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Synthesis of a one-dimensional atomic crystal of
vanadium selenide (V,Seo)T
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Woo-Sung Jang,© Jimin Jang,® Yasmin Hussain,® Dong Kyu Lee,®
Young-Min Kim, &< Hak Ki Yu® *¢ and Jae-Young Choi {2 *2°

The synthesis and nanoscale dispersion of a new one-dimensional (1D) material, V,Sey, in which chain-
shaped molecular units with strong covalent bonds are assembled in a crystal structure via weak van der
Waals attraction between chains, were successfully carried out. V,Seq is synthesized by solid-state
reaction and additional heat treatment. The synthesized V,Seg has excellent thermal stability up to
400 °C and has been experimentally confirmed to be dispersed up to ~20 nm or less through a specific
solvent dispersion. The covalently bonded V,Seg chain, when isolated from its bulk material, is expected
to exhibit unique quantum physical properties owing to the confinement of electrons in the 1D chain
structure and the absence of inter-chain interactions, as demonstrated in the case of graphene and
other 2D materials. Therefore, the novel 1D material of V,Seq, as an extension of the current 2D material,
is expected to create a new class of materials that will be of significant interest to the materials science

rsc.li/rsc-advances

Introduction

Scaling down or size-reduction has been one of the important
aspects of modern science and technology for the development
of devices with higher performance. To overcome the problems
of existing materials occurring in nano-size, there has been
a paradigm shift in research towards low-dimensional (2D and
1D) materials. Unlike the nanomaterials obtained by merely
reducing the size of bulk materials, low-dimensional materials
present new quantum-physical characteristics and excellent
electrical, optical, and mechanical properties.'™

Among the 2D materials, graphene exhibits excellent carrier
mobility, but does not have the bandgap necessary for the
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and nanotechnology communities for new device applications.

fabrication of reliable semiconductor devices.'” Other 2D
semiconductor materials, such as transition metal dichalcoge-
nides (TMDCs) and black phosphor, have appropriate bandgaps
(1-2 eV), but their stability and/or carrier mobility are
limited."™ More importantly, decreased transport properties
at the nanoscale are still unavoidable in current 2D materials,
because they have dangling bonds at the side edges and domain
boundaries." Carbon nanotubes (CNTs, representative 1D
materials), which exhibit high electrical mobility, chemical
stability, and mechanical strength, have been extensively
studied for use as building blocks of transistors, sensors, and
nanocomposites.’>"” However, the wide range of electronic
structures that arise from the different chirality of CNTs hinders
the fabrication of nanoelectronic devices with uniform perfor-
mance. Therefore, it is necessary to either achieve separation of
single-chirality CNTs from bulk CNTs or control the chirality
during the growth of CNTs." Although several studies have
addressed these issues, it is still challenging to obtain single-
chirality CNTs.

To overcome the problems of existing low-dimensional
materials, researches on new 1D materials have been carried
out. For example, extensive studies for bulk synthesis and
atomic scale dispersion of LiMos;Se; and MosS,_,I, have been
reported.’** Recently, quantum confinement effect of LiMo;-
Se; and bio-stability of MogSy_,I, were demonstrated and their
applications have been explored.******* In addition, device
application using new 1D materials, such as Sb,Se; (optoelec-
tronic devices using the property of effectively reducing exciton
decay because of absence of dangling bonds) and VS,
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(electrochemical energy storage using the space between 1D
nanostructures) have been reported.***® Therefore, there is
a definite scope for identification, synthesis, and characteriza-
tion of new 1D materials.

By understanding the mechanism by which 1D materials
form a 3D structure, new 1D materials can be discovered for
potential applications. As the interlayer coupling energy of 2D
materials is categorized into van der Waals (vdW) bonding and
electrostatic bonding, the above-mentioned new 1D materials
can also be classified accordingly: vdW bonding in Sb,Se,,
MogSo_,I,, and VS, and electrostatic bonding by intercalated Li*
in LiMo;Se;. In the case of cation intercalated 1D materials,
cations are separated in the process of dispersion,* leaving
a local negative charge defect on the surface of the 1D mate-
rials.”?* On the other hand, in the case of vdW bonding, it is
advantageous to obtain a high-purity 1D atomic crystal without
surface defects using an appropriate synthesis process. Among
the 1D materials with vdW type bonds, the synthesis, disper-
sion, and basic properties of MogSy_,I, have been studied to
a relatively significant degree.”****'"* However, the crystal
structure of MogSo_,I, has not been well-defined since the
positions of sulfur and iodine atoms bridged to molybdenum
atoms may vary even in the same stoichiometric composition.
In addition, the thermodynamic information of the ternary
system (Mo, S, and I) is also lacking, which makes it difficult to
understand the physical properties of M0gSy_,I,.*°

In this study, we have synthesized a new 1D bulk material
with a binary system and well-defined crystal structure, V,Seo, in
which chain-shaped molecular units with strong covalent
bonds are assembled in a crystal structure via weak vdwW
attraction between chains. In addition, 1D materials with an
inorganic molecular chain structure and dangling bond-free
surface were obtained as a single-chain atomic crystal from
a 3D bulk solid by the dispersion based exfoliation method (see
Fig. 1a).

Results and discussion

As shown in the phase diagram in Fig. 1b, vanadium, transition
metal with an outermost 3d orbital, can bond with selenium in
various compositions (from VsSe, to V,Seg). Therefore, to
synthesize a stoichiometric V,Seq compound, the V: Se ratio
and the synthesis temperature need to be carefully considered.
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Fig. 1 (a) Crystal structure of V,Seg and schematic illustration of the
V,Seg dispersion. (b) Phase diagram of V-Se binary system.
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Fig. 2 (a) XRD patterns (inset is the optical images of sample before
and after reaction) and (b) SEM images (left) and EDS analysis (right) of
as-synthesized samples with T ranging from 320 °C to 380 °C. (V : Se
ratio is 2 : 12.6).

When the synthesis of V and Se powders in solid form is carried
out at an exact atomic mixing ratio of 2 : 9, an unwanted phase
(VSe,) can be formed at the specific interface owing to fluctua-
tions in the V : Se ratio. Therefore, in this study, the experiment
was carried out under excess Se conditions (V: Se ratio of
2 :12.6). The experimental results obtained for the exact stoi-
chiometric ratio of 2 : 9 are shown in Fig. S2.1

The results of X-ray diffraction (XRD) analysis of the samples
synthesized at different temperatures (Fig. 2a) indicate that the
V,Sey phase is formed at temperatures below 330 °C, whereas
the VSe, phase is formed at temperatures above 360 °C (mixed
phase at 340 °C). Scanning electron microscopy (SEM) and
energy dispersive spectroscopy (EDS) were performed to analyze
the structure and the composition of the materials synthesized
at three specific temperatures (330, 340, and 380 °C). Using the
results of XRD and EDS composition analysis, it is possible to
determine the composition of the microstructural region at
each temperature (Fig. 2b and S21). The VSe, phase appears at
380 °C and shows a layered lamellar structure, which is similar
to the previously reported structure of TMDCs.*” The V,Seq
phase, which appears at temperatures =< 340 °C, exhibits a 3D
structure. However, as can be seen from the SEM images at
340 °C, a part of the V,Seq phase begins to partially disperse into
a 1D structure like a thread. Furthermore, Se, which is observed
at all temperatures, is dispersed in several places in the form of
particles; Se can be removed by heat treatment at its sublima-
tion temperature (>221 °C).*®

The remaining Se particles can be removed by sublimation
(heat treatment in a tube furnace at 250 °C under Ar atmosphere
for 24 h). It is evident from the XRD pattern (Fig. 3a) that, Se
with hexagonal crystals in the solid state can be completely
removed after sublimation, and the V,Se, solid crystal is
exposed at the site where Se is sublimated (Fig. 3b). The thermal
stability and the residual Se sublimation of V,Se, were
confirmed by thermogravimetric characterization using differ-
ential thermal analysis (DTA) and thermogravimetric analysis
(TGA) (Fig. 3c and d). Before Se sublimation treatment, the mass
decrease was about 68.1%, while that after Se sublimation
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Fig. 3 Physical and chemical changes of V,Seg synthesized at 330 °C
after Se sublimation. (a) XRD patterns (bottom: before Se sublimation, top:
after Se sublimation), (b) SEM images (top: before Se sublimation, bottom:
after Se sublimation, red dashed circle is Se) and (c and d) TG/DTA analysis
in N, atmosphere (left: before Se sublimation, right: after Se sublimation,
red dashed line is Se sublimation and V,Seq decomposition step).

treatment was 46.5%. Mass reduction occurs even after Se
sublimation, because the decomposition process (V,Seqi) —
2VSe,s) + 5Se)) happens at approximately 400 °C. In other
words, the V,Seq samples synthesized in this experiment show
stable thermal properties up to 400 °C. Also, after Se sublima-
tion, the exothermic DTA peaks at approximately 400 °C is
evident along with decomposition of V,Sey into VSe, and Se.
Otherwise, in the DTA curves before Se sublimation, exothermic
peaks from decomposition reaction (V,Seq) — 2VSeys) + 55€(g)
is cancelled out by the endothermic Se sublimation reaction.
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The residual-Se sublimated V,Seqy was dispersed into a 1D
chain and its characteristics were analyzed. Bulk V,Sey was
dispersed in isopropyl alcohol (IPA) solvent and deposited on Si/
SiO, wafer after sonication. As shown in Fig. 4a, a distinctive
Tyndall effect appears, indicating nanoscale dispersion. The
dispersed V,Seq in IPA were spin-coated on Si/SiO, substrates,
and the size of the nano-chain was analyzed using an atomic
force microscope (AFM); the results are shown in Fig. 4b. It is
evident that the 1D structure of V,Ses chains with an average
size of 16 nm is well dispersed. IR absorption spectrum of
dispersed solution is given in Fig. S3.1 The IR absorption peak is
observed at 1700 nm which correspond to the known bandgap
of 0.73 eV (Fig. S31). Transmission electron microscopy (TEM)
results also confirm that the 1D chain of size 16 nm exhibits
a high degree of crystallinity and is well separated (Fig. 4c). It is
considered that more detailed separation of 1D V,Sey chains
into atomic units will require optimization of the dispersion
solvent and the dispersion process.

Experimental section
Synthesis

Vanadium selenide (V,Seq) was synthesized using V (powder,
-325 mesh, 99.5%, Aldrich) and Se (powder, 99+%, Alfa Aesar)
elements. The mixture of V (0.2038 g) and Se (1.4213 or 1.9898 ¢
for V: Seratio of 2 : 9 or 2 : 12.6) was pelletized and then sealed
in a 10 cm-long evacuated quartz tube. The quartz ampoule was
heated for 120 h at a temperature of 300-400 °C (at 5.5 °C h™ ")
and then cooled (at 10 °C h™'). The resulting material was
a dark gray sintered powder (right inset, Fig. 2a). The unreacted
Se was sublimated in a tube furnace at 250 °C under Ar atmo-

sphere for 24 h.
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Fig.4 Dispersion of V,Seq in IPA. (a) Tyndall effect of V,Seq dispersed solution. (b) AFM image of V,Seq chains deposited on Si/SiO, substrate and
the height profiles along each dashed line. (c) TEM images and FFT pattern (inset) of dispersed V,Seg chains (the distance between two chains

marked by yellow line is 0.382 nm).
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Dispersion

Two milligrams of V,Se, were dispersed in 20 mL of IPA by ultra-
sonication. The ultrasonication was implemented by probe soni-
cation (VC 505, Sonics & Materials, Inc.) for 5 min ata 2 s on/2 s off
interval in order to crush the chunk powders. Then, bath sonica-
tion was implemented (B2005S-68K, 68 kHz, 200 W, KODO Tech-
nical) for 3 h to exfoliate the crushed bulk V,Se, into nanochain as
well as prevent the damage from probe sonication.*** After
ultrasonication, centrifugation at 6000 rpm for 10 min was carried
out to remove the insufficiently dispersed chains. Five milliliters of
the supernatant solution was used for AFM and TEM analyses.

Characterization

Powder XRD (Mac Science, M18XHF22) was performed using
Cu-K, radiation (A = 0.154 nm). A field-emission scanning
electron microscope (FESEM, Hitachi, S-4300SE) and EDS
attached to FESEM was employed for morphology and compo-
sition analysis. Thermal gravimetry differential thermal anal-
ysis (TG-DTA, Seiko Instrument Inc., TG/DTA7300)
measurements were performed under N, atmosphere up to
1200 °C (at 10 °C min™~'). Atomic force microscopy (AFM, Park
systems, XE100 & XE150) was operated in non-contact mode;
the samples were prepared by spin coating on Si/SiO, wafer. UV-
vis-NIR spectroscopy (Agilent Technologies, CARY-5000) was
employed for the optical property analysis. An aberration-
corrected scanning transmission electron microscope (STEM,
JEOL, JEM ARM 200F) was operated at an acceleration voltage of
80 kv. The sample for STEM was prepared by drop casting on
a graphene-coated Quantifoil TEM grid.

Conclusions

The synthesis and nanoscale dispersion of a new 1D material,
V,Seq, which exhibits a molecular chain structure with a diam-
eter up to ~1 nm, were successfully carried out. The reaction
of Vand Se was induced by the solid-state method to synthesize
high purity V,Ses crystals. The synthesized V,Se, crystals were
dispersed to obtain 1D nanochains with a size of 16 nm or less.
The covalently bonded V,Sey chain, when isolated from its 3D
bulk material, is expected to exhibit unique quantum physical
properties owing to the confinement of electrons in the 1D
chain structure and the absence of inter-chain interactions, as
demonstrated in the case of graphene and other 2D materials.™*
Therefore, the novel 1D material of V,Seq, as an extension of the
current 2D material, is expected to create a new class of mate-
rials that will be of significant interest to materials science and
nanotechnology communities for new device applications.
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