A facile route to magnetic mesoporous core–shell structured silicas containing covalently bound cyclodextrins for the removal of the antibiotic doxycycline from water†

Ying Zhang, Fuquan Jiang, Danya Huang, Shushan Hou, Hongli Wang, Minggang Wang, Yue Chi* and Zhankui Zhao*

The excessive use of antibiotics has led to various environmental problems; the control and separation of these antibiotics are important in environmental science. Herein, a novel mesoporous nanocomposite, Fe3O4@SiO2@mSiO2–CD, has been synthesized for the removal of antibiotic compounds from aqueous media. The well-designed nanocomposite is composed of β-cyclodextrin functionalized surfaces, ordered mesoporous silica shells with large radially oriented mesopores, and nonporous silica-coated magnetic cores (Fe3O4). The synergistic action of both the mesoporous structure and the accessible cavity of β-cyclodextrin ensures the good adsorption of doxycycline. Furthermore, the Fe3O4@SiO2@mSiO2–CD nanocomposite can be collected, separated and easily recycled from aqueous solution using an external magnet.

1. Introduction

Antibiotics are an emerging and important type of environmental contamination, and their removal from aqueous solution has attracted significant research interest due to their potential for causing antibiotic-resistant genes that can result in superbugs. Many methods have been applied in the removal of antibiotics from wastewater, such as chlorination, advanced oxidation technology, biodegradation, adsorption and membrane processes. Among these methods, adsorption has received the most attention due to the advantages of easy operation, low cost, high efficiency, and no risk of highly toxic byproducts. Some novel adsorbents include biochar, coconut palm, imprinted materials, natural soils, and metal oxides.

Due to the high surface area, large pore volume, regular and tunable pore size, and interconnected frameworks, extensive studies have been focused on using mesoporous silicas for the removal of inorganic pollutants such as heavy metal ions and organic hazardous pollutants such as antibiotics, dyes, etc. However, due to the special nature of antibiotics, unmodified mesoporous silicas exhibit limited ability in their adsorption; therefore, in order to get enhanced adsorption performance, functional groups need to be introduced to alter the surface properties of mesoporous silicas. Currently, there are few efficient modified methods aimed toward the adsorption of antibiotics. Cyclodextrins (CDs) are a class of macrocyclic molecules with a hydrophilic exterior and a lipophilic interior cavity, and they can form inclusion complexes with organic molecules that can be trapped in the hydrophobic cavity through host–guest interactions. CDs are also highly water-soluble and thus need to be grafted onto a solid phase such as polymers and porous silicas.

The separation of mesoporous silica adsorbents from the final system is notoriously difficult, even causing secondary pollution. Magnetic separation provides a very convenient method for removing and recycling particles/composites by applying external magnetic fields, and so magnetic nanomaterials are widely used in environmental treatment. Nano Fe3O4, a kind of magnetic nanomaterial, has obtained considerable attention due to its high specific surface area and unique superparamagnetism. To get enhanced adsorption performance, the preparation of magnetic mesoporous silicas by combining the advantages of mesoporous structure and magnetic properties together could lead to high specific surface area and the ability for magnetic recovery and result in a major leap forward for treating wastewater.

On the basis of comprehensive considerations, we prepared magnetic mesoporous core–shell structured silicas with radially oriented large mesopores and β-cyclodextrin functionalized surfaces, which combine the advantages of the mesoporous...
structure, suitable surface properties, and good magnetic separability. The β-cyclodextrin functionalized mesoporous silica can be used as a highly efficient adsorbent for trapping doxycycline (DOX), exhibiting high adsorption capacity and immobilization efficiency, and good recycling stability.

2. Experimental

2.1. Chemicals

All chemicals were used as received without any further purification. Ferric chloride (FeCl₃·6H₂O), tetraethyl orthosilicate (TEOS, 98%), ethylene glycol, ammonia solution (28%), triethanolamine (TEA), cetlytrimethyl ammonium bromide (CTAB), (3-aminopropyl) trimethoxysilane (APTMS), and mono-chlorotriazinyl β-cyclodextrin (MCT-β-CD) were purchased from Aladdin reagent (Shanghai) Co. Ltd. Doxycycline hydrochloride was purchased from Sinopharm Chemical Reagent Co. Ltd. Methanol, ethanol, ammonia solution, ammonium hydroxide, ferric chloride, and sodium bicarbonate were purchased from Shanghai Chemical Reagent Co. Ltd. Doxycycline hydrochloride is a white or yellowish powder, soluble in water.

2.2. Preparation of Fe₃O₄@SiO₂@mSiO₂-CD microsphere

The core-shell structured mesoporous Fe₃O₄@SiO₂@mSiO₂ microspheres were prepared through a multistep approach according to the published procedure (for details, see ESI†). To introduce covalently bound cyclodextrins, 100 mg MCT-β-CD and 50 mg APTMS were dissolved in 10 mL of deionized water, then 50 mg sodium bicarbonate was added. The solution was magnetically stirred at 40 °C for 30 min, forming a clear solution. After adding 10 mL of ethanol, the white flocculated precipitate of β-cyclodextrin-silica derivative was formed immediately. At this point, 90 mL of deionized water was added under stirring to redissolve the β-cyclodextrin-silica derivative, and then 100 mg of Fe₃O₄@SiO₂@mSiO₂ microspheres were dispersed in the above solution under stirring at room temperature for 24 h. The product was collected with the help of a magnetic field, washed several times with deionized water, and dried at 60 °C for 6 h to obtain Fe₃O₄@SiO₂@mSiO₂-CD microspheres.

2.3. Adsorption experiments

The adsorption isotherms of the DOX on Fe₃O₄@SiO₂@mSiO₂-CD were measured according to the following procedure. Typically, 10 mg Fe₃O₄@SiO₂@mSiO₂-CD was stirred with 20 mL of DOX aqueous solution with a predetermined concentration, and shaken continuously at 298 K for 24 h to ensure adsorption equilibrium. The adsorption kinetics for DOX adsorption on Fe₃O₄@SiO₂@mSiO₂-CD was analyzed by mixing Fe₃O₄@SiO₂@mSiO₂-CD with 20 mL DOX solution (100 mg L⁻¹) at 298 K. At various time intervals, parts of the mixture were separated and the concentration of pollutant remaining in solution was measured. In the adsorption equilibrium and kinetic experiments, the initial pH of the DOX solution was 3.8.

To evaluate the effect of pH, 10 mg of Fe₃O₄@SiO₂@mSiO₂-CD was added to 20 mL of DOX solution with the concentration of 100 mg L⁻¹. The pH of the mixed solution was adjusted using hydrochloric acid or sodium hydroxide in the range of 3 to 11. The mixed solution was constantly stirred for 24 h at 298 K. To evaluate the effect of temperature, 10 mg Fe₃O₄@SiO₂@mSiO₂-CD was added to 20 mL of DOX solution with predetermined concentrations (10–100 mg L⁻¹). The mixed solution was constantly stirred for 24 h at 298 K or 303 K; the initial pH of the solution, before it was adjusted, was 3.8.

To evaluate the effect of ionic strength, different amounts of NaCl or CaCl₂ were added to the DOX solution. The concentration of NaCl or CaCl₂ was in the range from 0 to 0.5 mol L⁻¹. Other adsorption procedures were the same as those in the above-mentioned pH-effect experiments.

2.4. Characterizations

The morphologies of the as-prepared nanocomposite were observed using scanning electron microscopy (SEM, JEOL JSM-5600), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM, JEM-2000). The surface chemical properties of the samples were determined using Fourier transform infrared spectroscopy (FT-IR, Bio-Rad, FTS 6000). The nitrogen adsorption and desorption isotherms were measured at 77 K on a Micromeritics ASAP 2020 plus HD88 instrument (Micromeritics Instrument Corp., Norcross, GA). The Brunauer–Emmett–Teller (BET) specific surface area was calculated using desorption data. The pore size distribution curves were calculated from the analysis of the desorption branch of the isotherm using the Barrett–Joyner–Halenda algorithm. X-ray diffraction (XRD) patterns were collected using a Bruker D8 Advance X-ray diffractometer to identify the crystal and channel structure with a Cu Kα X-ray source operating at 9 kV and 200 mA for small-angle X-ray scanning. UV-visible absorption spectra were recorded using a UV-visible spectrophotometer (Cary-5000) to monitor the adsorption process.

3. Results and discussions

3.1. Cyclodextrin-modified magnetic mesoporous nanomaterials

The mesoporous organic–inorganic hybrid silica Fe₃O₄@SiO₂@mSiO₂-CD can be fabricated through a multistep approach (Scheme 1). As shown in Scheme 1, Fe₃O₄@SiO₂@mSiO₂-CD loaded with DOX was therefore treated with a methanol solution (60%, v/v) under ultrasonication for 1 h. The product was collected with the help of a magnet field, followed by repeated washing with deionized water and ethanol. Finally, the product was vacuum dried at 50 °C. We repeated the above procedure for four cycles.

To ensure adsorption equilibrium, the Stöber method and surfactant templating approach.
shape with a mean diameter of about 350 nm, 420 nm and 510 nm, respectively. The FeO₄@SiO₂@mSiO₂ microspheres were nearly monodisperse with a clearly distinguishable three-layer structure including a FeO₄ core, a SiO₂ interlayer, and a mesoporous SiO₂ outer layer with large radially oriented mesopores. In order to produce an efficient adsorbent for antibiotics, we developed a facile method to activate FeO₄@SiO₂@mSiO₂, resulting in β-cyclodextrin functionalized FeO₄@SiO₂@mSiO₂-CD. As illustrated in Scheme 1, β-cyclodextrin was introduced into the pore channels through a grafting approach, and the APTMS as a linker that reacted with MCT-β-CD forming the β-cyclodextrin-silica derivative was attached to the pore channels. Therefore, the FeO₄@SiO₂@mSiO₂-CD microspheres have β-cyclodextrin and triazinyl groups that can provide multiple interactions, including inclusion interactions, hydrophobic interactions, electrostatic attractions, and π–π interactions, to achieve an efficient adsorbent for antibiotics. It can be seen that the FeO₄@SiO₂@mSiO₂-CD microspheres are still a clearly three-layer structure with diameter of about 510 nm. As shown in Fig. 1, the FeO₄@SiO₂@mSiO₂-CD microspheres still retain the morphological properties of FeO₄@SiO₂@mSiO₂, which were well dispersed without the occurrence of aggregation and the radially oriented large mesopores were well preserved after surface modification. The wide-angle XRD pattern of FeO₄@SiO₂@mSiO₂-CD exhibited almost the same features as pure FeO₄, except for a broad peak centered at 22° of 2θ (Fig. S2†), indicating that the coated SiO₂ is amorphous. The EDX characterization demonstrates that FeO₄@SiO₂@mSiO₂-CD contains necessary and diagnostic elements (Fe, Si, O, C and N), indicating the presence of functional groups (Fig. S3†).

Fig. 2 shows the FTIR spectra of FeO₄@SiO₂@mSiO₂ and FeO₄@SiO₂@mSiO₂-CD. As can be seen, FeO₄@SiO₂@mSiO₂ shows framework bands at 1081 cm⁻¹ and 799 cm⁻¹, attributed to the anti-symmetric stretching and symmetric stretching frequencies of Si–O–Si, respectively. The broad peak at 3416 cm⁻¹ is attributed to the O–H stretching vibrations, indicating the presence of surface hydroxyl groups and
The bands observed at 568 cm\(^{-1}\) and 963 cm\(^{-1}\) were characteristic of Fe–O stretching vibrations and stretching modes of surface Si–OH, respectively. In addition to the peaks that correspond to Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\), the FTIR spectrum of Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\)-CD exhibits the vibration peaks around 1625–1400 cm\(^{-1}\) assigned to triazinyl groups and the peak at 2938 cm\(^{-1}\) assigned to C–H stretching of methyl groups, which suggest that the \(\beta\)-cyclodextrin was successfully introduced upon grafting.

\(\text{N}_2\) adsorption–desorption isotherms of the Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\) and Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\)-CD show type IV curves with H1 hysteresis loops (Fig. 3A), indicating uniform mesopores. From the pore size distribution curves (Fig. 3B), the samples exhibit similar pore size distribution in the range of 5–25 nm. Compared with Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\), the pore size, surface area and pore volumes of Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\)-CD were reduced (Table 1), which can be attributed to the introduction of functional groups in the mesopores according to previous studies. However Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\)-CD can still exhibit the large specific surface area and pore size, suggesting that the surface modification method in this work is suitable and the highly open mesopores can be preserved. The small angle XRD patterns of Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\) and Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\)-CD microspheres show an obvious diffraction peak between 2\(\theta\) = 2° and 3°, indicating an ordered mesostructure (Fig. 3C). After surface modification, a decrease in the intensities and a slight shifting of the peaks to higher angles were observed, suggesting that the functional groups were grafted inside the pores.

Magnetization curves of the Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\) and Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\)-CD exhibit near-zero coercivity and remanence, suggesting their superparamagnetic nature (Fig. 4). Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\) and Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\)-CD nanocomposites have magnetization saturation (\(M_s\)) values of 33.59 and 30.99 emu g\(^{-1}\), respectively. Because of the introduction of functional groups, the \(M_s\) value of Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\)-CD slightly decreased as compared with that of Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\). However, the core–shell structured Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\)-CD nanocomposite still showed strong magnetization, indicating its suitability for magnetic separation and recovery. The Fe\(_3\)O\(_4\)@SiO\(_2\)@mSiO\(_2\)-CD microspheres can be quickly attracted to the side of the vial with the aid of a magnet, leaving the solution transparent (Fig. 4, inset), and can be well redispersed by shaking the vial.

3.2. Adsorption kinetics and effect of time

As shown in Fig. 5, the adsorption capacity increased rapidly in the initial 6–10 h, and then slowly increased, finally reaching equilibrium. The initial rapid increase can be interpreted as the DOX molecules filling the open and cyclodextrin-functionalized
mesopores. For wastewater treatment applications, the contact time is an important parameter. A short adsorption equilibrium contact time is beneficial. The contact time required for antibiotics adsorption using Fe₃O₄@SiO₂@mSiO₂-CD adsorbent is very short compared to other reported adsorbents such as activated carbon.

In order to study the DOX adsorption kinetics, several kinetic models were used to fit the experimental data. The pseudo-first order kinetic model and the pseudo-second-order equation are often used to represent the kinetic adsorption of antibiotics onto the adsorbents, which can be represented in eqn S1.† The DOX adsorption onto Fe₃O₄@SiO₂@mSiO₂-CD microspheres is a complicated process that not only involves physical diffusion and adsorption but also possibly involves chemical bonding and reactions. The applied kinetic models provided parameters and the regression coefficients, R^2, as shown in Table 2. It can be seen for the DOX adsorption onto Fe₃O₄@SiO₂@mSiO₂-CD that the pseudo-second-order R^2 (0.984) is slightly lower than R^2 (0.986) of the pseudo-first-order model. However, according to the pseudo-second-order model, the calculated maximum adsorption capacity (83.33 mg g\(^{-1}\)) is close to the actual experimental data (78 mg g\(^{-1}\)), suggesting that DOX adsorption onto the Fe₃O₄@SiO₂@mSiO₂-CD corresponds to the pseudo-second-order model to a greater extent. This result indicated that the adsorption process was due to chemisorption. However, considering the reasonably good fit to the pseudo-first-order model as well, we propose that both chemisorption and physisorption might take place in this adsorption system.

3.3. Adsorption isotherm

Adsorption isotherms can help to understand the interactions between the adsorbent and the adsorbate in the adsorption process. Fig. 6 shows the adsorption isotherms for DOX adsorbed onto the prepared adsorbent Fe₃O₄@SiO₂@mSiO₂-CD microspheres at 298 K. It can be observed that the amount of DOX adsorbed gradually increases with the concentration of DOX. Fe₃O₄@SiO₂@mSiO₂ and Fe₃O₄@SiO₂@mSiO₂-CD maximum adsorption capacity can reach 34 mg g\(^{-1}\) and 78 mg g\(^{-1}\), respectively. This means that the presence of functional groups on the surface of the adsorbent enhanced the adsorption of DOX.

Table 1 Textural properties of Fe₃O₄@SiO₂@mSiO₂ and Fe₃O₄@SiO₂@mSiO₂-CD microspheres

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pore size (nm)</th>
<th>BET surface area (m² g(^{-1}))</th>
<th>Pore volume (cm³ g(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₃O₄@SiO₂@mSiO₂</td>
<td>9.5</td>
<td>234</td>
<td>0.53</td>
</tr>
<tr>
<td>Fe₃O₄@SiO₂@mSiO₂-CD</td>
<td>9.4</td>
<td>119</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Table 2 Kinetic model parameters for the adsorption of DOX onto the Fe₃O₄@SiO₂@mSiO₂-CD

<table>
<thead>
<tr>
<th></th>
<th>Pseudo-first-order</th>
<th>Pseudo-second-order</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_1 (min(^{-1}))</td>
<td>q_e (mg g(^{-1}))</td>
<td>R^2</td>
</tr>
<tr>
<td>K_2 (g mg(^{-1}) h(^{-1}))</td>
<td>q_e (mg g(^{-1}))</td>
<td>R^2</td>
</tr>
<tr>
<td>0.002</td>
<td>443</td>
<td>0.986</td>
</tr>
<tr>
<td>0.008</td>
<td>83.33</td>
<td>0.984</td>
</tr>
</tbody>
</table>

Fig. 4 Magnetization curves of Fe₃O₄@SiO₂@mSiO₂ (a) and Fe₃O₄@SiO₂@mSiO₂-CD (b). The inset is the separation process of the Fe₃O₄@SiO₂@mSiO₂-CD microspheres using a magnet.

Fig. 5 Adsorption kinetics of DOX onto the Fe₃O₄@SiO₂@mSiO₂-CD adsorbents at 298 K. Initial concentration = 100 mg L\(^{-1}\).

Fig. 6 Adsorption isotherms of DOX onto the Fe₃O₄@SiO₂@mSiO₂-CD adsorbents.
Table 3 Langmuir, Freundlich and D–R isotherm parameters for the adsorption of DOX onto Fe3O4@SiO2@mSiO2-CD adsorbents (298 K)

<table>
<thead>
<tr>
<th></th>
<th>Langmuir</th>
<th></th>
<th>Freundlich</th>
<th></th>
<th>D–R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_L (L mg$^{-1}$)</td>
<td>q_m (mg g$^{-1}$)</td>
<td>R^2</td>
<td>K_F (mg g$^{-1}$)</td>
<td>$1/n$</td>
</tr>
<tr>
<td>0.134</td>
<td>200</td>
<td>0.984</td>
<td>2.683</td>
<td>0.987</td>
<td>0.981</td>
</tr>
</tbody>
</table>

To further understand the adsorption mechanism of DOX onto the Fe3O4@SiO2@mSiO2-CD materials, the Langmuir, Freundlich and Dubinin–Radushkevich (D–R) adsorption models were used to fit the experimental data (Fig. 6). The Langmuir, Freundlich, and D–R isotherm models are presented in eqn S2. The Langmuir model assumes the adsorption of a single layer covering the surface, i.e., uniform adsorption. The Freundlich equation can be applied to non-ideal sorption on heterogeneous surfaces as well as multi-layer sorption. The adsorption model parameters are listed in Table 3. The Langmuir isotherm model gave a higher correlation coefficient ($R^2 = 0.984$) for the DOX adsorption on the adsorbent than the Freundlich isotherm ($R^2 = 0.981$), indicating the monolayer coverage of DOX onto the adsorbent. This result indicates that the adsorption process fits the Langmuir model to a greater extent as compared to the Freundlich model. Furthermore, under the initial pH conditions, the Langmuir separation factor K_L was between 0 and 1. It could be inferred that the adsorption process was quite favorable at the studied concentrations used in this study. The D–R isotherm model describes the adsorption process from the energy perspective and can provide the sorption energy E, and can then indicate whether the adsorption process is physical adsorption or chemical adsorption.

For the initial pH, the value of E was 7.45 kJ mol$^{-1}$, suggesting that the adsorption process might be dominated by the physical mechanism. The weak physical forces, such as the hydrophobic effect, electrostatic attractions and hydrogen bonding might affect DOX adsorption onto Fe3O4@SiO2@mSiO2-CD. However, because of the low value of R^2 (0.785) in this study, and from E, it may be deduced that this physisorption hypothesis has limitations.

3.4. Effect of pH on DOX adsorption on Fe3O4@SiO2@mSiO2-CD

The pH of the DOX solution significantly affects the adsorption process, so the appropriate pH value can improve the adsorption efficiency and adsorption capacity. In order to explore the effects of the pH on the removal of DOX, HCl or NaOH solutions were used to adjust the pH of the DOX solution in the range of 3–11. Fig. 7 shows the DOX structural formula.

As shown in Fig. 8A, for pH < 8.0, the adsorption capacity increased with the pH, while for pH > 8.0, it decreased. DOX molecules have tricarbonylamide, phenolic diketone and dimethylamine groups, so depending on the solution pH, DOX can exist as cationic ($pK_a < 3.27$), zwitterionic ($3.27 < pH < 7.32$), neutral, and anionic forms ($pH > 7.32$). For pH < 3.27, in the aqueous solution, the cationic form is the dominant species and the electrostatic interactions with the DOX molecules and the adsorbent are weak; therefore, the quantity of DOX adsorbed onto Fe3O4@SiO2@mSiO2-CD is suppressed. As the pH increased from 3.27, the interaction between DOX and adsorbent increased, mainly because of a decrease in the cationic concentration and the increase in the zwitterionic concentration; i.e., the zwitterionic form is dominant. When the pH was 8.0, the maximum adsorption of DOX was obtained, mainly because the Fe3O4@SiO2@mSiO2-CD surface cyclodextrin structure provided hydrophobic sites that can interact with the DOX molecules via the hydrophobic effect. As the concentration of ions increased at higher pH, a progressive decrease in the adsorption was observed, which could be attributed to the increased negative charge of the Fe3O4@SiO2@mSiO2-CD surface, the decreased electrostatic attraction between the Fe3O4@SiO2@mSiO2-CD and the negatively charged DOX. Based on the experimental data (Fig. 8A), the adsorption capacity of DOX significantly changed when the pH increased, indicating that electrostatic interactions have a major effect in the adsorption process. However, the adsorption capacity showed little change in the pH range of 5.0 to 6.0 and 10.0 to 11.0. This indicates that besides the electrostatic interaction effect, the cyclodextrin cavity also had a hydrophobic effect in the adsorption process.

3.5. Effect of temperature and adsorption thermodynamics

The effect of temperature on DOX adsorption was investigated at 298 K and 303 K under different initial concentrations. As shown in Fig. 8B, the amounts adsorbed onto the Fe3O4@SiO2@mSiO2-CD were reduced when the temperature increased. The reason may be that hydrogen bonds form between DOX molecules and the surface of the...
The DOX molecule possesses one benzene ring, three aromatic heterocyclic groups, and several moieties capable of forming hydrogen bonds with the functional groups on the surface of Fe₃O₄@SiO₂@mSiO₂-CD. Because the hydrogen bond formation releases heat, when the temperature increased, the hydrogen bond effect could lead to a reduction in the adsorbed amount.

To further study the nature of the sorption process, the thermodynamic parameters such as the Gibbs free energy (ΔG^0), the enthalpy (ΔH^0), and the entropy (ΔS^0) were analyzed. The equations are presented in eqn S3, and the results are presented in Table 4; the negative value of ΔH^0 (-17.31 kJ mol$^{-1}$) for DOX indicated the exothermic nature of the adsorption process. The exothermic characteristics revealed that the adsorption process was more favorable at lower temperatures, which was consistent with the experimental results. Furthermore, ΔG^0 value was -0.41 kJ mol$^{-1}$ at 298 K, and the negative value of ΔG^0 indicates that the adsorption process was spontaneous and the type of adsorption was physical adsorption. Therefore, in the process of DOX adsorption onto Fe₃O₄@SiO₂@mSiO₂-CD, physical forces did exist. Further, the value of ΔG^0 increased and became positive at 303 K, indicating that the adsorption of DOX by Fe₃O₄@SiO₂@mSiO₂-CD was suppressed at this temperature.

3.6. Effect of ionic strength

The effects of ionic strength (NaCl, CaCl₂) on DOX adsorption by the adsorbent are depicted in Fig. 8C for Na$^+$ and Ca$^{2+}$ concentrations from 0 M to 0.5 M. The effect of ionic strength was relatively strong on the DOX adsorption; the amounts of DOX adsorbed by Fe₃O₄@SiO₂@mSiO₂-CD decreased with increasing ionic concentration. Fe₃O₄@SiO₂@mSiO₂-CD has accommodative hydrophobic cavities, where interactions with DOX can occur. Theoretically, in the salting-out effect, when the Na$^+$ and Ca$^{2+}$ are added, the solubility of DOX in water decreases and so a larger amount of DOX will be adsorbed on the surface of the adsorbent; however, the practical result is the opposite. DOX molecules contain $-\text{NH}_2$ and $-\text{OH}$ electron-donor groups, which can form stable complexes with Na$^+$ and Ca$^{2+}$. Since the metal complexes improve DOX solubility in water, the amount of adsorbed DOX on Fe₃O₄@SiO₂@mSiO₂-CD decreases. DOX molecules contain C=O and O\cdotsH groups, which might form hydrogen bonds with the functional groups on the surface of the Fe₃O₄@SiO₂@mSiO₂-CD. However, the metal complexes would restrict the hydrogen bond formation, resulting in lower adsorbed DOX amounts. Further, this restriction of the hydrogen bonds formation becomes stronger with increasing Na$^+$ and Ca$^{2+}$ concentrations.

3.7. Regenerability of the adsorbents

The recycling and regeneration of the adsorbent are important in practical applications. As shown in Fig. 9, the adsorption...
efficiency decreased slightly in sequential cycles, but the reusability was over 80% even after four cycles, suggesting that the unique textural structure and surface properties of Fe₃O₄@mSiO₂@mSiO₂-CD result in stability and reusability.

4. Conclusions

In this work, we designed and developed a magnetic responsive mesoporous core–shell structured material, Fe₃O₄@mSiO₂@mSiO₂-CD, with covalently bound cyclodextrins and radially oriented large mesopores. The synergistic action of both mesoporous structure and accessible cavity of β-cyclodextrin ensures the good adsorption of DOX. Hydrophobic effects, hydrogen bonds, and electrostatic interactions play important roles in DOX adsorption onto Fe₃O₄@mSiO₂@mSiO₂-CD. The adsorption kinetics of the adsorbent follow the pseudo-second-order model and the adsorption isotherm data fit well with the Langmuir model. The thermodynamic parameters derived from the results show that the adsorption process of DOX is spontaneous and exothermic. In addition, the adsorbent can be easily removed from aqueous solution by magnetic separation and is easily regenerated; therefore, this material is promising for the removal of antibiotics from wastewater.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 516008050, 51601018 and 51671035), and the Science and Technology Research Project of the Education Department of Jilin Province (Grant no. 2016327).

References

28 K. Li, Z. Zeng, J. Xiong, et al., Fabrication of mesoporous Fe\textsubscript{3}O\textsubscript{4}@SiO\textsubscript{2}–CTAB–SiO\textsubscript{2}, magnetic microspheres with a core/shell structure and their efficient adsorption performance for the removal of trace PFOS from water, Colloids Surf., A, 2015, 465, 113–123.

36 H. Yuhshan, Citation review of Lagergren kinetic rate equation on adsorption reactions, Sciutometrics, 2004, 59(1), 171–177.

