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tes in cells have a critical effect on
the cycle life of parallel lithium-ion batteries†

Fuqiang An, Hongliang Zhao and Ping Li*

More than two parameters are adopted to sort the lithium ion cells (LICs) for better performance in the

production process, such as capacity, open-circuit voltage (OCV), direct current resistance (DCR), et al.

However, more sorting parameters make mass production more complex. In order to solve this conflict,

we compare capacity, OCV, DCR, and self-discharge rate (kOCV) in this paper, investigate their different

effects on the cycle life of parallel LICs through analyzing the relationship between component cell

variations and the durability of the parallel blocks. We find that the variations of the self-discharge rate in

cells significantly affect the discharge capacity retention of the blocks: bigger variation in the cells results

in a better cycle life of parallel LICs. Thus, it is prudent to perform cell sorting for the assembly of

superior blocks based on the self-discharge rates of the cells.
Table 1 Specifications of the Swing 5300 LIB

Item Value

Positive NCA–NMCa mixture
Negative Graphite
1. Introduction

Normally, hundreds of lithium-ion cells (LICs) are connected in
parallel and series in electric vehicles (EVs). Cell to cell variation
(CtCV) is one of the most critical factors affecting the perfor-
mance of the EVs,1–4 including calendar life, power character-
istics and safety issues.5–7 In general, there are two approaches
to improve the CtCVs.8–11

The rst approach is to strictly control the production
process, including cell production and pack assembly. The
corresponding solution involves the advancement of the LIC
design to render it more compatible with the production line.9

The improvement of production automation and quality
control,10 and optimization of the pack design by ensuring
a uniform temperature, includes an accurate battery manage-
ment system (BMS).11

The second approach is to eliminate the outliers through
a sorting method. The main parameters include capacity, open
current voltage (OCV), resistance, et al. However, in the pub-
lished references, they mainly focus on the CtCVs in the initial
state,8 and there is a gap in the knowledge of the effect of sorting
parameters on the whole life period of the LICs.

We can understand that this work is important to LIC
companies. Thus, to align the CtCVs of LICs across their whole
life span, a number of special parameters must be proposed.

Based on these observations and our previous research
conclusions,3 we consider the self-discharge rate (kOCV) of LICs,
which can effectively combine the CtCVs of fresh and aged cells.
logy, University of Science and Technology

.edu.cn

tion (ESI) available. See DOI:

12
Firstly, we test the capacity, OCV, direct current resistance (DCR)
and kOCV of 100 cells, and sort 18 cells which can represent the
characteristics of the whole cells; secondly, we analyze the CtCVs
during the aging process by testing two cell parallel blocks (2P
blocks) and obtain a sequence of parameters for CtCVs; in the
end, we verify the above results using other 2P-blocks.
2. Experimental

Details regarding the LICs obtained from Boston Power
Company (BPI) with a nominal capacity of 5300 mA h are out-
lined in Table 1. Fixtures for the 2P blocks were prepared using
an acrylonitrile–butadiene–styrene (ABS) polymer, while the
positive and negative electrodes were connected using copper
bars, the specications of which are outlined in Table 2.
2.1 Sorting parameters

Capacity, DCR, OCV, and kOCV were measured for fresh cells,
and also for the aged cells of 2P cycled blocks at 25 �C. Capacity
was tested at a rate of 0.3C (1.59 A) in constant current–constant
voltage (CC–CV) mode. The cutoff current for the constant
Nominal voltage 3.65 V
Nominal capacity Nominal resistance

a NCA ¼ LiNi(1�x�y)CoxAlyO2; NCM ¼ LiNi(1�x�y)CoxMnyO2.

This journal is © The Royal Society of Chemistry 2018
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Table 2 Specifications of the 2P1S blocks

Item Value

Type 2P structure
Material ABS
Current collector Copper bar
Assembly method Bolt only
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voltage phase was 160 mA, with a discharge of 0.3C, and
a voltage range of 2.75–4.2 V.

DCR was tested using the current pulse method (Fig. S1,
listed in the ESI†) using an electrochemical workstation
(Solartron Modulab, Ametek, UK) at 100% SOC (State of Charge)
and calculated using eqn (1); the discharge rate was 1C, dura-
tion time was 10 s, and the sampling frequency was 10 Hz.

DCR ¼ E2 � E0

I
(1)

where E2 is the cell voltage aer a 10 s pulse (t ¼ t2), E0 is the
initial OCV before pulse discharge (t¼ t0), and I is the current.

Fig. 1 shows a schematic representation of the test con-
ducted for the self-discharge rate (kOCV). As the cells were fully
charged, the OCV was immediately dominated by the relaxation
caused by diffusion and charge-transfer dynamics, while the
voltage decrease was signicantly slower than the relaxation of
the over-potential from the charging process.12 The OCV (t) was
recorded at 2 h intervals over 2 days with a HIOKI BT3542. The
OCV was the rst data obtained for kOCV.

The coefficient of variation (CV, eqn (2)) is employed to
compare the variation for different units:13

CV ¼ s

m
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i¼1

ðxi � xÞ2
s

1

n

Xn

i¼1

xi

(2)
Fig. 1 Schematic representation of the self-discharge test.

This journal is © The Royal Society of Chemistry 2018
where s is the standard deviation of the samples, m is the mean
of the samples, n is the sample number, and x represents the
cell characteristics (i.e., capacity, OCV, kOCV, or DCR).

For 2P blocks, cycle life was measured at a charge and
discharge rate of 1C at 55 �C, capacity changes were calibrated
aer every 50 cycles at 25 �C, and the blocks were disassembled
into cells to test the capacity, DCR, OCV, and kOCV values.

2.2 Experimental design

A vectorized computation of parameter variations was executed
using Matlab. According to the division based on quartiles and
extreme values, all variations were parameterized as low
(code 1), middle (code 2), or high (code 3).

Nine pairs of cells were randomly selected until the correct
combination was obtained, the codes of which matched the
experimental design codes. Using the design rules outlined in
Table 3, the sorting principles were based on an orthogonal
array, without considering minor interactions between the
factors. These 9 pairs of cells were characterized over the whole
experiment for statistical modeling. Moreover, 6 pairs of cells
were randomly picked from the 100 cells considering only the
levels to validate the results obtained from statistical modeling.

3. Results and discussion
3.1 Calculation of the self-discharge rate (kOCV)

Fig. 2 shows the variation in kOCV with time, where R2 is always
>0.99, and the regular residuals are located on both sides of the
zero line. In addition, a linear relationship is observed between
the percentiles and regular residuals, reective of the normal
distribution of the residuals. A good linear relationship is
observed between voltage and rest time:14

y ¼ kx + b (3)

k ¼
X

xiyi �
�X

xi

X
yi

�.
mX

xi
2 �

�X
xi

�2.
m

(4)

b ¼ (Syi)/m � k(Sxi)/m (5)

R ¼
X

xiyi �m
�X

xi=m
X

yi=m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
xi

2 �m
�X

xi=m
�2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
yi

2 �m
�X

yi=m
�2

r (6)

where yi is the OCV value for each cell, xi is the rest time, k is the
slope of the tting curve (which is equivalent to the negative
self-discharge rate kOCV), b is the intercept of the tting curve,
and R is the correlation coefficient between yi and xi.

3.2 Selection of 18 cells from 100 cells

Resampling was performed using Matlab. Initially, the vector-
ized computation of parameter variation was executed. As
shown in Fig. 3, all variations of selectable pairs of cells for the
2P blocks of approximately C100

2 ¼ 4950 dots are mapped in the
upper le-hand area, and the dots are subsequently divided into
three classes by the 1/3 and 2/3 quartiles of each feature. Nine
RSC Adv., 2018, 8, 30802–30812 | 30803
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Table 3 Orthogonal array of 4 factors of level 3 responses, L9 (34)

Sample Controlling factor Response

Block SN Cell SN
Capacity DCR CV kOCV

CR50
b CR100 CR150Variation

Block 1 Cell 1-1, cell 1-2 1a 1 1 1
Block 2 Cell 2-1, cell 2-2 1 2 2 2
Block 3 Cell 3-1, cell 3-2 1 3 3 3
Block 4 Cell 4-1, cell 4-2 2a 1 2 3
Block 5 Cell 5-1, cell 5-2 2 2 3 1
Block 6 Cell 6-1, cell 6-2 2 3 1 2
Block 7 Cell 7-1, cell 7-2 3a 1 3 2
Block 8 Cell 8-1, cell 8-2 3 2 1 3
Block 9 Cell 9-1, cell 9-2 3 3 2 1

a Levels 1, 2, and 3 represent the canonical coding of low, middle, and high levels in the experimental design, where the variation between the
minimum value and 1/3 quartile of every sample feature is labeled level 1, the variation between the 1/3 quartile and 2/3 quartile of every
sample feature is labeled level 2, and the variation between the 2/3 quartile and maximum of every sample feature is labeled level 3. b CR50,
CR100, and CR150 represent the capacity retention of the blocks aer 50, 100, and 150 cycles, respectively.
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pairs of cells were then randomly pre-allocated to an array,
where all elements of the array are unique. Finally, the pre-
allocated array in the variation space of the 2P cells and in
the design space of the orthogonal array was compared using
Matlab.

The experimental sample was obtained from the total
sample, as guided by the design of experiment (DOE). However,
it is still imperative to ascertain whether the experimental
sample could represent the total sample based on statistical
analysis.

Fig. 4 shows the feasibility of resampling these 9 cells from
the total sample. All hollow dots and lled block dots are clut-
tered in a xed range for each feature, and the observed values
Fig. 2 Relationship between OCV and time during the self-discharge te
based on the linear fitting of OCV vs. time; and (3) regular residual versu

30804 | RSC Adv., 2018, 8, 30802–30812
exhibit no clear trend with increasing serial number. Hence, the
total and experimental samples were considered stochastic.
Moreover, elementary statistics for all features were obtained
from Box–Whisker plots, which represent the height of the box
(representative of 50% of the sample), medians, outliers, and
other factors, as can be seen in panels (5–8). As shown, the
heights of all the gray boxes were comparable to or less than
those of the white boxes. In addition, the median line in the
gray box was comparable to that of the white box, and the
outliers outside of the white Box–Whisker plot disappeared in
the gray one. Hence, the experimental samples can be consid-
ered representative of the total sample.
st: (1) plot of decreasing OCV versus time; (2) regular residual of OCV
s percentiles.

This journal is © The Royal Society of Chemistry 2018
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Fig. 3 Schematic representation of the sampling of experimental cells from the total sample using Matlab.
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As shown in Fig. 5, for further statistical analysis of the
normal distribution sample, histograms were constructed for
the initial features of the total and experimental samples from
Fig. 4 Description of sample features. Scatter graphs on the left show the
while the Box–Whisker plots on the right show the elementary statistics o
in the left-hand panels and white boxes in the right-hand panels repre
represent the statistical data of the experimental sample.

This journal is © The Royal Society of Chemistry 2018
the data shown in Table S1 (listed in the ESI†). Experimental
samples were selected from the majority of bins of the total
sample, rather than from a select few.
following sample features: (1) capacity, (2) DCR, (3) OCV, and (4) kOCV,
f the features: (5) capacity, (6) DCR, (7) OCV, and (8) kOCV. Hollow circles
sent the data of the total sample, while black circles and gray boxes

RSC Adv., 2018, 8, 30802–30812 | 30805
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Fig. 5 Histograms of the initial sample features. Unshaded and shaded (red) histograms represent the descriptive features of 100 and 18 cells,
respectively. Gray and red curves represent the distribution of: (1) capacity, (2) DCR, (3) OCV, and (4) kOCV.

Fig. 6 Dependence of the discharge capacity retention of the blocks
on accelerated aging.
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However, there was a concern that marginal differences were
observed with respect to the means or standard deviations
between the total and experimental samples. Therefore, the
Shapiro–Wilk test was employed to determine whether a normal
distribution existed.15 Shapiro–Wilk is a test of normality, where
the sample size is less than 50. As shown in Table S1,† with the
exception of the OCV value of the total samples, the probability
(P) value was greater than the signicance level of a ¼ 0.05,
while all coefficients of the Wilk test (W) values were close to 1.
Hence, all features of the total and experimental samples
exhibit a normal distribution, with the exception of OCV.
Therefore, according to the central limit theorem, 18 cells are
sufficient for analysis.

According to the responses for the orthogonal array L9 (34)
for four factors at three levels, based on the DOE theory, 9
blocks were employed to investigate the relationship between
the variation of the cells and the durability of the assembled
blocks.

3.3 Cycle performance and CTCVs of the blocks

In order to avoid any other inherent interference (i.e. electrolyte
mass-consumption) in a long-term cycle test at higher temper-
ature, we carried out the cycle test in relatively short cycles to
study the variation of the component cells. Fig. 6 shows the
cycle performance of the blocks at 1C and at 55 �C. In addition,
the capacity was calibrated for each of the 50 cycles at 25 �C.

Following each set of 50 cycles, the blocks were disassembled
into cells, and the capacity, DCR, OCV, and kOCV of the cells were
tested, as shown in Fig. 7. Unfortunately, no clear trends were
observed over the whole aging process. However, by comparison
30806 | RSC Adv., 2018, 8, 30802–30812
of the means or medians of the features, which are plotted as
hollow squares or lines in Fig. 7 parts 5–9, the overall trends
were clearly observed. Hence, the preliminary results suggested
that with an increase in the number of cycles, a decrease in
capacity and an increase in DCR were observed for the overall
charge–discharge process. In addition, following the initial 50
cycles, where the OCV and kOCV sharply increased and
decreased, respectively, no signicant changes were observed
(i.e., between 50 and 150 cycles).
This journal is © The Royal Society of Chemistry 2018
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Fig. 7 Features of cells in 2P blocks during aging. Left-hand plots indicate variation in the features with increasing cycle number: (1) capacity, (2)
DCR, (3) OCV, and (4) kOCV, where the symbols and colors represent blocks and cycles, respectively. The right-hand Box–Whisker plots show the
elementary statistics of the changing features with cycle number: (5) capacity, (6) DCR, (7) OCV, and (8) kOCV.
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In addition, Fig. 8 shows the extent of variation in cell
characteristics in each block with number of cycles. Due to the
complicated relationship between the various features and the
cycle numbers, it was difficult to assign simple trends.
Furthermore, the different tendencies could not be simply
determined using one level of initial variation, as the trend was
different among blocks exhibiting the same level of variation.
Thus, one-factor-at-a-time (OFAT) analysis was not suitable to
determine the relationship between the initial variation and the
capacity retention. As shown in Fig. 8 parts 5–8, the extent of
variation in the DCR sharply decreased aer 100 cycles, while
that of kOCV decreased earlier (i.e., before 100 cycles had been
completed).

Indeed, the overall trend was so complex that the relation-
ship between the initial variation of features and the capacity
This journal is © The Royal Society of Chemistry 2018
retention by OFAT analysis could not be obtained. Nevertheless,
conclusions could be made using statistical analysis.
3.4 Statistical analysis of the cell variation effect

The effects of the four controlling factors (i.e., CV_Capacity,
CV_DCR, CV_OCV, and CV_kOCV) on the three responses
(CR50, CR100, CR150) were analyzed using ordinary linear
regression.

Fig. 9 shows the leverage plots of the relationships between
the variation of features and capacity retention, which indicate
the main effects of the factors on the responses. The black
circles, dashed blue lines, solid red lines, and dashed red lines
represent the data points, means, linear tting curves, and
signicance curves at a ¼ 0.05, respectively. All bands in the
signicance curves of CV_kOCV, CV_DCR, and CV_OCV at a ¼
RSC Adv., 2018, 8, 30802–30812 | 30807
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Fig. 8 Variations of the component cells in 2P blocks during aging. Left-hand plots show the extent of variation of the features with cycle
number: (1) capacity, (2) DCR, (3) OCV, and (4) kOCV, where the various symbols and colors represent blocks and cycles, respectively. The right-
hand Box–Whisker plots show elementary statistics of the extent of feature variation with cycle number: (5) capacity, (6) DCR, (7) OCV, and (8)
kOCV.
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0.05 passed through the mean lines, indicating that they exhibit
a signicant effect on the responses.16 In contrast, other effects
appeared less signicant, as neither the bands themselves nor
their extrapolated lines could be approximated to or passed
through the lines. The lines were therefore encompassed in the
bands. Furthermore, CV_kOCV exhibited a positive effect on CR,
CV_DCR, and CV_OCV, while exhibiting both negative and
positive effects on CR50.

In practice, a cell-sorting method incorporating all control-
ling factors can’t be employed. Hence, a number of critical
factors must be selected to establish the relationship between
the responses based on correlation analysis. As shown in Table
S2 (see ESI†), moderate correlations were observed in the pairs
of CV_OCV versus CV_DCR, CV_OCV, and CV_kOCV; however,
30808 | RSC Adv., 2018, 8, 30802–30812
some minor correlations were also observed for other pairs.
Such multi-collinearity among the various factors resulted in
a complex model where ordinary linear regression based on the
standard least-squares method was adopted.

Thus, step-wise regression, which can reduce the number of
factors, was employed to determine the most critical controlling
factors, such that the factors in the nal model were signi-
cantly critical to the responses, resulting in minimal multi-
collinearity.17 The criterion for preventing step-wise regression
is the minimum Bayesian information criterion (BIC), as shown
in eqn (7):

BIC ¼ �2 log Likelihood + k ln(n) (7)
This journal is © The Royal Society of Chemistry 2018
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Fig. 9 Leverage plots for the relationships between the variation of features and capacity retention based on ordinary linear regression. (1)
CV_Capacity vs. CR50, (2) CV_DCR vs. CR50, (3) CV_OCV vs. CR50, (4) CV_kOCV vs. CR50, (5) CV_Capacity vs. CR100, (6) CV_DCR vs. CR100, (7)
CV_OCV vs. CR100, (8) CV_kOCV vs. CR100, (9) CV_Capacity vs. CR150, (10) CV_DCR vs. CR150, (11) CV_OCV vs. CR150, and (12) CV_kOCV vs. CR150.
The black circles, dashed blue lines, solid red lines, and dashed red lines represent the data points, means, linear fitting curves, and significance
curves at a ¼ 0.05, respectively.
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where k is the number of estimated parameters in the model,
and n is the number of observed values.

To obtain a relatively valuable statistical model, the t-test and
the F-test were carried out. The t-test and the F-test are respec-
tively a signicance test for every explanatory factor and the
regression equation itself in the statistical model. If the prob-
ability of P > F or |t| is less than 0.10, the explanatory factors and
their coefficients all have statistical signicance. Table S3 (see
ESI†) shows the results obtained from the t-test and the F-test.
Three critical features (i.e., CV_DCR, CV_OCV, and CV_kOCV) for
CR50 and only one critical feature (i.e., CV_kOCV) for CR100 and
CR150 were observed. All effects on the responses are still
marginally signicant in this model, which is attributed to their
P-value being less than the signicance level at a ¼ 0.1.18

However, no signicant relationship was observed between the
initial CV_Capacity and the CR of the model, due to the P-value
being greater than the signicance level at a ¼ 0.1. Hence, this
simplied model was adopted to control the cell-sorting
process, without any signicant loss in accuracy being
observed.

In addition, the adjusted R squared (adj-R2) value is
a statistic to estimate the explanatory ability of the model based
on multiple linear regression. The adj-R2 values of the model
based on ordinary linear regression were 0.7574, 0.3929, and
0.3542 for CR50, CR100, and CR150, respectively. In terms of the
model based on step-wise regression, the adj-R2 values were
0.7674, 0.3178, and 0.3604, respectively. Hence, prediction of
the durability performance using the initial variation is not
recommended as adj-R2 is l < 0.9; adj-R2 reveals the explanatory
ability of the model, but it cannot explain the effect of each
factor in the model. Thus, a number of factors continue to exert
This journal is © The Royal Society of Chemistry 2018
signicant effects on capacity retention, which is sufficient to
obtain superior blocks.

As a result, component cells with a large kOCV variation lead
to a good block durability performance. However, explaining
why a pair of component cells with a large kOCV variation
resulted in a superior block with a large CR is difficult, and so
the statistical model must be validated by testing a new sample.
3.5 Validation

In the production line, cells are typically divided into several
bins based on critical factors. In this study, the total samples
were divided into three levels (i.e., level 1, level 2, and level 3)
based on the variation of kOCV. The sample was therefore
divided into three bins, corresponding to the three levels, and
then the relationship between the capacity retention of the
blocks and the level of CV_kOCV was analyzed.

Thus, 12 cells were randomly selected to assemble six blocks
to verify the relationship between the level of CV_kOCV and
CR100 (or CR150). Standard regression was employed to ensure
that an appropriate sample was used based on the statistical
model. As shown in Fig. 10, a linear relationship was observed
between the level of CV_kOCV and CR100 (or CR150), indicating
that the CR value increased with an increase in CV_kOCV. The
conclusions of the statistical model were then veried.

One-way analysis of variance (ANOVA) is a very important
statistical analysis, widely used in the signicance test of several
means of samples.19 According to the ANOVA results of
comparative experiments, different samples could be obtained,
which exhibit remarkable differences in CR. The least signi-
cant difference (LSD) threshold matrix was employed to
RSC Adv., 2018, 8, 30802–30812 | 30809
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Fig. 10 Relationship between the level of CV_kOCV and CR. The line is the linear fit of the data, while the dark and light blue bands correspond to
the confidence interval and the prediction interval of the data, respectively, based on the fitting.
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determine the difference in the samples, the elements of which
can be calculated by the difference between the absolute value
of the means and the LSD of the two samples, as outlined in
eqn (8):13

LSD ¼ t� S �
ffiffiffi
1

n

r
(8)

where S is the root-mean-square error (RMSE), n is the sample
size, and t is a value obtained from the standard t table,
according to the degrees of freedom and the signicance
level.

Fig. 11 shows a visual representation of the one-way ANOVA
based on the modeling and validation data set; the three dia-
monds shown on the le of each plot are similar to the box plots
in statistics, indicating the CR statistical values decided for the
three levels.

Furthermore, negative elements in the LSD threshold matrix
indicated that there was no signicant difference between the
Fig. 11 One-way ANOVA diagram of CRi versus the CV_kOCV level, based
CV_kOCV level; and (b) diagram of CR150 versus the CV_kOCV level.

30810 | RSC Adv., 2018, 8, 30802–30812
samples, while positive elements indicated the opposite. Thus,
as shown in Table S4 (see ESI†), no signicant difference was
observed between the samples with level 1 and 2 CV_kOCV
values, although other differences between pairs of levels were
signicant.

In addition, the right-hand segments of the two plots in
Fig. 10 show the transformation of the le-hand plot according
to each pair. Student’s t test is a signicantly more visual
graphic for analysis, and allowed different mean values between
the samples to be obtained, in addition to identifying two
samples with signicant differences in responses.

Finally, from Fig. 11, the angle of intersection between
comparison circles 1 and 2 was found to exceed 90�, indicating
that no signicant difference exists between the mean values of
CR100 (or CR150) determined by the two levels.20 However, the
angles of intersection between the other circles were <90�,
revealing signicant differences between the mean values.
Compared with sample 1 (i.e., low CV_kOCV), sample 2 (i.e., high
on themodeling and validation data set: (a) diagramof CR100 versus the

This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra05403g


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
A

ug
us

t 2
01

8.
 D

ow
nl

oa
de

d 
on

 7
/3

1/
20

25
 3

:4
6:

03
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
CV_kOCV) exhibited an improved durability performance of the
blocks when compared with that with intermediate values of
CV_kOCV. In contrast, no statistical difference was observed in
terms of obtaining superior blocks from samples 1 or 2.

4. Conclusions

We have studied the variation of capacity, direct current resis-
tance (DCR), open-circuit voltage (OCV), and self-discharge rate
(kOCV) in the initial and aged states, and analyzed the sequence
of their variation effects on the cycle life of 2 parallel blocks. We
conclude that the initial variation of the self-discharge rate is
a particularly critical factor which signicantly affects the
durability of the assembled blocks. Indeed, less variation in
durability originated from the component cells exhibiting
a large variation in self-discharge rate, although a reduction in
durability was observed only in the case of signicantly
increased variation in kOCV. Thus, according to cell sorting
based on the criterion of kOCV variation rather than capacity
alone, such variations could lead to blocks exhibiting improved
durability.

Notes: this conclusion has some differences to previous
reports: the smaller the variation, the better the performance.
However, the conclusion was veried with other samples. We
point out that this conclusion is right for this kind of cell, but
we should do similar experiments for other kinds of LIC.
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Glossary
OCV
This journal is ©
Open-circuit voltage

DCR
 Direct current resistance

kOCV
 Self-discharge rate of cells

CtCV
 Cell to cell variation

CC–CV
 Constant current–constant voltage charging

protocol

CR
 Capacity retention of aged block

CR50
 Capacity retention of aged block at the 50th cycle

CR100
 Capacity retention of aged block at the 100th

cycle

CR150
 Capacity retention of aged block at the 150th

cycle

CV_Capacity
 Variation of component cells with capacity

CV_DCR
 Variation of component cells with DCR

CV_OCV
 Variation of component cells with OCV

CV_kOCV
 Variation of component cells with kOCV

CV
 Coefficient of variation, quantitative expression

of variation

R
 The correlation coefficient

OFAT
 One-factor-at-a-time analysis

BIC
 Bayesian information criterion

adj-R2
 The adjusted R squared values of the model

P
 Probability

F
 Statistic of the F-test
The Royal Society of Chemistry 2018
|t|
 Statistic of the two-sided t-test

ANOVA
 Analysis of variance

LSD
 The least signicant difference threshold matrix
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