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ropoly acid into localized porous
structures for in situ preparation of silver and
polypyrrole nanoparticles†

Jing Liang, *a Lei Yu,b Jiangyong Zhang,a Shixiong Zhao,c Jiejing Zhanga

and Jianfeng Zhanga

A simple and facile method to fabricate porous films which were locally patterned by heteropoly acid was

developed in this study. The mixture of poly(methyl methacrylate) and stabilizer dichloromethane solution

which contains heteropoly acid aqueous solution, prepared through shaking, was applied to fabricate

a reversed microemulsion. After spreading and evaporating the solvent of microemulsion on a glass

slide, an ordered honeycomb film was produced by incorporation of heteropoly acid in the cavities. The

locally anchored heteropoly acid could be readily applied for the selective modification of the porous

films through the in situ chemical reactions in the cavities with the additive agents. The silver

nanoparticles were in situ prepared via the reduction of silver ions by reduced state H3PW12O40, and the

polypyrrole spheres were locally obtained through the oxidative polymerization of pyrrole catalyzed by

H3PMo12O40 in the cavities. Considering that water-soluble molecules and nanoparticles were universally

suitable for the present strategy, the reported approach opened up an efficient way for patterning

organically incompatible components on porous polymer films via the assembly of microemulsion

droplet carriers to fabricate multi-functional hybrid surface structures.
Introduction

Owing to the signicant applications of catalysis,1 photonics,2

membrane science,3 and so forth, porous materials have been
widely developed. Among the various self-assembly methods
used to prepare ordered surfaces, the breath gure technique,
which uses water droplets as templates, has been widely
investigated owing to its fast and easy operation features.4,5 As
the porous lms are composed of the polymer framework and
cavities, their use can be applicable to frameworks and cavities.
So far, the applications of the polymer framework have been
widely developed, for example, acting as superhydrophobic
surfaces,6 serving as the skeleton of cell adhesion and culture,7,8

use as photoelectronic devices,9,10 and so forth. Comparing with
the vigorous progress of the framework, the usage of cavities is
less reported, just acting as secondary templates11 and in
protein recognition.12 Thus, how to develop the new functions
of the cavities becomes very meaningful, which will bring new
vitality to the eld of porous lms.
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A series of additives such as titanium dioxide microparti-
cles,13 proteins,14 carbon nanotubes,15 polystyrene micro-
spheres,16 silica particles,17 graphenes18 and so on, have been
assembled into the patterned cavities to present the functional
features at the localized position, by using the breath gure
method. However, the additives only standing in the localized
sites, special features and applications have not been shown. To
realize the application of cavities, the incorporation of func-
tional materials into the cavities and selective modication of
cavities are essential. However, for breath gure, the localized
modication always needs multi-steps. Recently, a novel way to
synthesize ordered porous structures using microemulsion
droplets as template has been proposed.19 Water-phase addi-
tives locate at the inner walls of the cavities, which are suitable
for further modication of the pore surface. This strategy
maintains the advantages as those using in breath gure, while
functional modiers can be incorporated into the cavities in
one step during the formation of porous structure.

Herein, honeycomb-patterned lms, where the heteropoly
acids were incorporated into the cavities and the polymer were
spread on the framework, have been prepared through micro-
emulsion method. This strategy exhibits some advantages. The
heteropoly acids are locally assembled in the cavities on the
polymer surface in one step. The excellent features of heteropoly
acids patterned in the cavities are maintained through a series
of treatment in the porous lm preparation process. Interest-
ingly, the heteropoly acids accumulated in the cavities of
This journal is © The Royal Society of Chemistry 2018
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Scheme 1 The schematic drawing of assembly of heteropoly acids and in situ reduction of silver ions and polymerization of pyrrole in the cavities
by heteropoly acids.
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polymer surface can be used to in situ prepare silver and poly-
pyrrole nanoparticles, which provide new functions for the
cavities on the porous lms (Scheme 1). It should be noted that
the cavities were used as a micro-reactor at the rst time, which
brings the meaningful applications for the cavities, different
from the additives incorporated into the cavities in the previous
studies, revealing potential applications in microreaction,
pattern recognition, cell culture and so forth.
Experimental section
Materials

H3PW12O40$nH2O (HPW12) and H3PMo12O40$nH2O (HPMo12)
were purchased from Sinopham Chemical Reagent Co. Ltd.
Poly(methyl methacrylate) (PMMA, Mw: 349 kg mol�1), pyrrole,
silver nitrate, PEO20-PPO70-PEO20 (P123), were the products of
Sigma-Aldrich, Shanghai Kefeng Chemical Reagent Co. Ltd,
Nanjing Chemical Reagent Co. Ltd, Anqiushi Luxing Chemical
Co. Ltd. China, respectively.
Preparation of heteropoly acids-incorporated porous lm

The mixture of PMMA (6 mg mL�1) and P123 (0.5 mg mL�1) was
prepared by simply adding them into a certain volume of
dichloromethane. Heteropoly acids were dissolved in the
distilled water (18.2 MU cm�1) at the concentration of 10 mg
mL�1. For the preparation of microemulsion solution, the
typical procedure was that to the dichloromethane solution of
PMMA and P123 was added an aqueous HPMo12 solution under
certain concentration, and the volume fraction of water was
maintained at 5% unless it was mentioned. The mixture solu-
tion was shaken for 30 s under 25 �C to disperse the aqueous
solution in organic phase and achieve a translucent gray
microemulsion. Then, 20 mL of the microemulsion solution was
cast onto a glass slide under the relative humidity of 30–40% at
the temperature of 25 �C to achieve HPMo12/PMMA hybrid
lms. Following the similar procedures, HPW12/PMMA lms
were prepared.
This journal is © The Royal Society of Chemistry 2018
In situ polymerization of pyrrole

The pyrrole monomer with the concentration of 0.1 M was
dissolved in a pH 4 aqueous solution, which was adjusted with
diluted HCl. The HPMo12/PMMA lm was dipped into the
pyrrole solution for 40 min, washing with water three times and
drying in air.

In situ preparation of silver nanoparticles

For the preparation of silver nanoparticles, the HPW12/PMMA
lm was exposed at ultraviolet lamp within the distance of
15 cm for ca. 15 min. Then, the lm was immediately dipped
into the 0.1 M silver nitrate aqueous solution for 30 min, fol-
lowed by washing with water three times and drying in air.

Measurements

Scanning electron microscopy (SEM) images were collected on
a JEOL JSM-6700F eld emission scanning electron microscope.
X-ray energy-dispersive spectroscopy (EDX) analysis was
acquired on a JEOL FESEM 6700F electron microscope. X-ray
photoelectron spectroscopic (XPS) analysis was performed on
a VG Escalab MK-II spectrometer with an Al Ka (1486.5 eV)
achromatic X-ray source. X-ray diffraction (XRD) pattern was
collected on a Rigaku X-ray diffractometer (D/max rA, using
CuKa radiation at 1.542 Å). UV-Vis absorption spectra were ob-
tained using a Varian Cary 50 UV-Vis spectrometer.

Results and discussion
Preparation and structural characterization of HPMo12/PMMA
porous lms

According to the similar principle of breath gure for the
preparation of ordered porous patterns on polymer surfaces,
a different route for the preparation of heteropoly acids-
patterned polymer lms using microemulsion solution was
applied. As a typical strategy, the microemulsion of PMMA
dichloromethane solution bearing P123 were prepared by
simply mixing with the aqueous solution of HPMo12 clusters
RSC Adv., 2018, 8, 36558–36562 | 36559
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Fig. 1 SEM images viewed from the (a) top surface and (b) cross section, and (c) histogram referring to the size distribution of cavities of the
porous film prepared by casting the microemulsion solution on a glass slide.

Fig. 2 (a) SEM image and EDX analysis of HPMo12-containing film for (b) C in red, and (c) Mo in blue, respectively.
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and following a slight shaking, which makes the reversed
microemulsion droplets disperse in the organic solution evenly.
Aer spreading the sample solution on a solid substrate and the
evaporation of solvent, the porous polymer lm was obtained
under the certain humidity. The obtained polymer lm exhibits
bright iridescent colors when viewed along the reection light,
indicating a periodic refractive index variation regarding the
lm thickness. The surface structure of the HPMo12/PMMA lm
was characterized through SEM measurement. The SEM image
in Fig. 1a shows a highly ordered honeycomb-patterned lm
showing monodispersed hexagonal close-packed holes with
a long range order forms in a large area without defect.
Observation of the cross-section SEM, shows that the lm
exhibits a monolayer porous structure and the depth of cavities
are approximately 2 mm, as seen in Fig. 1b. The histogram
(Fig. 1c) illustrates the size distribution of the cavities with the
diameter between 1.8 to 2.2 mm.
Selective assembly of heteropoly acids into patterned cavities

To realize the application of porous structures, the key step in
the current research is to make the chemical difference of the
cavities from the polymer lms. The position of additive in the
lms is characterized through EDX analysis, which is an
impactful method to determine the component distribution,
due to the element difference between organic and inorganic
components in the lms. As Mo element only exists in HPMo12
36560 | RSC Adv., 2018, 8, 36558–36562
cluster, and C element only exist in the polymers, the distri-
bution difference of C and Mo elements can denitely gure
out the location of the polymers and clusters in the porous
lm. By using the height SEM image (Fig. 2a) of the same
patterned lm as the reference, the C element marked in red
(Fig. 2b) in the EDX image is found throughout the lm with
the isolated dark domains separating regularly in a hexagonal
matrix distribution, indicating that the continuous phase is
composed of the polymer PMMA. Because the inorganic
component is supposed to cover on the inner wall of the
cavities, it is reasonable that the C element cannot be detected,
considering the shallow penetration of electron beam. In
opposite to the distribution of the C element, as expected, the
Mo element in blue color is observed fully locating in the
isolated round domains that are regularly separated in
a hexagonal matrix distribution, pointing out that the HPMo12
clusters distribute in the areas of cavities. The mutual
compensation of the EDX pattern between C element and Mo
element in Fig. 2b and c, and the consistency to the geometric
pattern found in the SEM result also support the assignment
of the chemical pattern. Thus, HPMo12 additive specically
modies the inner walls of cavities (Scheme 1).
Local polymerization of pyrrole monomer in the cavities

The selective deposition of the water soluble heteropoly acids
into the patterned cavities provides a facile route to
This journal is © The Royal Society of Chemistry 2018
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Fig. 3 SEM images of (a) HPMo12/PMMA porous film containing pol-
ypyrrole spheres and (b) its amplification in one cavity, in which the film
is prepared by dipping the hybrid porous film in 0.1 M pyrrole aqueous
solution for ca. 40 min under pH 4.
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functionalize the polymer surface locally. More interestingly,
HPMo12, as a kind of strong oxidant and acid, was reported to
be applicable for the oxidation polymerization of pyrrole in the
absence of any other reagents.20,21 A small ratio of HPMo12
oxidant can perform a high efficiency for the polymerization
reaction of pyrrole monomers, as shown in the following
equation.22 Aer dipping HPMo12 anchored porous polymer
lm into the pyrrole aqueous solution for 40 min at room
temperature, quite uniform spheres are found existing in the
cavities of the patterned lm even aer several times of
washing with water (Fig. 3a). The UV-Vis spectrum shown in
Fig. S1† indicates the characteristic absorption of polypyrrole
based on the reported results at ca. 360 and 480 nm,23 in
contrast to no absorption appearing at those positions before
the oxidation polymerization. A close examination of the lm
reveals that the polypyrrole particles are in tablet shape with
several hundred nanometers, as shown in Fig. 3b. To further
demonstrate the polypyrrole particles deriving from the
oxidative polymerization of pyrrole monomer, the XPS spectra
of the patterned porous lm aer the reaction are carried out
as shown in Fig. S2.† Due to the weak interaction among P123,
heteropoly acids and polypyrrole objects, a partial weight loss
occurs during the washing procedure aer the polymerization,
which leads to a low coverage of the polypyrrole polymers in
the cavities. The low coverage of the polypyrrole spheres in the
cavities could be improved through the optimization of the
chemical composition of the cavities by using substituted
materials with a bit stronger interaction.
Fig. 4 SEM images of HPW12/PMMA porous films (a) without and (b) wit
aqueous solution for 30 min, where (c) is the amplification of (b) in one

This journal is © The Royal Society of Chemistry 2018
(1)
Local reduction of silver ions in the cavities

It is known that the heteropoly acids can be transferred to its
reduced state (some metal ions change the oxidized state from
M6+ to M5+) through UV light photoirradiation in solution.24 The
blue colored heteropoly acids in its reduced state can be used
for the reduction of addedmetal ions (fromM+ to M0).25,26 In the
present study, we employed such reaction for the in situ
reduction of silver ions in the patterned cavities, as indicated in
the eqn (S1).† Aer the irradiation with UV light (wavelength <
400 nm) for ca. 15 min, the HPW12 patterned lm is sucked in
AgNO3 aqueous solution for ca. 30 min and then washed with
water. The emergence of the absorption band at ca. 410 nm in
the UV-Vis spectrum conrms the reduction of silver ions and
the formation of nanoparticles (Fig. S3†). Further, the XRD
pattern also demonstrates the formation of silver nanoparticles
aer the treatment procedures due to the appearance of char-
acteristic peaks for silver element (Fig. S4†). Compared with the
SEM image of the virgin lm (Fig. 4a), the locally dispersed Ag
nanoparticles with spherical morphology in a broad size
distribution indicates the successful in situ preparation in the
cavities of the patterned lm. Because the polymer lm is stable
in aqueous solution, the geometric morphology of the pattern
cavities is well maintained (Fig. 4b and c). In addition, the EDX
analysis is also an impactful method to determine the distri-
bution of silver nanoparticles, because no silver element is
contained in the original porous lms. As expected, the silver
element in blue color is observed locating in the domains where
the silver nanoparticles stay in the cavities, as seen in Fig. S5.†
To further conrm the nanoparticles deriving from the reduc-
tion of silver ions, the XPS spectra of the patterned porous lm
aer the reaction are carried out as seen in Fig. S6.† The silver
element is checked out although only a few of silver nano-
particles at the top surface of the porous lm due to the washing
step. Some larger particles with the dimension in several
h the irradiation of UV light for 15 min and then dipped in silver nitrate
cavity.

RSC Adv., 2018, 8, 36558–36562 | 36561
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hundred nanometers are obtained because of the aggregation of
small silver particles, accompanied by the prolongation of the
reaction time. In comparison with the pattern directly prepared
by pure organic modied gold or silver nanoparticles, the
present hybrid lm bearing heteropoly acids decorated cavities
seems more efficient in gathering the nanoparticles in the
cavities of the lm.27,28 Moreover, a small number of silver and
polypyrrole nanoparticles can be fall from the cavities on the
porous lm aer the repetitive washing steps. However, most of
silver and polypyrrole nanoparticles could be separated from
the cavities aer the multiple sonication and washing treat-
ments, as seen in Fig. S7.†

Conclusions

In conclusion, the porous lms, where the heteropoly acids are
assembled into the cavities and the polymer are distributed on
the framework, have been developed through the micro-
emulsion approach. The process is much simpler and more
facile for fabricating chemically modied cavities on the poly-
mer surface while the pattern formation. Herein, the heteropoly
acids are locally assembled in the patterned sites on the poly-
mer surface in one step, saving some complicated steps for the
decoration of cavities which is applied in the breath gure.
Interestingly, the excellent features of the heteropoly acids are
maintained. Then, the simple functionalization of the modi-
cation component heteropoly acids for the reduction of metal
ions and the oxidation polymerization of pyrrole in the local
position proves the role of the chemical modied cavities and
potential applications in material science and biomaterials.
Furthermore, it can be envisioned that other aqueous-soluble
molecules and nanoparticles with diverse physical, chemical
or biological properties also are favorable for the functionali-
zation of the porous polymer lms, which further endow the
lms with a variety of potential applications in catalysis, sensor,
biomedicine, and so forth.
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