BBB as described by Di L. et al.27

The donor microplates (PVDF membrane, pore size 0.45 mm)
and acceptor microplates were obtained from Millipore, Ben-
galuru, India. The lter surface of donor microplate was
impregnated with 4 mL of 20 mg mL�1 porcine brain lipid
(Avanti polar lipids, Alabaster) in dodecane (Avra Synthesis,
Hyderabad, India), and the acceptor microplates were lled
with 200 mL of PBS, pH 7.4. 5 mg mL�1 of test compounds were
dissolved in DMSO and diluted with PBS to obtain a nal
concentration of 100 mg mL�1. The donor well plates were
lled with 200 mL of test solution and were carefully placed on
the acceptor plate like a sandwich, carrying it undisturbed for
18 h at 25 �C. The donor plates were then removed, and
concentration of compounds in acceptor, and donor wells
were determined by measuring absorbance. Each well was
analyzed at ve different wavelengths with three independent
performances, and results were explicit as mean � SEM. The
nine commercial drugs with known BBB permeability (verap-
amil, diazepam, progesterone, atenolol, dopamine, lome-
oxacin, alprazolam, chlorpromazine, and oxazepam) were
utilized to validate PAMPA model. The above-described
method was followed to determine the experimental
permeability, Pe(exp) values of these drugs, and data were
regressed against Pe(ref) from literature to establish a linear
correlation.61

Determination of cellular cytotoxicity and neuroprotection

Neuronal cell line cultures. The human neuroblastoma SH-
SY5Y cell line was procured from National Centre for Cell
Science (NCCS) Pune, India. Cells were cultured into T25 asks
containing Dulbecco's modied Eagle's medium nutrient
mixture F-12 (DMEM-F12), supplemented with 10% fetal bovine
serum (FBS), 1 mM glutamine, 50 U mL�1 penicillin, and 50 mg
mL�1 streptomycin and were maintained at 37 �C in 5% CO2

humidied air. For MTT assay and neuroprotection study, SH-
39492 | RSC Adv., 2018, 8, 39477–39495
SY5Y cells were subcultured in 96-well plates at seeding
density of 5 � 104 cells per well.

Determination of cell viability and neuroprotection. The
MTT (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay62 was performed to determine cytotoxicity of
selected hits. Aer 24 h incubation at 37 �C, the medium was
changed with test compounds having concentrations of 50 mM
and 100 mM, for another 24 h at previously described condi-
tions. 5 mg mL�1 of MTT (Sigma-Aldrich, India) in PBS was
added to the culture medium for 4 h at 37 �C. The medium was
removed, and the blue formazan crystals formed were dissolved
in DMSO and evaluated by measuring absorbance at 570 nm.
The test was carried out in triplicate, and results were explicit as
mean � SEM.

Neuroprotectivity of selected hits was determined by evalu-
ating their ability to protect SH-SY5Y cells against induced
apoptosis by L-glutamate excitotoxicity. Amyloid beta (Ab)
neurotoxicity was triggered by L-glutamate in SH-SY5Y cell
line.63 The cells were treated with test compounds, at 25 mM
concentration, and incubated for 2 h. Aer incubation, cells
were treated with a medium containing 100 mM of L-glutamate
and le for an additional 24 h. The cell viability, aer the
treatment of L-glutamate, was assessed by MTT assay. The
medium was further replaced with 80 mL of fresh medium and
20 mL of MTT (0.5 mg mL�1) in PBS. Aer 4 h of incubation,
MTT solution was removed, and the crystals of formazan were
dissolved in DMSO to measure the absorbance at 570 nm.
Percentage of neuronal cell protection against L-glutamate was
calculated by considering the absorbance of the control cells as
100% of the cell viability.
Molecular dynamics (MD) simulation

MD simulations of ZINC20592007 (most active in in vitro tests
and 100% PAS selective), ZINC20649934 (higher docking score
in in silico and 58% PAS selective in in vitro), and donepezil
were performed utilizing Desmond v2.2, Schrödinger 2015-1
with the OPLS 2005 force eld to model all peptide interac-
tions,64,65 and TIP3P (transferable intermolecular potential
with 3 points) model was used for solvent. Protein-ligand
docked complex (.pv le) from XP docking was taken for
solvation using open TIP3P water model in an orthorhombic
core box of 20 Å radius. The overall complex had six negative
charges and was neutralized by adding Na+ counter ion for
simulation. Ligand–protein complex was minimized by
steepest descent method followed by BFGS (Broyden–Fletcher–
Goldfarb–Shanno) algorithm having a convergence threshold
of 2.0 kcal mol�1 and 41 667 iterations. Ewald method (PME)66

was used to calculate long-range electrostatic interactions with
a grid spacing of 0.8. van der Waals and short-range electro-
static interactions were truncated at 9.0. Nose–Hoover ther-
mostats67 were utilized to maintain constant simulation
temperature, and Martina–Tobias–Klein method68 was used to
control pressure throughout simulation. The equations of
motion were integrated utilizing the multistep RESPA inte-
grator69 with an internal time step of 2.0 fs for bonded inter-
actions and non-bonded interactions within 6.0 fs cut off. MD
This journal is © The Royal Society of Chemistry 2018
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simulations were conceded out at 300 K temperature and
1.01325 bar pressure. The overall model system was relaxed for
2 ns before a 50 ns simulation, and coulombic interactions
were dened by a short-range cut off radius of 9.0 Å and by
a long-range smooth particle mesh Ewald tolerance to 1 �
10�9. Further, for energy calculation and trajectory analysis,
recording interval of 1.2 ps was dened.
Conclusions

A 3D-QSAR and three e-pharmacophore models were developed
from known AChE inhibitors, structurally similar to donepezil
and available AChE crystal structures with cocrystal ligand at
PAS site. Virtual screening of ZINC15 compounds afforded new
excellent, non-toxic AChE inhibitors. The hits interacted with
Trp 286, Phe 295, Asp 74, Tyr 337, and Tyr 124 residues of AChE
crystal structure through one to three H-bond(s) and one to
three pi–pi stacking interaction(s). MD strongly supported that
the identied hits bound at PAS of AChE only. In vitro enzyme
assays, with propidium iodide displacement of ZINC20592007,
ZINC05354646, ZINC20649934, and ZINC39154782, also sup-
ported the in-silico results. ZINC20592007 and ZINC39154782,
interacting with Try 286 amino acid residue, provided 100%
propidium displacement at 3 mM concentration. The PAS site-
selective mimics responded to inhibition of amyloid forma-
tion. The hits had attractive Ki values (0.21 � 0.027 mM, 0.27 �
0.064 mM, 0.3 � 0.018 mM, and 0.28 � 0.032 mM) with insig-
nicant toxicity against neuroblastoma SH-SY5Y cell, good BBB
permeability, and neuroprotectivity against L-glutamate
induced excitotoxicity.

Further, ZINC20592007 molecule had potent, selective AChE
inhibition at PAS, i.e., non-competitive, CNS permeability, non-
toxicity, neuroprotectivity, and Ab formation and aggregation
inhibition, which increased cholinergic activity and also pre-
vented Ab aggregation to control AD. We consider that these
compounds are excellent candidates to develop further as leads
for AChE inhibition.
Conflicts of interest

The authors declare no competing nancial interest.
Abbreviations
AChE
This journal is © The
Acetylcholinesterase

AChEI
 AChE inhibitor

AD
 Alzheimer's disease

ADME
 Absorption distribution metabolism and

excretion

APP
 Amyloid precursor protein

BBB
 Blood brain barrier

BuChE
 Butyrylcholinesterase

CNS
 Central nervous system

3D-QSAR
 3-Dimentional-quantitative structure activity

relationship

EF
 Enrichment factor
Royal Society of Chemistry 2018
e-
pharmacophore
Energy-optimized pharmacophore
Glide XP
 Glide extra precision

GH
 Goodness of hit

HTVS
 High throughput virtual screening

IFD
 Induced t docking

MD
 Molecular dynamics

MTT
 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide

OPLS
 Optimized potential for liquid simulations

PAINS
 Pan assay interference compounds

PAMPA
 Parallel articial membrane permeation assay

RMSD
 Root mean square deviation

SP
 Standard precision

THA
 Tacrine

1YL
 (1R)-1,6-Dimethyl-1,2-dihydrophenanthro[1,2-

b]furan-10,11-dione
Acknowledgements

The authors are thankful to Department of Biotechnology,
Ministry of Science & Technology, New Delhi, India for nancial
support (BT/PR9624/MED/30/1253/2013 dated-29/11/2014). We
are grateful to Dr Ozair Alam, Department of Pharmaceutical
Chemistry, School of Pharmaceutical Education & Research,
Jamia Hamdard, Hamdard Nagar, New Delhi, India, for his
assistance and support. S. J. and A. G. would like to thank
Ministry of Human Resource Development, New Delhi, India,
for the award of senior research fellowships to them.

References

1 Y. Bourne, P. Taylor, P. E. Bougis and P. Marchot, J. Biol.
Chem., 1999, 274, 2963–2970.

2 G. Johnson and S. Moore, Curr. Pharm. Des., 2006, 12, 217–
225.

3 H. Soreq and S. Seidman, Nat. Rev. Neurosci., 2001, 2, 294–
302.

4 M. Pakaski and P. Kasa, Curr. Drug Targets: CNS Neurol.
Disord., 2003, 2, 163–171.

5 N. P. L. Verhoeff, Expert Rev. Neurother., 2005, 5, 277–284.
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